Electronic Supplementary Information

COX2-targeting cancer-specific fluorescent probe for hydrogen

sulfide detection in living cells, Caenorhabditis elegans, and zebrafish

Fengying Yuan,^{b,c,†} Qiao Zhao,^{a,†} Yanyan Zeng,^b Xu Fang Liao,^a Jiali Li,^b Bo Liu,^a

Jun Feng Kou,^a Xiaolin Zhong,^d Xiang Hua Wu,^{*,a} Jun Feng Zhang,^{*,a} and Wen Xiu Ren^{*,b}

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China

^bDepartment of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China

^cFunctional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu 610000, China

^dDepartment of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China

*Corresponding Author. E-mail addresses: chxhwu@sina.com (X. H. Wu), junfengzhang78@126.com (J. F. Zhang), xrenwenxiux@swmu.edu.cn (W. X. Ren) *F. Yuan and Q. Zhao contributed equally to this work.

CONTENTS

- 1. Materials and instruments
- 2. Synthetic route of COX2-H₂S
- 3. Mass spectrum analysis of $COX2-H_2S$ in the presence of H_2S
- 4. ¹H-NMR, ¹³C-NMR and MS spectra of COX2-H₂S
- 5. Sample preparation and measurements
- 6. The quantum yield of $COX2-H_2S$
- 7. Cell viability assay
- 8. Cell culture and confocal imaging
- 9. Time dependent fluorescent imaging of 9L/lacZ cells
- 10. H_2S -concentration fluorescent imaging of 9L/lacZ cells
- 11. Intracellular co-localization of COX2-H₂S
- 12. Targeted imaging of 9L/lacZ cells in the presence of RAW264.7 cells.
- 13. C. elegans and zebrafish experiments

1. Materials and instruments

Unless otherwise stated, all chemical reagents for synthesis were purchased from commercial suppliers and used without further purification. Flash chromatography was carried out on silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 500 MHz and 125 MHz spectrometer with tetramethylsilane (TMS) as internal standard, respectively (Germany). Chemical shifts were expressed in ppm and coupling constants (*J*) in Hz. Mass spectra were performed with Agilent Xevo TQ-S/QTOF (USA). UV-vis absorption spectra were acquired with UV-240ZPC (Japan). Fluorescence spectra were acquired with F97XP spectrophotometer (China). The confocal fluorescence images were analyzed by a confocal laser scanning microscope (Leica SP8, Germany). The starting material 1¹ was prepared by the procedures described in literature method.

2. Synthesis of COX2-H₂S

Scheme S1. Synthetic route of COX2-H₂S

3. Mass spectrum analysis of COX2-H₂S in the presence of H₂S

Fig. S1 The mass spectrum after reaction of $COX2-H_2S$ with H_2S

4. ¹H NMR, ¹³C NMR and MS spectra of COX2-H₂S

Fig. S2 ¹H NMR spectra of COX2-H₂S in CDCl₃

Fig. S3 ¹³C NMR spectra of COX2-H₂S in CDCl₃

Fig. S4 HRMS spectra of probe COX2-H₂S

5. Sample preparation and measurements

A stock solution of $COX2-H_2S$ (2 mmol/L) was prepared by dissolving in DMSO. Fluorescence measurements were carried out in PBS (0.01 mol/L, pH 7.4, 60% DMSO) buffer solution. Various bio-analytes (H_2S , $S_2O_5^{2-}$, H_2O_2 , HSO_3^{-} , NO_2^{-} , $ONOO^{-}$, HSO_4^{-} , 1O_2 , CH_3COO^{-} , SO_3^{2-} , $\cdot OH$, NO_3^{-} , Cys, Hcy, GSH) were used for the selectivity tests.

6. The quantum yield (Φ) of COX2-H₂S

Table S1 The Quantum Yield (Φ) of **COX2-H₂S**

	$\lambda_{ex} = 450 \text{ nm} \text{ (reference: rhodamine B}^{[2]}\text{)}$	
Quantum Yield(Φ)	Without H ₂ S	With H ₂ S
	$\Phi = 0.0524$	$\Phi = 0.453$

7. Cell viability assay

RAW264.7 cells and 9L/lacZ cells were cultured in DMEM supplemented with 1% penicillin-streptomycin and 10% FBS in an atmosphere of 5% CO₂ and 95% air at 37°C. The cells were seeded in a 96-well plate with a density of 6000 cells per well and allowed to adhere for 24 h. Subsequently, the cells were incubated with various concentrations of the probe (0, 0.5, 1, 2, 3, 4 and 5 μ M) at 37°C in an atmosphere of 5% CO₂ and 95% air for 24 h. After that, 10 μ L CCK-8 reagent was added to each well and incubated for 2 h. The absorbance was measured at 450 nm on a microplate reader (Cyation5, BioTek, USA). Cell viability rate was calculated according to following equation: Viability =(mean Abs. of treated wells/mean Abs. of control wells) ×100%. Results are mean ± SD, n = 3.

Fig. S5 Cell viability under different concentrations of COX2-H₂S. 8. Cell culture and confocal imaging

Cells were from the Affiliated Hospital of Southwest Medical University. RAW264.7, HuH-7, DSL-6A/C1 and 9L/lacZ cells were cultured with DMEM (Gibco) and A549, KYSE150 cells were cultured with RPMI 1640 medium (Gibco), which contained with 10% fetal bovine serum (Hyclone) and 1% penicillin (100 U/mL)-streptomycin (100 µg/mL) (Solarbio) in a humidified incubator containing 5/95 (v/v) of CO₂/air at 37°C. Before imaging experiments, the cells were detached with a treatment of recombinant trypsin digestive fluid (BasalMedia) and suspended in culture media. Then the cells suspension were seeded in 20 mm glass confocal cell culture dishes for 24 h. Note: The cells were washed three times with PBS buffer before proceeding to the next step. The confocal fluorescence images were analyzed by a confocal laser scanning microscope (Leica SP8, Germany). The excitation wavelength was 448 nm and 552 nm, and the emission was collected by a 500-600 nm and 620-680 nm long pass filters, respectively. All fluorescence images were obtained by a confocal laser scanning microscope at magnification (5x, 10x and 63x). Fluorescence images were analyzed using ImageJ software.

Fig. S6 Time dependent confocal laser scanning microscopy images of 9L/lacZ cells. (A) 9L/lacZ cells were treated with 0.5 μ mol/L probe for 10 min, 20 min, 30 min, 40 min, 50 min, 1 h, 2 h, respectively. $\lambda ex = 448$ nm, $\lambda em = 500-600$ nm. (B) The semi-quantitative analysis of fluorescence images in a1-g1. Scale bar: 25 μ m. pH = 7.2.

10. H₂S-concentration fluorescent imaging of 9L/lacZ cells

Fig. S7 Fluorescence imaging of H₂S in 9L/lacZ cells. (A) (a1-e1) Fluorescence images, (a2-e2) Bright field images and (a3-e3) Merged images. (a1-e3) Probe-treated (0.5 μ mol/L, 30 min) 9L/lacZ cells incubated with H₂S (0 μ mol/L, 50 μ mol/L, 100 μ mol/L, 250 μ mol/L, 500 μ mol/L) for 1 h, respectively. λ ex = 448 nm, λ em = 500–600 nm. (B) The semi-quantitative analysis of fluorescence images. FL: Fluorescence. Scale bar: 25 μ m. pH = 7.2.

11. Intracellular co-localization of COX2-H₂S

Probe and Tracker intracellular co-localization fluorescence imaging of 9L/lacZ cells. 9L/lacZ cells were pre-stained with 100 nmol/L MitoRed (Keygen, KGMP0071, $\lambda_{ex} = 579$ nm, $\lambda_{em} = 600$ nm) for 30 min, 1 µmol/L ER-Red (Keygen, KGMP016-1, $\lambda_{ex} = 587$ nm, $\lambda_{em} = 615$ nm) for 30 min and 1 µmol/L LysoRed (Keygen, KGMP006, $\lambda_{ex} = 575$ nm, $\lambda_{em} = 600$ nm) for 1 h, respectively. Then, the cells were washed three times with PBS buffer, incubated with the probe (0.5 µmol/L, 30 min) and washed with PBS buffer three times again for imaging.

Fig. S8 Co-localization fluorescence images of the probe **COX2-H₂S** and tracker in 9L/lacZ. (a1-a3) Fluorescence images of the probe, (b1-b3) Fluorescence images of tracker, (c1-c3) Merged images. (d) Intensity correlation plot of the probe and commercial dyes. Green channel: $\lambda_{ex} = 448$ nm, $\lambda_{em} = 500-600$ nm; Red channel: $\lambda_{ex} = 552$ nm, $\lambda_{em} = 620-680$ nm. Scale bar: 25 µm. pH = 7.2.

12. Targeted imaging of 9L/lacZ cells in the presence of RAW264.7 cells.

Fig. S9 Confocal laser scanning microscopy images of co-cultured RAW264.7 cells and 9L/lacZ cells. (a1) Fluorescence images, (a2) Bright field images, (a3) Merged images. Scale bar: 25 μ m. pH = 7.2.

13. C. elegans and zebrafish experiments

5-day-old wild-type *C. elegans* were obtained from the School of Pharmacy at South West Medical University (Luzhou, China). *C. elegans* incubated with the probe (10 µmol/L) for 1 h. *C. elegans* preloaded on the probe and further incubated in PBS buffer with H_2S (500 μ M, 1 h).

2-day-old zebrafish were obtained from the Public Experimental Technology Center at South West Medical University (Luzhou, China). Zebrafish only incubated with 10 μ M probe for 1 h. Probe-treated zebrafish incubated with 500 μ mol/L H₂S for 1 h.

Reference:

1. J. Lee, H. S. Kim, P. Jangili, H. G. Kang, A. Sharma and J. S. Kim, *ACS Appl. Bio Mater.*, 2021, **4**, 2073–2079.

2. A. M. Brouwer, Pure Appl. Chem., 2011, 83, 2213-2228.