

Electronic Supplementary Information

Hydroxyl-functionalized pillar[5]arene with high separation performance for gas chromatography

Mengyi Ba ^a, Wen Li ^a, Yanli Song ^a, Yuanyuan Zhang ^a, Xiang Xu ^a, Haixin Liu ^a, Zhiqiang Cai ^{a,*}, Shaoqiang Hu ^b, Xianming Liu ^b, Tao Sun ^{b,*}

a. Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. China b. College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China

List of Contents:

^{*} E-mail addresses: kahongzqc@163.com (Z. Cai); suntao2226@163.com (T. Sun).

1. ¹H NMR spectrum, Infrared spectrum and ESI-MS spectrum of the compounds

- 2. The parameters of the Golay equations for the capillary columns
- **3.** Resolution for the isomers on the columns
- 4. Structures and properties of the analytes
- **5.**Chromatograms of commercial reagent samples
- 6. Repeatability, reproducibility and long-term stability of the P5A-C10-OH

capillary column

1. ¹H NMR spectrum, Infrared spectrum and ESI-MS spectrum of the compounds

Fig. S2 Infrared spectrum of P5A-C10-FBr.

2. The parameters of the Golay equations for the capillary columns

Table S1. The minimum plate height (H_{\min}) , column efficiency (n), retention factor (k) and the coefficients (B, C) of the Golay equations for the P5A-C10-OH and P5A-C10 capillary columns determined by *n*-dodecane at 120 °C.

Parameters	Р5А-С10-ОН	P5A-C10
H_{\min} (mm)	0.31	0.46
n (plates/m)	3233	2172
$u_{\rm opt}$ (cm/s)	15.08	8.76
k (at u_{opt})	2.35	4.96
$B (\pm SD) (mm \times cm/s)$	5.31 (±1.86)	8.05 (± 1.46)
$C (\pm SD) (mm \times s/cm)$	$0.034 (\pm 0.005)$	0.068 (±0.005)

3. Resolution for the isomers on the columns

Amalatas	Р5А-С10-ОН		P5A-C10		HP-3	HP-35	
Analytes	Elution order	R	Elution order	R	Elution order	R	
	<i>m</i> -	-	<i>m</i> -	-	<i>m</i> -	-	
dichlorobenzene	0-	3.33	р-	co-eluted	р-	3.47	
	р-	2.31	0-	1.05	0-	5.62	
	m-	-	<i>m</i> -	-	<i>m</i> -	-	
dibromobenzene	0-	4.27	р-	co-eluted	р-	1.80	
	р-	5.16	0-	1.30	0-	5.57	
	m-	-	<i>m</i> -	-	<i>m</i> -	-	
chloronitrobenzene	0-	4.32	0-	0.56	р-	4.04	
	р-	21.54	р-	2.03	0-	1.93	
	<i>m</i> -	-	<i>m</i> -	-	<i>m</i> -	-	
bromonitrobenzene	0-	3.36	0-	co-eluted	D-	3.31	
	<i>p</i> -	27.94	<i>p</i> -	12.23	Г О-	1.05	
	2.6-	_	2.6-	-	2.6-	_	
	2.5-	17.43	2.5-	3.80	2.5-	8.71	
xvlenol	2.3-	5.63	2.3-	2.30	3.5-	5.29	
,	3.5-	2.92	3.5-	0.45	2.3-	2.78	
	3.4-	4.24	3.4-	0.99	3.4-	4.05	
	<i>0</i> -	-	0-	-	0-	-	
chloroaniline	<i>n</i> -	18.83	<i>m</i> -	5.44	<i>m</i> -	18.50	
	Р <i>т</i> -	2.05	<i>p</i> -	co-eluted	<i>p</i> -	0.47	
	0-	_	r 0-	-	r 0-	-	
bromoaniline	<i>m</i> -	19.62	<i>m</i> -	6.67	<i>m</i> -	14.55	
	<i>n</i> -	2.21	<i>n</i> -	0.48	<i>n</i> -	co-elute	
	P 0-		P 0-	-	P 0-	-	
iodoaniline	<i>m</i> -	17.49	<i>m</i> -	8.72	<i>m</i> -	16.86	
	<i>n</i> -	2 32	<i>n</i> -	1 76	<i>n</i> -	0.65	
phenylenediamine	P 0-	-	P 0-	-	P 0-	-	
	<i>n</i> -	9 33	n-	2.88	n-	11 78	
	Р т-	4.06	Р т-	0.89	Р т-	7 28	
	2 6-	-	26-	-	26-	-	
	2,0-	3 07	2,0-	0.37	2,0-	0.63	
dimethylaniline	2,3-	4 16	2,3-	1 73	3.4-	5.05	
	2,5-	7.10	2,5-	1.75	5,	5.78	

4. Structures and properties of the analytes

 Table S3. Structures and properties of the analytes.

Compound	Structure	Boiling point	Dipole moment
o-dichlorobenzene		180.4 °C	3.50Debye
<i>m</i> -dichlorobenzene	Cl	173 °C	2.27Debye
p-dichlorobenzene	CI-CI	174.1 °C	0Debye
o-dibromobenzene	Br	224 °C	2.14Debye

<i>m</i> -dibromobenzene	Br	219.5 °C	1.43Debye
<i>p</i> -dibromobenzene	Br	219 °C	0Debye
2,3-xylenol	OH	218 °C	2.17Debye
2,5-xylenol	ОН	212 °C	1.58Debye
2,6-xylenol	OH	203 °C	1.74Debye
3,4-xylenol	OH	225 °C	1.78Debye
3,5-xylenol	OH	219 °C	1.51Debye
2,6-dimethylaniline	NH ₂	216 °C	2.35Debye
2,5-dimethylaniline	NH ₂	218 °C	2.06Debye
2,3-dimethylaniline	NH ₂	212 °C	2.14Debye
3,4-dimethylaniline	NH ₂	226 °C	1.79Debye

5. Chromatograms of commercial reagent samples

Fig. S9 Applications of the P5A-C10-OH column for the determination of minor impurities in the real samples of 1,2,4-trichlorobenzene, 2,4-dimethylaniline, 1-pentanol and *cis*-decahydronaphthalene, respectively.

6. Repeatability, reproducibility, and long-term stability of the P5A-C10-OH

capillary column

Table S4. Repeatability	and reproducibility	of the P5A-C10)-OH capillary	v column on	the retention
times ($t_{\rm R}$, min).					

Amolytan	run-to-run $(n = 5)$		day-to-day $(n = 4)$		column-to-column ($n = 3$)	
Analytes	$t_{\rm R}$ (min)	RSD (%)	$t_{\rm R}$ (min)	RSD (%)	$t_{\rm R}$ (min)	RSD (%)
<i>n</i> -tetradecane	8.58	0.03	8.57	0.11	8.89	2.48
<i>n</i> -pentadecane	9.32	0.01	9.31	0.06	9.52	1.23
<i>n</i> -hexadecane	10.01	0.02	10.01	0.03	10.17	0.88
1-nonanol	8.93	0.01	8.93	0.04	9.13	2.09
1-decanol	9.68	0.01	9.69	0.08	9.73	0.49
1-undecanol	10.41	0.01	10.43	0.19	10.36	0.23
1-dodecanol	11.35	0.03	11.38	0.21	11.24	0.53
methyl decanoate	8.98	0.02	8.98	0.03	9.16	1.71
methyl undecanoate	9.66	0.02	9.67	0.06	9.71	0.44
methyl laurate	10.37	0.01	10.38	0.12	10.36	0.21

Table S5. Long-term stability of the P5A-C10-OH column on the retention times of the indicated isomer analytes over the time period.

Analyta		$\mathbf{DSD}(0/)$		
Allalyte	0 month	1 month	6 month	KSD (70)
<i>n</i> -tetradecane	8.55	8.64	8.56	0.55
<i>n</i> -pentadecane	9.29	9.38	9.31	0.56
<i>n</i> -hexadecane	9.98	10.07	10.01	0.48
2,6-xylenol	7.34	7.47	7.46	1.00
2,5-xylenol	8.94	9.08	9.06	0.82
2,3-xylenol	9.42	9.57	9.54	0.81
3,5-xylenol	9.68	9.83	9.81	0.83
3,4-xylenol	10.10	10.25	10.25	0.86
o-bromoaniline	7.68	7.81	7.79	0.96
<i>m</i> -bromoaniline	9.65	9.81	9.76	0.83
<i>p</i> -bromoaniline	9.85	10.01	9.97	0.82

Fig. S10 Long-term stability of the P5A-C10-OH column on the column efficiency over the time period.