Supplementary Information

A low-cost miniature immunosensor for haemoglobin as a device for the future detection of gastrointestinal bleeding

Alper Demirhan^a, Iva Chianella^b, Samadhan B Patil^{c,d} and Ata Khalid^a*

^aCenter of Electronic Warfare, Information and Cyber, Cranfield University, Defence Academy of the United Kingdom, Shrivenham SN6 8LA, U.K.

^bSurface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, U.K.

^cSchool of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.

^dYork Biomedical Research Institute (YBRI), University of York, York YO10 5DD, U.K.

*Corresponding Author: ata.khalid@cranfield.ac.uk

S1 Comparison with literature

EIS technique requires a signal generator that can generate low amplitude AC signals, and a frequency response analyzer that works synchronously with the signal generator to measure the response of the sensor. Although current commercial devices are unsuitable for use as ingestible sensors since there are bulky, expensive, and power hungry, numerous studies have proposed small size devices which can be converted to an ingestible EIS sensor. Several researchers ¹⁻⁴ have suggested using an AD5933 (7.8x6.2x2 mm, £17, Analog Devices, USA) chip which includes a 12-bit, 1 MSPS current-output DDS (direct digital synthesizer) as a signal generator, and a 12-bit ADC (analog-to-digital converter) with on-board discrete Fourier transform (DFT) engine for signal acquisition. Frequency resolution of the chip is 27 bits and capable of generating frequencies less than 0.1 Hz. However, it is only capable of measuring impedances from 100 Ω to 10 M Ω . Also, its 1 MSPS sampling rate is not enough to generate high-quality sinusoidal waves and its ADC resolution is 12-bits which makes it harder to measure low level signals. Brown et al. (2022) has suggested using an ADuCM355 (7.8x6.2x2 mm², £19, Analog Devices, USA) which is a systemon-chip device including an ARM Cortex-M3 microprocessor with other peripherals to implement EIS and voltammetric protocols. It includes a waveform generator, and an on-board ADC and DFT engine to read and analyze the data. It can generate frequencies less than 1 Hz to 200 kHz. Impedance measurement range is from 0.4 Ω to 10 MΩ. Some researchers suggested using a built-in DAC (digital-to-analog converter) and ADC of microcontrollers⁶. But built-in DACs and ADCs in general purpose microcontrollers have sampling rates generally less than 2 MSPS and resolution generally less than 12 bits. Gervasoni et al.⁷ suggested using a high-speed external DAC and ADC but this method is expensive and requires highspeed processors such as FPGA (field programmable gate array) which are power-hungry devices. All these works use a digital lock-in amplifier or DFT which demodulate the signal after it is converted to a digital value by ADC. However, higher sampling rate and resolution results in cost and power trade-offs in these methods. Comparison of the devices is given at Table S1.

Table S1. Comparison with li	iterature
------------------------------	-----------

Reference	Cost	Size	Frequency	AC Output Range
		(mm²)	Range	(mV _{RMS})
Our Device	£31	33x20	DC -100 kHz	1-30 or 10-300 (depends
		(19x7.9 in		on selected DDS I/V
		capsule)		converter resistor)
Zhang et al. ¹	N.A	N.A	10 Hz-10	200 mV
			kHz	(fixed)
Chuang et al. ²	N.A.	N.A	1 kHz- 100	N.A
			kHz	
Salahandish et al. ³	\$80	83x60	1 Hz-5 kHz	10
Liu et al. ⁴	\$100	N.A.	1-100kHz	1.99, 0.97, 0.383, 0.198 (V _p
				p)
Brown et al.⁵	\$60	26x68	16 mHz- 200	N.A.
			kHz	
Pruna et al. ⁶	\$300	120x70	0.1 Hz-10	500
			kHz	
Jenkins et al. ⁸	\$105	74x89	DC-100 kHz	10 -100
				(4 pre-programmed)
Sensit Smart ⁹	\$1250	43x25	16 mHz- 200	1-250
			kHz	

S2 Cost of materials for the EIS device

Table S2. Cost of the materials

Name	Description	Quantity	Unit price (£)	Total (£)
Passive elements	Resistors, capacitors,	44	0.01	0.44
	and inductors			
AD9834	DDS	1	12.11	12.11
EFM8LB12	MCU	1	1.23	1.23
MAX5394	Digital Potentiometer	2	1.61	3.22
MCP3561	24-bit ADC	1	2.62	2.62
PI5A3157	Analog switch	2	0.3	0.6
DS1020-05	Electrode Connector	1	0.2	0.2
FT200XD	USB/I2C converter	1	1.73	1.73
USB connector	USB Mini-b connector	1	1.31	1.31
OPA4354	Quad Op-amp	2	2.6	5.2
LP2985	4.5 V LDO	1	0.85	0.85
MCP1700	3.3 V LDO	1	0.41	0.41
РСВ	4-layer circuit board	1	1	1

Total cost: £30.92

S3 Dummy-cell measurements

Precision resistors which have 0.1% tolerance and 10 ppm/°C temperature coefficient in 0805 SMD package were used as dummy-cell.

Table S3.	Mean	and s	standard	deviations	of	dummv-cell measurements
					~,	

		Impeo	dance	Phase		
		Mean	Std	Mean	Std	
		(Ω)	(Ω)	(°)	(°)	
40 Ω	This work	39.97	0.152	-0.198	0.162	
	PS-4	40.62	0.078	-0.166	0.457	
100 Ω	This work	100.507	0.209	0.276	0.227	
	PS-4	100.949	0.099	-0.0484	0.185	
1000 Ω	This work	996.421	0.977	-0.126	0.106	
	PS-4	998.033	1.494	-0.878	1.012	
10500 Ω	This work	10.496k	6.900	0.135	0.166	
	PS-4	10.443k	156.547	1.707	1.581	
51 kΩ	This work	51.050k	63.464	-0.735	0.597	
	PS-4	49.129k	5.852k	11.581	9.897	

S4 Transimpedance amplifier

Fig. S1. Transimpedance amplifier and current gain circuitry.

S5 Calibration procedure of the instrument

Six step calibration procedure was applied to calibrate the EIS device. The procedure is shown in Fig. S2.

Fig. S2. Calibration procedure of the instrument.

S6 Electrochemical characterisation

Fig. S3. Electrochemical characterization of the electrodes. A-B) CV measurements at different scan rates with our device and Palmsens-4, respectively. C-D) Relationship between peak current and square root of scan rate for our device and Palmsens-4, respectively.

	R _{sol}	R _{charge-transfer}	W	Q	n
	(Ohm)	(Ohm)	(Ohm sec ^{-1/2})	(Ohm ⁻¹ sec ⁿ)	
Our	58.37	114.41	175.56	2.17	0.87
Device					
PS-4	58.29	108.15	187.53	2.05	0.88

Table S4. Randles equivalent circuit values.

S7 Electrode modification

Fig. S4. Stepwise change after coating electrode surface.

Table S5. Change in Randles equivalent circuit parameters after each modification step.

Electrode	R_{sol} (Ω)	CPE		R _{CT}	W
		Q (µT)	n (Φ)	(kΩ)	(kσ)
Bare Metal	132.9	0.15	1.1	0.03	1.28
After antibody immobilisation	138.4	0.31	0.94	1900	1.47
After BSA immobilisation	122.9	0.34	0.93	3278	1.59

S8 Antibody immobilisation optimisation

Fig. S5. Response of the sensor with different antibody concentrations.

S9 Response of the sensor with and without antibody

Fig. S6. 10 μg mL⁻¹of Hb was measured when surface was covered with and without antibody.

References

- 1 D. Zhang, Y. Lu, Q. Zhang, L. Liu, S. Li, Y. Yao, J. Jiang, G. L. Liu and Q. Liu, *Sens Actuators B Chem*, 2016, **222**, 994–1002.
- 2 C. H. Chuang, Y. C. Du, T. F. Wu, C. H. Chen, D. H. Lee, S. M. Chen, T. C. Huang, H. P. Wu and M. O. Shaikh, *Biosens Bioelectron*, 2016, **84**, 126–132.
- R. Salahandish, F. Haghayegh, G. Ayala-Charca, J. E. Hyun, M. Khalghollah, A. Zare, B. Far, B. M. Berenger, Y. D. Niu, E. Ghafar-Zadeh and A. Sanati-Nezhad, *Biosens Bioelectron*, 2022, 203, 114018.
- 4 X. Liu, C. Cheng, J. Wu, S. Eda and Y. Guo, *Biosens Bioelectron*, 2017, **90**, 83–90.
- 5 E. W. Brown, M. W. Glasscott, K. Conley, J. Barr, J. D. Ray, L. C. Moores and A. Netchaev, *Anal Chem*, 2022, **94**, 4906–4912.
- 6 R. Pruna, F. Palacio, A. Baraket, N. Zine, A. Streklas, J. Bausells, A. Errachid and M. López, *Biosens Bioelectron*, 2018, **100**, 533–540.
- 7 G. Gervasoni, M. Carminati and G. Ferrari, *Review of Scientific Instruments*, 2017, **88**, 104704.
- 8 D. M. Jenkins, B. E. Lee, S. Jun, J. Reyes-De-Corcuera and E. S. McLamore, *J Electrochem Soc*, 2019, **166**, B3056–B3065.
- 9 Basi Research Products online shop, https://www.basinc.com/products/PALM-SENSIT-SMART (accessed 31/10/2023)