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Scheme 1. Synthesis of pyridinium betaine dyes.

General

"H NMR spectra (400 MHz) were obtained using a JEOL ECX-400 spectrometer with tetramethylsilane
(0.00 ppm) as the internal standard. Low-resolution (LR) atmospheric solid analysis probe (ASAP) mass
measurements were carried out with a Shimadzu LCMS-2020 and LabSolutions LCMS software. High-
resolution (HR) electrospray ionization mass measurements were carried out with a Bruker microTOF
system after calibration using a sodium formate solution. Elemental analyses were carried out on a J-
Science Lab MICRO CORDER JMI10 analyser. (£)-N,N-Diphenyl-4-(2-(pyridin-4-yl)vinyl)aniline

(denoted as 4) was synthesised according to a previously reported protocol.!

Synthesis of 3a

2,3-Dichloromaleic anhydride (0.4122 g, 2.469 mmol) and 2a (0.5620 g, 2.408 mmol) were dissolved
in acetic acid (5.0 mL), and the mixture was refluxed for 3.5 h. After cooling, water (10.0 mL) was
added to the mixture, and the resulting precipitate was filtrated. The residue was washed with water
and methanol, yielding the target compound 3a as a white solid (0.8617 g, 2.254 mmol, 94 % yield);
"H NMR (400 MHz, CDCl3) 4 7.28 (d, /= 8.2 Hz, 2H), 7.22 (d, J = 8.2, 2H), 2.63 (t, J= 7.8 Hz, 2H),
1.66-1.58 (m, 2H), 1.31-1.26 (m, 14H), 0.88 (t,J= 6.9 Hz, 3H); 3C NMR (100 MHz, CDCl3) § 162.3,
144.0, 133.7,129.5, 128.1, 126.0, 35.8, 32.0, 31.4, 29.8, 29.7, 29.6, 29.5, 29.4, 22.8, 14.3; LR-ASAP-
MS (m/z) calcd. For CyoHpsCI,NO, ([M + H]Y): 382.1; Found: 382.2; Anal. caled. for CygHpsC1,NO;:
C, 62.83; H, 6.59; N, 3.66. Found: C, 62.76; H, 6.54; N, 3.87.



Synthesis of 3b

2,3-Dichloromaleic anhydride (0.4593 g, 2.753 mmol) and 2b (0.322 mL, 2.748 mmol) were dissolved
in acetic acid (5.0 mL), and the mixture was refluxed for 3.5 h. After cooling, water (10.0 mL) was
added to the mixture, and the resulting precipitate was filtrated. The residue was washed with water
and methanol yielding the target compound 3a as a white solid (0.6530 g, 2.436 mmol, 89 % yield);
'"H NMR (400 MHz, CDCl3) § 7.51 (d, J= 8.7 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H), 6.73 (dd, J= 17.4,
11.0 Hz, 1H, 5.79 (d, J = 17.4 Hz, 1H), 5.34 (d, /= 11.0 Hz, 1H); '3C NMR (100 MHz, CDCl;) §
162.1, 138.1, 135.8, 133.8, 129.9, 127.2, 126.1, 115.7; LR-ASAP-MS (m/z) calcd. For C1,H;CI,NO,
([M + HJ"): 268.0; Found: 268.0; Anal. calcd. for C;,H,CI,NO,: C, 53.76; H, 2.63; N, 5.22. Found:
C, 53.63; H, 3.02; N, 5.19.

Synthesis of PB-C10

The compounds 4 (98.0 mg, 0.2812 mmol), 3a (116.5 mg, 0.3047 mmol), and acetic anhydride (3.0
mL) were mixed, and the blend was refluxed for 15 min and then cooled in an ice bath. The obtained
precipitate was filtrated and then washed with methanol and ethanol, yielding the target compound
PB-C10 as a reddish-orange powder in 86% yield (0.1632 g, 0.2415 mmol); 'H NMR (400 MHz,
CD,Cl,) 6 9.66 (d, J= 7.3 Hz, 2H), 7.71 (d, J = 7.3 Hz, 2H), 7.49-7.45 (m, 3H), 7.33-7.25 (m, 8H),
7.40-7.12 (m, 6H), 7.00 (d, J = 8.7 Hz, 2H), 6.96 (d, J=16.5 Hz, 1H), 2.63 (t,J= 7.8 Hz, 2H), 1.66—
1.58 (m, 2H), 1.28-1.25 (m, 14H), 0.86 (t, J = 6.9 Hz, 3H); '3C NMR (100 MHz, CDCl;) § 167.1,
165.0,163.5,150.3, 147.3,146.7, 142.4, 138.8, 136.5, 129.7, 129.3, 129.1, 129.0, 127.6, 126.4, 125.7,
124.5, 122.3, 121.4, 119.9, 100.2, 35.7, 32.0, 31.5, 29.7, 29.7, 29.6, 29.4, 22.8, 14.2; ESI-TOF MS
(m/z) calcd. For C4sHy4sN3NaO; ([M + Nal*): 698.3354; Found: 698.3345; Anal. caled. for
C4sH4sN305: C, 79.97; H, 6.71; N, 6.22. Found: C, 79.79; H, 6.76; N, 6.12.

Synthesis of PB1

The compounds 4 (26.0 mg, 74.6 umol), 3b (22.5 mg, 83.9 umol), and acetic anhydride (0.5 mL) were
mixed, and the blend was refluxed for 15 min and then cooled in an ice bath. Hexane (10.0 mL) was
added to the mixture, and the resulting precipitate was filtrated. The residue was washed with methanol
and ethanol, yielding the target compound PB1 as a reddish-orange powder in 96.2% yield (40.3 mg,
71.8 umol); 'H NMR (400 MHz, CD,Cl,) 6 9.65 (d, J= 6.9 Hz, 2H), 7.71 (d, J = 6.9 Hz, 2H), 7.50—
7.44 (m, 5H), 7.36-7.29 (m, 6H), 7.14-7.12 (m, 6H), 7.00 (d, /= 9.2 Hz, 2H), 6.96 (d, /= 16.0 Hz,
1H), 6.74 (dd, J=18.1, 11.0 Hz, 1H), 5.78 (d, /= 18.1 Hz, 1H), 5.28 (d, /= 11.0 Hz, 1H); 3C NMR
(100 MHz, CDCl;) 6 166.9, 164.9, 163.3, 150.4, 147.5, 146.7, 139.0, 136.7, 136.3, 131.2, 129.7, 129.3,
127.6, 126.8, 126.5, 125.8, 124.6, 122.3, 121.5, 119.9, 114.6, 100.3; ESI-TOF MS (m/z) calcd. For
C37H,7N3NaO; ([M + Na]®): 584.1945; Found: 584.1940; Anal. calcd. for C37H,7N;05: C, 79.13; H,
4.85; N, 7.48. Found: C, 79.01; H, 4.97; N, 7.36.
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Scheme 2. Synthesis of QP1.

Synthesis of QP1

QP1 was synthesised according to a previously reported method?. Briefly, the compound 5 (0.5940 g,
2.173 mmol) and 6 (0.4673 g, 2.182 mmol) were dissolved in dichloromethane (4.0 mL), and
piperidine (20 pL, 0.20 mmol) was added to the mixture. The blend was refluxed for 24 h. After
cooling, chloroform (30 mL) and water (30 mL) were added to the mixture, and the organic layer was
washed with water (30 mL x 1) and sat. NaCl aq. (30 mL x 2) and dried over Na,SO,. Then, the
solvent was removed on a rotary evaporator, and the residue was purified by silica gel column
chromatography (eluent: chloroform/methanol = 4/1 (v/v)). The target compound QP1 was obtained
as ared solid (0.3110 g, 0.7318 mmol, 34% yield) ; '"H NMR (400 MHz, CDCl;3) § 9.12 (d, J= 6.4 Hz,
2H), 7.89 (d, J= 6.9 Hz, 2H), 7.61 (d, J= 16.0 Hz, 1H), 7.46 (d, J= 8.7 Hz, 2H), 7.35-7.31 (m, 4H),
7.16-7.13 (m, 6H), 7.01 (d, J = 8.7 Hz, 2H), 6.95 (d, J= 16.0 Hz, 1H), 6.17-6.07 (m, 1H), 5.58-5.49
(m, 4H); 3C NMR (100 MHz, CDCl3) 8 154.0, 150.7, 146.5, 144.1, 142.1, 130.8, 130.0, 129.7, 127.2,
125.9, 124.7, 123.5, 123.3, 121.0, 119.2, 62.1; ESI-TOF MS (m/z) calcd. For CygHysN, ([M]Y):
389.2013; Found: 389.2003; Anal. calcd. for C,3H,5CIN,: C, 79.14; H, 5.93; N, 6.59. Found: C, 78.90;
H, 5.99; N, 6.46.
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Fig. S1. Preparation of the dye-immobilised copolymer membrane.
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Fig. S2. (a) Response of the fluorescence intensity of PB1-mem to water in THF/water mixtures

(from 0 vol% water in THF at 0 min to 40% water in THF). (b) Recovery of the fluorescence

intensity of PB1-mem (from 40 vol% water in THF at 0 min to 0% water in THF).
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Fig. S3. (a) Optimized structures and the distribution of frontier orbitals in the ground state and (b)
optimized structures in the excited state of PB1 (left: SMD/THF, right: SMD/water at M06/6-31G(d,p)

level).
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Fig. S4. (a) Optimized structures in the ground state and frontier orbitals and (b) optimized structure
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Fig. S5. Lippert—Mataga plots of the two synthesised dyes.
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Fig. S6. Optimized structures in the ground state and excited states of PB1 with a water molecule

(SMD/water at M06/6-31G(d,p) level).

Table S1. Total energy of PB1 and water in the ground state (SMD/water at M06/6-31G(d,p) level).

Optimized structure Total energy (a.u.)
PB1 (Fig. S3a) —1776.837859
Water —76.39901008
PB1 + water (Fig. S6) —1853.244426
AFEiotarg 0.00755732 (4.742294 kcal/mol)




5 /@in THF PB1
@inwater  : PB1+ H,0 ¥
€00
L]
5.9 kcal/mol

_ 41
]

g

3 o
ax 1]
0 @
421075

0 Il.'D keal/mol

20 1] 20 40 60 BO 100 120 140 160 180
Dihedral angle (degree)
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Fig. S8. Predicted IR spectra of PB1 (SMD/water).
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