Supporting Information

Adhesive SERS substrate based on stretched silver nanowiretape for in-situ multicomponent analysis of pesticide residues

Xing Dai^a, Danni Xue^a, Xiaohan Liu^a, Chenjie Gu^a, Tao Jiang^{a,*}

^aDepartment of Microelectronic Science and Engineering, School of Physical Science and

Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China

^{*}Corresponding author: Tao Jiang, E-mail: jiangtao@nbu.edu.cn

Fig. S1 (a and b) Cross-sectional SEM image of the Ag NW-tape. (b) is the magnified image of the orange region in (a).

Fig. S2 SEM images of the stretched Ag NW-tape at the strain of 45%.

Fig. S3 SERS spectra of Ag NW-tape substrates under varied strains using diverse probe molecules with different concentrations: (a) 10⁻³ M 4-MBA, (c) 10⁻⁵ M 4-MBA, (e) 10⁻³ M 2-NAT. (b, d and f) The corresponding histogram of characteristic Raman peak intensity of each target analyte.

Fig. S4 SERS spectrum of 4-MBA on the SERS-active substrate and Raman spectrum of 4-MBA powder.

The EF was calculated by the representative equation: $\text{EF} = (I_{SERS}/I_{bulk}) / (N_{SERS}/N_{bulk})$. Here, I_{SERS} and I_{bulk} are the integrated intensities of the peak at 1072 cm⁻¹ for 4-MBA adsorbed on the substrate and 4-MBA powder, respectively. The required I_{SERS} and I_{bulk} were calculated to be 262198.28 and 24058.81 according to Figure S4, respectively. Thereafter, N_{SERS} and N_{bulk} indicate the effective amount of 4-MBA molecules from the substrate and 4-MBA powder, respectively. The corresponding values were acquired by the following equations:

$$N_{SERS} = N_A \times S_{illumination} \times \sigma$$

 $N_{bulk} = n_{powder} \times V_{illumination}$

$$V_{illumination} = \frac{l}{3} \times S_{illumination} \times D_{depth}$$

$$D_{depth} = \frac{\lambda}{(NA)^2}$$
$$\frac{N_{SERS}}{N_{bulk}} = \frac{N_A \times \sigma}{\frac{1}{3} \times n_{powder} \times D_{depth}}$$

The entire molecule number of 100 mg 4-MBA (N_{powder}) was calculated to be 3.90 × 10²⁰. When 100 mg of solid 4-MBA powder was tightly compacted into a cube shape by two clean glasses, its volume (V_{powder}) was estimated as 2.5 (5 × 5 × 0.1) mm³. Consequently, the volume density of 4-MBA molecules in the power (n_{powder}) was estimated to be 1.56 × 10²⁰ mm⁻³ ($n_{powder} = N_{powder}/V_{powder}$). In addition, the penetration depth of the focused beam into the 4-MBA powder (D_{depth}) was estimated to be 4.91 µm (NA = 0.4 for the 20 × objective lens of the Raman spectrometer at the 785 nm wavelength). Subsequently, σ for the mole amount of 4-MBA molecules per mm² in a monolayer was calculated as 4.0 × 10⁻¹² mol·mm⁻². Accordingly, the value of N_{SERS}/N_{bulk} was estimated to be 9.43 × 10⁻⁶. Hence, the EF value of the Ag NW-tape substrate was calculated as 1.16 × 10⁶.

Table S1	Comparison	of the	performance i	n the	detection	of TMTD
14010 01	companioon					

Substrate	Detection range	LOD	Ref.		
Ag NRs embedded PDMS	$10^{-2} \sim 10^{-7} \text{ M}$	$2.4 \times 10^{-9} \text{ g/cm}^2$	1		
interfacial self-assembly Au	0.001 ~ 30 ppm	0.029 ng/cm ²	2		
NRs array					
2D Au@Ag nanodot array	0.005 ~ 1 ppm	0.0011 ppm	3		
interfacial self-ordered GNP	$19\sim 1900 \text{ ng/cm}^2$	1 nM	Λ		
arrays			4		
CNF-Au NR based SERS	$6 \sim 600 \text{ ng/cm}^2$	6 ng/cm ²	5		
platform					
CNF/Au NP substrate	0 ~ 10 ppm	52 ppb	6		
stretched Ag NW-tape	$10^{-1} \sim 10^{-6} \text{ mg/mL}$	0.0102 ng/cm ²	This work		
substrate					

Table S2 Comparison of the performance in the Detection of TBZ

Substrate	Detection range	LOD	Ref.
interfacial self-assembly Au	0.01 ~ 200 ppm	0.76 ng/cm ²	2
NRs array			
2D Au@Ag nanodot array	0.05 ~ 10 ppm	0.051 ppm	3
Ag/NC jelly like substrate	$5\sim 10 \ ng/cm^2$	5 ng/cm ²	7
Au@Ag/PMMA/qPCR-PET	0.05 ~ 10 ppm	20 ppb	Q
film			0

Biomimetic	material	$10^{-5} \sim 10^{-9} M$	10 ⁻⁹ M	9	
assembles GNPs					
Vertically aligned	Au NRs	$0 \sim 1000 \ \mu g/L$	149 µg/L	10	
arrays					
stretched Ag	NW-tape	$1 \sim 10^{-5} \text{ mg/mL}$	0.0819 ng/cm ²	This work	
substrate					

The detail conversion process of the concentration was shown as below:

In this work, 10 µL standard solution of pesticide (1 mg/mL) was dropped on the Ag

NW-tape substrate with an area of 1.5×0.5 cm².

The mass of pesticide on the substrate was:

 $m = C \times V = 1 mg/mL \times 10 \mu L = 10 \times 10^3 ng;$

The mass-to-area ratio (Rm/a) of the pesticide on the Ag NW-tape substrate was:

 $Rm/a = mass/area = 10 \times 10^3 ng / (1.5 \times 0.5) cm^2 = 13.3 \times 10^3 ng/cm^2;$

Therefore, the limits of detection (LOD) of TMTD (7.67×10^{-7} mg/mL) and TBZ (6.16

 \times 10⁻⁶ mg/mL) could be evaluated to be:

$$7.67 \times 10^{-7} \times 13.3 \times 10^3 \text{ ng/cm}^2 = 1.02 \times 10^{-2} \text{ ng/cm}^2$$

 $6.16 \times 10^{-6} \times 13.3 \times 10^{3} \text{ ng/cm}^{2} = 8.19 \times 10^{-2} \text{ ng/cm}^{2}$

For the in-situ detection of pesticide residues on food, 20 μ L mixtures of pesticide (1 mg/mL) was spiked on the food surface. The contaminated area was about 1 × 1 cm². Therefore, the mass of pesticide on the food surface was:

 $m = C \times V = 1 mg/mL \times 20 \mu L = 20 \times 10^3 ng;$

The mass-to-area ratio (Rm/a) of the pesticide on the fruit surface was:

 $Rm/a = mass/area = 20 \times 10^3 ng / 1 cm^2 = 20 \times 10^3 ng/cm^2;$

After being dried, the pesticide was extracted through the "paste and peel off" method before SERS detection. Therefore, the detected amounts of TMTD (2×10^{-3} and 2×10^{-5} mg/mL) and TBZ (5×10^{-1} and 5×10^{-5} mg/mL) on the surface of the vegetables and fruits could be estimated to be:

 $2 \times 10^{-3} \times 20 \times 10^{3} \text{ ng/cm}^{2} = 40 \text{ ng/cm}^{2}$

- $2\times 10^{\text{-5}}\times 20\times 10^3 \text{ ng/cm}^2 = 0.4 \text{ ng/cm}^2$
- $5\times10^{\text{--}1}\times20\times10^3~\text{ng/cm}^2=10^4~\text{ng/cm}^2$
- $5\times 10^{\text{-5}}\times 20\times 10^3 \text{ ng/cm}^2 = 1 \text{ ng/cm}^2$

References

- S. Kumar, P. Goel and J. P. Singh, Flexible and Robust SERS Active Substrates for Conformal Rapid Detection of Pesticide Residues from Fruits, *Sensor. Actuat. B-Chem.*, 2017, 241, 577-583.
- B. Hu, D.-W. Sun, H. Pu and Q. Wei, Rapid Nondestructive Detection of Mixed Pesticides Residues on Fruit Surface Using SERS Combined with Self-Modeling Mixture Analysis Method, *Talanta*, 2020, 217, 120998.
- 3 K. Wang, D.-W. Sun, H. Pu and Q. Wei, Two-Dimensional Au@Ag Nanodot Array for Sensing Dual-Fungicides in Fruit Juices with Surface-Enhanced Raman Spectroscopy Technique, *Food Chem.*, 2019, **310**, 125923.
- F. Yu, M. Su, L. Tian, H. Wang and H. Liu, Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media, *Anal. Chem.*, 2018, 90, 5232-5238.
- 5 G. Kwon, J. Kim, D. Kim, Y. Ko, Y. Yamauchi and J. You, Nanoporous Cellulose Paper-Based SERS Platform for Multiplex Detection of Hazardous Pesticide, *Cellulose*, 2019, 26, 4935-4944.
- Z. Xiong, M. Lin, H. Lin and M. Huang, Facile Synthesis of Cellulose Nanofiber Nanocomposite as a SERS Substrate for Detection of Thiram in Juice, *Carbohydr. Polym.*, 2018, 189, 79-86.
- J. Chen, M. Huang, L. Kong and M. Lin, Jellylike Flexible Nanocellulose SERS Substrate for Rapid In-Situ Non-Invasive Pesticide Detection in Fruits/Vegetables, *Carbohydr. Polym.*, 2019, 205, 596-600.

- 8 K. Wang, D.-W. Sun, H. Pu, Q. Wei and L. Huang, Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array, ACS Appl. Mater. Inter., 2019, 11, 29177-29186.
- 9 V. Sharma and V. Krishnan, Fabrication of Highly Sensitive Biomimetic SERS Substrates for Detection of Herbicides in Trace Concentration, *Sensor. Actuat. B-Chem.*, 2018, 262, 710-719.
- 10 F. K. Alsammarraie, M. Lin, A. Mustapha, H. Lin, X. Chen, Y. Chen, H. Wang and M. Huang, Rapid Determination of Thiabendazole in Juice by SERS Coupled with Novel Gold Nanosubstrates, *Food Chem.*, 2018, **259**, 219-225.