Electronic supplementary information for

A broad-applicable method for mercury speciation in various seafood using microwave-assisted extraction and ion chromatography-inductively coupled plasma mass spectrometry

Ruiling Li¹, Yuquan Pan¹, Chaochen Sun¹, Chen Lin¹, Shilong Chen¹, Yongning Wu¹, FengFu Fu^{1*}

¹Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian

Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.

²NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit

(2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China

^{*}Corresponding author. Tel./Fax: +86-591-22866135; E-mail address: <u>fengfu@fzu.edu.cn</u> (F.-F. Fu)

1. Chemicals, materials and apparatus used in the experiment

The standard solutions of Hg^{2+} (mercuric chloride, 1000 µg/mL), CH_3Hg^+ (methylmercury chloride, 100 µg/mL) and $C_2H_5Hg^+$ (ethylmercury chloride, 100 µg/mL) were all purchased from National Institute of Metrology, China (Beijing, China). The standards of each mercury species with different concentrations used in the experiments were prepared by directly diluted above standards with pure water. Ultra-pure HNO₃ and analytical grade of L-Cysteine (Cys) were obtained from Sangon Biotech Co. Ltd (Shanghai, China). The water used in the experiment is Milli-Q water (18.2 M Ω ·cm), which was prepared with Millipore pure system. Strong cation exchange guard column (Zorbax 300SCX, 4.6×12.5 mm) was purchased from Agilent Technology (Shanghai, China).

The IC-ICP-MS system, which couples an Agilent 7800 inductively coupled plasma mass spectrometry (ICP-MS, Agilent of USA) with a Dionex ICS-900 ion chromatography (ThermoFisher Scientific, China), was used in this study.

Parameter	Value			
IC system				
IC separation column	Two consecutive strong cation guard column (Zorbax 300SCX, 4.6×12.5 mn			
IC eluent	5.0 mmol/L HNO ₃ -1.0 mmol/L Cys			
IC elution mode	iso-elution			
Sample injection volume	10 µL			
Flow rate of IC eluent	1.0 mL/min			
Temperature of IC separation column	30 °C			
ICP-MS system				
ICP-MS RF power	1350 W			
ICP-MS cool gas flow rate	15 L/min			
ICP-MS auxiliary gas flow rate	0.90 L/min			
ICP-MS nebulizer gas flow rate	0.80 L/min			
ICP-MS makeup gas flow rate	0.20 L/min			
Monitored isotope (m/z)	²⁰² Hg			

Table S1: Optimal running parameters of IC-ICP-MS system

extraction	efficiency of shellfish (Morula uva) samp	ne			
Sample	0.10 g shellfish (Morula uva)				
Extracting	Extraction mode	Extraction			
solvent volume	Extraction mode	efficiency of Hg			
	4.0 mL for previous soaking and first				
8 mL	extraction, 4.0 mL for second	72.4%			
	extraction				
10 mL	5.0 mL for previous soaking and first				
	extraction, 5.0 mL for second	83.6%			
	extraction				
	6.0 mL for previous soaking and first				
	extraction, 6.0 mL for second	89.8%			
12 mL	extraction				
12 1112	7.0 mL for previous soaking and first				
	extraction, 5.0 mL for second	91.2%			
	extraction				
14 mL	7.0 mL for previous soaking and first				
	extraction, 7.0 mL for second	90.8%			
	extraction				
	8.0 mL for previous soaking and first				
	extraction, 6.0 mL for second extraction				

Table S2: The effect of extracting solvent volume and extraction mode on mercury extraction efficiency of shellfish (*Morula uva*) sample

Method	Separation	Analyte	Extraction	Applicable	Instrument	Method LOD in seafood	Ref.
	column	Analyte	method	sample	LOD		Kei.
HPLC-ICP- MS	C8 column	Hg^{2+} and $\mathrm{CH_{3}Hg}^{+}$	Enzymatic extraction and microwave-as sisted extraction	Fish	0.4 ng/mL	10 ng/g dried weight	1
Ion chromatogr aphy-ICP- MS	Anion guard column	$\begin{array}{c} \mathrm{Hg}^{2+},\\ \mathrm{CH}_{3}\mathrm{Hg}^{+}\\ \mathrm{and}\\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{Hg}^{+} \end{array}$	Ultrasonic extraction	Fish	0.008-0.029 ng/mL	Not provided	2
Ion-pairing reversed-ph ase HPLC-ICP- MS	C18 guard columns	$\begin{array}{c} Hg^{2+},\\ CH_{3}Hg^{+}\\ and\\ C_{2}H_{5}Hg^{+} \end{array}$	Ultrasonic extraction	Fish	0.014-0.028 ng/mL	0.18-0.33 ng/g fresh weight	3
HPLC-ICP- MS	C18 column	$\begin{array}{c} Hg^{2+},\\ CH_{3}Hg^{+}\\ and\\ C_{2}H_{5}Hg^{+}\end{array}$	Ultrasonic extraction together with magnetic solid phase pre-concentrat ion	Water and fish	0.49-0.76 ng/L	Not provided	4
Ion chromatogr aphy-ICP- MS	Cation guard columns	$\mathrm{Hg}^{2+},\ \mathrm{CH}_{3}\mathrm{Hg}^{+}\ \mathrm{and}\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{Hg}^{+}$	Ultrasonic extraction	Water and fish	Not provided	1.9-3.1 ng/g fresh weight	5
HPLC-ICP- MS	ZORBAX SB-Aq C18 column	Hg ²⁺ and CH ₃ Hg ⁺	Microwave-as sisted extraction with protease	Fish	0.013–0.015 ng/mL	Not provided	6
HPLC-isoto pe dilution ICP-MS	Symmetry Shield RP C18 column	Hg^{2+} and CH_3Hg^+	Microwave-as sisted extraction	Marine biota	Not provided	Not provided	7
IC-ICP-MS	Strong cation guard column	$\begin{array}{c} Hg^{2+},\\ CH_{3}Hg^{+}\\ and\\ C_{2}H_{5}Hg^{+}\end{array}$	Microwave-as sisted extraction without protease	Various seafood (seaweeds, fishes and shellfishes)	0.02-0.05 ng/mL	2.4-6.0 ng/g dried weight (about 0.48 – 1.2 ng/g fresh weight)	This study

 Table S3: The comparison on analytical performance among previous ICP-MS-based methods for mercury speciation in seafood and our method

Reference:

- (1) R. Jagtap, F. Krikowa, W. Maher, S. Foster, M. Ellwood, Talanta, 2011, 85, 49-55
- (2) X. P. Chen, C. Han, H. Y. Cheng, J. H. Liu, Z. G. Xu, X. F. Yin, Anal. Chim. Acta, 2013, 796, 7-13.
- (3) H. Y. Cheng, X. P. Chen, L. H. Shen, Y. C. Wang, Z. G. Xu, J. H. Liu, J. Chromatogr. A, 2018, 1531, 104-111.
- (4) S. Q. Zhu, B. B. Chen, M. He, T. Huang, B. Hu, Talanta, 2017, 171, 213-219.
- (5) X. P. Chen, C. Han, H. Y. Cheng, Y. C. Wang, J. H. Liu, Z. G. Xu, L. Hu, J. Chromatogr. A, 2013, 1314, 86-93.
- (6) Y.-C. Chen, S.-J. Jiang, J. Anal. At. Spectrom., 2021, 36, 938-945.
- (7) A. A. Krata, E. Vassileva, *Talanta*, 2020, 217, 121113.

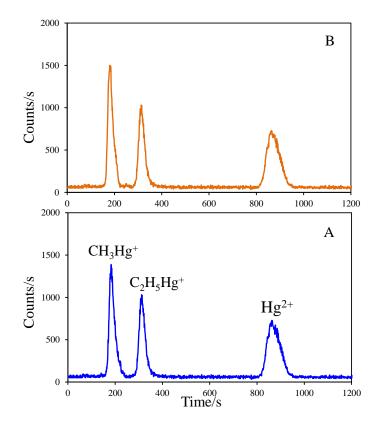


Figure S1: The IC-ICP-MS chromatograms of the mixed standard of mercury species. The concentrations of each mercury species are all 10.0 ng/mL. (A): Original mixed standard; (B) The mixed standard pretreated with pre-soaking microwave-assisted extraction.

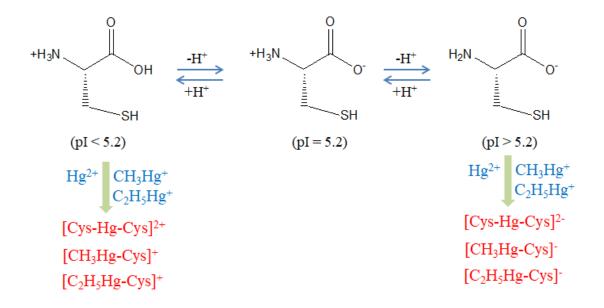
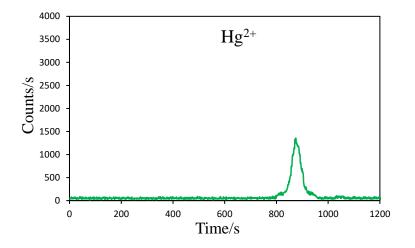



Figure S2: The structure and protonation state of Cys and the charge state of the Cys-mercury species complexes.

Figure S3: The IC-ICP-MS chromatogram for determining Hg²⁺ after Hg²⁺was pre-chelated with 6.0 mM of L-Cys. The concentrations of Hg²⁺is 10 ng/mL, and the IC-ICP-MS chromatogram was obtained under Table S1 conditions.

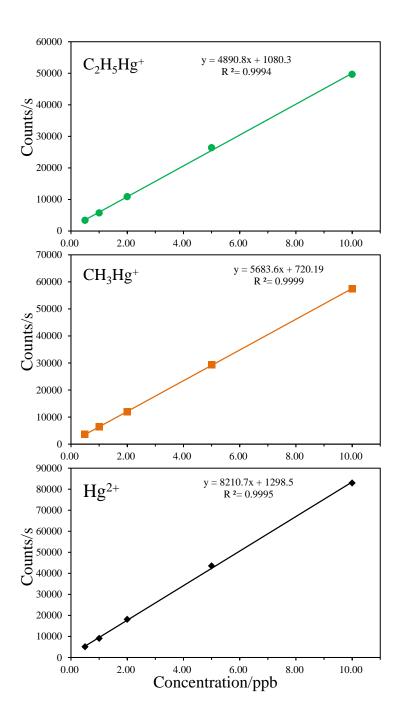


Figure S4: The linear relationship between IC-ICP-MS signal (peak area) and the concentrations of mercury species (calibration curves) for determining Hg^{2+} , CH_3Hg^+ and $C_2H_5Hg^+$ with IC-ICP-MS under Table S1 conditions.