Supporting Information

Gold Nanoparticle Probes for Colorimetric Detection of Plasma Galectin-3: A simple and rapid approach

Maria António¹, Tânia Lima^{2,3}, Rita Ferreira^{4,5}, Margarida Fardilha², José Mesquita Bastos^{2,6} Rui

Vitorino^{2,5,7*} and Ana L. Daniel-da-Silva^{1*}

¹CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;

²iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-

193, Portugal

³Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto

(GEBC CI-IPOP) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal.

⁴QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal

⁵LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal

⁶Cardiology Department, Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal

⁷UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of

the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal

* Correspondence: ana.luisa@ua.pt; Tel.: +351 234 370 368

CONTENTS:

S1. Characterization of modified Au NPs	S 3
S2. Detection of galectin-3 using Au NPs@MUDA@Ab@BSA	S 5
S3. Galectin-3-antibody interaction	S7
S4. Time stability studies	S 8
S5. Plasma samples analysis	S 9
References	S 9

S1. Characterization of modified Au NPs

Fig. S1: TEM image of (A) Au NPs; (B) AuNPs@MUDA

 Table S1 Values of pH, Zeta potential (ZP), hydrodynamic diameter (HD) and polydispersity index (PDI) of bare and

 modified Au NPs

Sample	рН	ZP (mV)	HD (nm)	PDI
Au NPs	5.8	-59.3 ± 1.7	24.7 ± 0.5	0.356
AuNPs@MUDA	7.2	-73.1 ± 2.6	65.5 ± 0.4	0.454
AuNPs@MUDA@Ab	7.0	-29.7 ± 0.4	111.3 ± 0.6	0.301
AuNPs@MUDA@Ab@BSA	7.0	-30.5 ± 1.2	103.6 ± 0.1	0.290

The ATR-FTIR spectrum of Ab was acquired to investigate the binding of Ab to AuNPs@MUDA. The ATR-FTIR spectrum of Ab is complex due to the presence of PBS, gelatin, and sodium azide. According to the supplier the Ab was in a PBS solution with 0.1%.

Fig. S2: (A) ATR-FTIR spectra of (A) Au NPs, AuNPs@MUDA and Au NPs@MUDA@Ab, and (B) PBS buffer, Ab Gal-3 and Au NPs@MUDA@Ab.

S2. Detection of galectin-3 using Au NPs@MUDA@Ab@BSA

Table S2: Hydrodynamic diameter (HD) and polydispersity index (PDI) values of modified AuNPs after incubationwith Gal-3 at the concentration of 0, 40 and 160 μ g.L⁻¹ in PBS buffer

Galectin-3 (µg.L⁻¹)	HD (nm)	PDI
0	121.9 ± 1.4	0.310
40	332.9 ± 4.6	0.518
160	422.6 ± 3.8	0.708

Fig. S3: AR of Au NPs@MUDA@Ab@BSA prepared with 0.5, 2.5 and 5 μ g of galectin-3 antibody (Ab) after incubation with Gal-3 (80 μ g.L⁻¹ concentration and incubation time of 60 minutes).

Fig. S4: AR of Au NPs@MUDA@Ab@BSA for 40 and 160 μ g.L⁻¹ of galectin-3 after incubation for 15, 30 and 60 minutes.

S3. Galectin-3-antibody interaction

The dissociation constant (k_d) for the AuNPs@MUDA@Ab-Gal-3 was calculated from the variation of A_{750}/A_{526} ratio with over the final concentration of Gal-3 in different solutions, the saturation curves ¹. The k_D value was obtained using the GraphPad Prism software version 8.4.2 and intending that the Gal-3 was able to bind at one specific site, to the antibody. The one site-specific binding equation (**equation S1**) from the software was used. The Y corresponds to the A_{750}/A_{526} ratio, x to the Gal-3 concentrations (μ g.L⁻¹) and B_{max} is the maximum specific binding.

$$Y = (B_{max}.x)/(k_d + x)$$
 (S1)

Fig. S5: The fitting curve (solid line) of equation (S1) to determine the dissociation constant k_d of the galectin-3antibody: **(A)** in buffer, **(B)** diluted saliva, **(C)** 6 protein mixture and **(D)** diluted fetal bovine serum.

S4. Time stability studies

Fig. S6: (A) UV-VIS spectra of AuNPs@MUDA@Ab@BSA colloid, after storage at 4°C for different periods after synthesis (in the absence of galectin-3); **(B)** AR upon detection of 40 μg.L⁻¹ galectin-3, using AuNPs@MUDA@Ab@BSA probes stored at 4°C after synthesis for 0 hours, 5 hours, 3 days, 5 days, 7 days, 11 days and 15 days.

S5. Plasma samples analysis

Table S3: Concentration of galectin-3 by the developed method, adj. vol. from western and their respective ratio for

 each analyzed plasma sample

Proposed method		Western blot		
Sample	C_{Gal-3} (µg.L ⁻¹)	Ratio	Adj.Vol.	Ratio
P0	280.5	1	32.5	1
P1	260.3	1.08	27.7	1.17
C2	143.9	1.95	16.3	1.99
C3	233.6	1.20	24.6	1.32

References

1 M. António, R. Ferreira, R. Vitorino and A. L. Daniel-da-Silva, *Talanta*, 2020, **214**, 120868.