Electronic Supplementary Information (ESI) for

A fluorescent probe generating in situ the reactive species for rapid and selective detection of mustard gas

Xiao-Jun Liu, Wei Feng, and Qin-Hua Song*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China. E-mail: ghsong@ustc.edu.cn (Q.-H. Song)

Contents:

1. Summary for reported fluorescent probes for sulfur mustard and its simulant
2. Synthesis and characterization of related compounds
3. Chemical and photostability of PCS in ethanol solution
4. The UV-Vis absorption response of PCS toward KOH
5. The spectral response of PCS to CEES at 60°C
6. The spectral response of PCS to SM at 60°C
7. Time-dependent fluorescence intensity of PCS toward CEES or SM at room temperature
8. Anti-interference for PCS toward SM
9. HRMS spectra of sensing system with SM
10. Application
11. NMR spectra for related compounds

Entry	Structures	Test condition	LOD	Response time (at certain temperature)		Poforonoos
Linu y				Solutions	Gas phase	Kelefences
1	H SH +N=C +HO	MeOH+K ₂ CO ₃	10 μM (CEES in solution)	(rt) 1 min (80°C, CEES)	/	Chem. Sci. 2013 , 4, 4292.
2	COOH SH SH LnCd O O O O	Buffer, pH=9	200 µM (CEES in solution)	(rt) 1 min (80°C, CEES)	/	J. Am. Chem. Soc. 2013 , 135, 6338.
3	H H H H H H H H H H H H H H H H H H H	MeOH/CHCl ₃ (4:1)	4.75 μM (SM in solution) 6.25 ppm (SM gas)	>1 h (rt, SM) 3 min (60°C, SM)	7 min (50 ppm)	<i>Chem. Commun.</i> 2014 , <i>50</i> , 12363.
4		CHCl ₃ :CH ₃ OH, 5:1	< 6.7 ppm (CEES in solution)	(rt) 60 min (35°C, CEES)	/	Anal. Chim. Acta 2014 , 812, 222.
5	SH HS	DMSO/buffer(1: 1, pH=9) with HgCl ₂	1.1 μM (CEES in solution)	(rt) 5 min (80°C, CEES)	/	J. Mater. Chem. C 2017 , 5, 11565.

1. Table S1. Summary for reported fluorescent probes for sulfur mustard and its simulant

6	N N N N N	MeOH+KOH	7.5 μM (SM in solution)	(rt) 1 min (60°C, SM)	/	Anal. Chem. 2018 , 90, 1417.
7	S N O N	DCM	1.2 μM (CEES in solution) 0.5 ppm (CEES gas)	>1 h (rt, CEES)	1 min (0.5 ppm)	Anal. Chem. 2018 , 90, 5481.
8	S N N O O H	MeOH	3.19 µM (CEES in solution)	25 min (rt, CEES) 3 min (60°C, CEES)	30 min (rt) (saturated vapor)	Talanta 2018 , 189, 39.
9	S N Si N	Buffer:CH ₃ CN, 4:1, pH=7.4	0.8 μM (SM in solution)	10 min (37°C, SM)	/	ACS Sens. 2019 , 4, 2794.
10	HO CONCOL	Buffer:CH ₃ CN, 9:1, pH=7.4	1.2 μM (SM in solution)	30 min (37°C, SM)	/	Sens. Actuator B: Chem. 2019 , 296, 126678.
11	НО_О	DMF+TBAF+ Bu4NI	/	48 h (40°C, CEES) 2 h (90°C, CEES)	/	ACS Sens. 2019 , 4, 1791.
12	O ₂ N	DMSO:H ₂ O, 9:1	2.3 μM CEES in solution)	2 h (rt, CEES)	/	Chem. Commun. 2019 , 55, 8655

13	NH ₂ O NH NH NH O	[emim][DCA] in buffer, pH 8.5	6 ppm (SM in solution)	1 min (rt, SM)	2 min ()	Anal. Chem. 2021 , 93,1193.
14		[BMIm]HSO4	3 μM (CEES in solution)	3 min (rt, CEES)	1 min ()	Anal. Methods 2021 , 13, 484
15	CF ₃ N H S	Ethanol+KOH	90 nM (CEES in solution), 50 nM (SM in solution), 20 nM (NH1 in solution) 0.2 ppm (CEES gas)	18 min (rt, CEES) 1 min (CEES), 5 min (SM)(60°C)	4 min (100 ppm CEES), rt	Anal. Chim. Acta 2021 , 1159, 338440
16	SH N O O	Ethanol+TEA	6.6 nM (CEES in solution), 16 nM (SM in solution), 3.6 nM (NH1 in solution) 9 ppb (CEES gas)	50 min (CEES), 90 min (SM) (rt) 1.5 min (CEES), 4 min (SM) (60°C)	3 min (2.5 ppm CEES), rt	J. Hazard.s Mater. 2021 , 416, 125789.
17		DCM	0.55 ppm (CEES gas)	> 34 min (rt, CEES)	5 s (10 ppm)	ACS Sens. 2022 , 7, 1946.
18	S CN CN	Ethanol+50 μM KOH	0.28 μM (CEES in solution), 0.20 μM (SM in solution) 7.5 ppm (CEES gas)	15 min (CEES), 35 min (SM) (rt) 0.75 min (CEES), 3 min (SM) (60°C)	3 min (7.5 ppm CEES), rt	Sens. Actuator B: Chem. 2022 , 371, 132555.

19	N N H H	EtOH+DBU	70 nM (SM in EtOH) 5 ppm (CEES gas)	(rt) 4 min (SM) (60°C)	1 min (7.5-90 ppm CEES)	Anal. Chem. 2023 , 95, 1755–1763.
20	S CN N O	Ethanol+80 μM KOH	77 nM (CEES in solution), 41 nM (SM in solution) 5 ppm (CEES gas)	8 min (CEES), 25 min (SM) (rt) 20 s (CEES), 90 s (SM) (60°C)	3 min (5 ppm CEES), rt	This work

"--" Not mentioned

"/" No detection in gas phase or solutions

2. Synthesis and characterization of related compounds

Scheme S1. Synthesis route of the fluorescent probe PCS.

2.1. Synthesis of 1. 8-acetoxyjulolidine (7.75 g, 33.5 mmol) and aluminum chloride (15g, 111.9 mmol) were dissolved in 1,2-dichloroethane (50 mL) and refluxed at 80°C for 1 h. Then the temperature of the reaction was increased to 140 °C for another 4 h. The reaction was quenched by adding 1 M HCl (100 mL) slowly, and the mixture was extracted with DCM (3 × 100 mL). After the solvent was removed, the raw product was purified by using column chromatography (gradient elution from n-hexane to n-hexane/ethyl acetate = 10:1) to get faintly yellow solid (3.64 g, 15.74 mmol, 47% yield). ¹H NMR (500 MHz, CDCl₃, TMS): δ = 13.18 (s, 1H), 7.11 (s, 1H), 4.23 (m, 4H), 2.67 (m, 4H), 2.45 (s, 3H), 1.93(m, 4H) ppm.¹³C NMR (126 MHz, CDCl₃, TMS): δ = 200.0, 160.2, 148.9, 128.4, 112.5, 109.0, 105.5, 50.1, 49.7, 27.5, 25.4, 21.9, 20.8, 19.9 ppm. HRMS (ESI) *m/z* calcd for C₁₄H₁₈NO₂⁺: 232.1333 [M+H]⁺, found: 232.1330.

2.2. Synthesis of **2.** In a round bottom flask, DMF (20 ml) was taken via syringe under N₂ atmosphere. It was brought at 0°C, then POCl₃ (0.38 ml, 4 mmol) was added dropwise via syringe at the same temperature. It was stirred at room temperature for 20 min and then heated at 55°C for 30 min. Then it was cooled to 0°C and a solution of compound **1** (0.23 g, 1 mmol) in DMF (1.20 ml) was added dropwise via syringe over 30 min. It was stirred at room temperature for 30 min and heated at 55°C for 2 hours (TLC showed complete consumption of starting material). The reaction mixture was again cooled to 0°C and diluted with ethyl acetate followed by the addition of brine solution dropwise. It was then extracted with ethyl acetate (3 × 80 ml) and brine (60 ml). The organic portions were collected and washed with water. It was dried over with anhydrous Na₂SO₄ and concentrated under vacuum. The crude product was purified by using flash chromatography over silica gel to afford the desired product as yellow solid (126 mg, 0.32 mmol, 32% yield). ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 10.37$ (s, 1H), 8.38 (s, 1H), 7.66 (s, 1H), 3.31 (m, 4H), 2.84 (m, 4H), 2.00 (m, 4H) ppm.¹³C NMR (126 MHz, CDCl₃, TMS): $\delta = 190.0$, 175.1, 159.2, 153.8, 147.8, 122.8, 121.1, 119.5, 113.2, 106.2, 50.0, 49.5, 27.6, 21.1, 20.3, 20.3 ppm. HRMS (ESI) *m/z* calcd for C₁₆H₁₆NO₃⁺: 270.1125 [M+H]⁺, found: 270.1130.

2.3. Synthesis of 3. A suspension of compound **2** (269 mg, 1.00 mmol) and hydroxylamine hydrochloride (76 mg, 1.10 mmol) was stirred in ethanol (3 mL) at 60°C for 1 h. The mixture was concentrated in vacuo, and acetic anhydride (10 mL) was added and stirred at 110°C for 18 h. The mixture was concentrated in vacuo and purified by using flash chromatography over silica gel, affording **3** as a pale yellow solid (134 mg, 0.51 mmol, 51% yield).¹H

NMR (500 MHz, CDCl₃, TMS): δ = 8.21 (s, 1H), 7.61 (s, 1H), 3.31 (m, 4H), 2.82 (m, 4H), 2.00 (m, 4H) ppm.¹³C NMR (126 MHz, CDCl₃, TMS): δ = 171.2, 167.4, 160.6, 148.1, 122.8, 121.2, 113.4, 111.6, 105.7, 101.2, 50.0, 49.4, 27.6, 21.0, 20.2, 18.0 ppm. HRMS (ESI) *m/z* calcd for C₁₆H₁₅N₂O₂⁺: 267.1129 [M+H]⁺, found: 267.1140.

2.4. Synthesis of PCS. Under nitrogen atmosphere, compound **3** (100 mg, 0.41 mmol) and Lawesson's reagent (250 mg, 0.62 mmol) were dissolved in toluene (10 mL), and the reaction mixture was stirred at 110°C for 4 h. After cooling, the mixture was diluted with CH₂Cl₂(20 mL) and washed with NaHCO₃ solution for three times (3 × 10 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by using flash chromatography over silica gel to obtain PCS as a red solid (55 mg, 0.19 mmol, 47% yield).¹H NMR (500 MHz, CDCl₃, TMS): δ = 8.00 (s, 1H), 7.99 (s, 1H), 3.35 (m, 4H), 2.82 (m, 4H), 2.00 (m, 4H) ppm.¹³C NMR (126 MHz, CDCl₃, TMS): δ = 171.3, 167.4, 160.6, 148.1, 122.8, 121.2, 113.4, 111.6, 105.7, 101.2, 50.0, 49.4, 27.6, 21.0, 20.2, 18.0 ppm. HRMS (ESI) *m/z* calcd for C₁₆H₁₅N₂OS⁺: 283.0900 [M+H]⁺, found: 283.0918.

Scheme S2. The synthesis route of the compound PCSp.

2.5. Synthesis of the PCSp. PCS (50 mg, 0.18 mmol) and KOH (52 mg, 0.92 mmol) were dissolved in absolute ethanol (5 mL), CEES (226 μ L, 1.94 mmol) was added and heated at 60°C for 20 min. After cooling, the solvent was evaporated under reduced pressure and then diluted with CH₂Cl₂. Washed with water, the organic layer were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by using flash chromatography over silica gel to obtain PCSp as a yellow oil (38 mg, 0.092 mmol, 51% yield). ¹H NMR (500 MHz, CDCl₃,TMS): δ = 7.24 (s, 1H), 5.64 (s, 1H), 3.79 (m, 1H), 3.72 (m, 1H), 3.66 (m, 1H), 3.29 (m, 4H), 3.08 (m, 1H), 2.75 (m, 1H), 2.71 (m, 4H), 2.53 (q, *J*=7.4Hz, 2H) , 2.01 (m, 1H), 1.94(m, 4H) , 1.21 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃,TMS): δ = 148.0, 146.8, 146.8, 125.2, 118.4, 115.6, 108.4, 107.8, 98.3, 95.4, 64.2, 50.0, 49.5, 34.7, 31.3, 27.4, 25.9, 21.6, 20.8, 20.6, 15.0, 14.8 ppm. HRMS (ESI) *m/z* calcd for C₁₆H₁₅N₂OS⁺: 417.1670 [M+H]⁺, found: 417.1672.

2.6. Synthesis of the PCS-OEt. PCS (5 mg, 0.018 mmol) and KOH (10 mg, 0.18 mmol) were dissolved in absolute ethanol (5 mL). The mixture was stirred at room temperature for 20 min, and the solvent was removed in vacuo, giving the sulfur enolate anion as a red solid. ¹H NMR (400 MHz, DMSO-*d*₆, TMS): δ = 7.57 (s, 1H), 5.42 (s, 1H), 3.60 (q, *J* = 5.2 Hz, 2H), 3.09 (m, 4H), 2.63 (m, 4H), 1.85 (m, 4H), 1.05 (t, *J* = 5.6 Hz, 3H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆, TMS) δ = 172.8, 146.7, 144.4, 127.4, 124.8, 116.1, 113.7, 106.7, 97.0, 89.3, 62.1, 49.8, 49.3, 27.4, 22.3, 21.6, 21.0, 15.5 ppm. HRMS (ESI) m/z calcd for C₁₈H₁₉N₂O₂S⁻: 327.1172 [M⁻], found: 327.1163.

3. Chemical and photostability of PCS in ethanol solution

Figure S1. Time-dependent (a) UV-Vis absorption and (b) fluorescence spectra of 10 μ M PCS, followed by 80 μ M KOH and further addition of 300 μ M CEES, monitored for 60 min, excitation at 411 nm. (c) Time-dependent fluorescence intensity at 490 nm of PCS (10 μ M) before and after addition of 80 μ M KOH and further addition of 300 μ M CEES.

4. The UV-Vis absorption response of PCS toward KOH

Figure S2. (a) UV-Vis absorption and (b) concentration-dependent absorption at 365 nm of 10 μ M PCS upon the addition of 0-100 μ M KOH.

5. The spectral response of PCS to CEES at 60°C

Figure S3. Time-dependent (a) UV-Vis absorption and (b) fluorescence spectra of 10 μ M PCS with 80 μ M KOH after addition of 300 μ M CEES, monitored for 3 min at 60°C, excitation at 411 nm. (c) Time-dependent fluorescence intensity at 490 nm of 10 μ M PCS with 80 μ M KOH after addition of 300 μ M CEES.

6. The spectral response of PCS to SM at 60°C

Figure S4. Time-dependent (a) UV-Vis absorption and (b) fluorescence spectra of 10 μ M PCS with 80 μ M KOH after addition of 300 μ M SM, monitored for 5 min at 60°C, excitation at 411 nm. (c) Time-dependent fluorescence intensity at 490 nm of 10 μ M PCS with 80 μ M KOH after addition of 300 μ M SM.

7. Time-dependent fluorescence intensity of PCS toward CEES or SM at room temperature

Figure S5. Time-dependent fluorescence intensity at 490 nm of PCS (10 μ M) with 80 μ M KOH after addition of 300 μ M (a) CEES or (b) SM at room temperature.

8. Anti-interference for PCS toward SM

Figure S6. Fluorescence intensity at 490 nm of 10 µM PCS with (a) 80 µM or (b) 600 µM KOH after additions of 300 µM SM or various analytes (blue), or further additions of 300 µM SM in above solutions (green): 1, blank; 2, SM; 3, AC; 4, POCl₃; 5, EtI; 6, BCP; 7, BCEE; 8, CEEE; 9, DCP; 10, DCNP; 11, GSH; 12, Met.

9. HRMS spectra of sensing system with SM

Figure S7. The high-resolution mass spectrum (HRMS) for the mixture of sensing system with SM.

10. Application

Figure S8. (a) A spray bottle loaded with 0.2 mM PCS and 1.6 mM KOH ethanol solution. (b) Spraying the ethanol solution of PCS and KOH to CEES contaminated surface.

11. NMR spectra for related compounds

Figure S10. ¹³C NMR spectrum of compound 1 in CDCl₃

Figure S12. ¹³C NMR spectrum of compound 2 in CDCl₃

Figure S14. ¹³C NMR spectrum of compound 3 in CDCl₃

Figure S18. ¹³C NMR spectrum of compound PCS-OEt in DMSO-d₆.

Figure S20. 13 C NMR spectrum of compound PCSp in CDCl₃