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I. Preparation of reactive oxygen species (ROS) and reactive nitrogen species
(RNS)

NaOClI

The concentration of sodium hypochlorite (NaOCI) was determined from the absorbance at
292 nm (e =350 M1 cmt).

H20:

The concentration of hydrogen peroxide (H202) was determined from the absorption at 240 nm
(e=43.6 Mtcm?).

TBHP

Tert-butylhydroperoxide (TBHP) were diluted from the commercially available solution to 0.1
M in ultrapure water.

*OH

Hydroxyl radical (*OH) was generated by Fenton reactions. To prepare *OH solution, hydrogen
peroxide (H202, 10 mM) was added to FeSO4 (1 mM) in deionised water.

102

Hydrogen peroxide (H202, 10 mM) was added to NaMoO4 (1 mM) in deionised water.

NO

Nitric oxide (NO) was generated from sodium nitroprusside dihydrate.

ONOO~

To avigorously stirred solution of NaNO; (1.5 M, 3 mL) and H20, (0.7 M, 1.5 mL) in deionized
H20 at 0 <€ was added HCI (0.6 M, 1.5 mL), immediately followed by the rapid addition of NaOH
(1.5 M, 3 mL). The concentration of ONOO™ was determined by UV analysis with the extinction
coefficient at 302 nm (¢ = 1670 Mt cm™) in 0.1 M NaOH.
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II. Response of compounds 3a and 3b to ONOO™ in different ratios of buffer

solutio

n

The optimal response ratio of ONOO™ identified by probe 3a and 3b in different proportion of

CH3OH-Tris-HCI buffer solution was investigated experimentally. As shown in Fig. S1 (A) and Fig.

S1 (B), both 3a and 3b obtained the strongest fluorescence emission in CHzOH-40%Tris-HCI buffer

solution after adding ONOOQO~ buffer solution. Therefore, CH3OH-40%Tris-HCI buffer solution

system was used in the follow-up study.
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. (A) Fluorescence intensity of 3a probe (10 uM) in different ratios of Tris-HCI buffer

solution / CH3OH system after interaction with ONOO~ (20 equiv); (B) Fluorescence intensity of

3b probe (10 uM) in Tris-HCI buffer solution / CH3OH system of different ratios after interaction
with ONOO™ (20 equiv)
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II1. Quantum yield calculation

The fluorescence quantum yields (®) of 3a and 3b before and after adding ONOO™~ were
measured by using the Rhodamine B (® = 0.82) as a reference, which was then calculated by using
the formula below:

DF(x)= (DF(s)*As*Fx) / (Ax*Fs)

Here, A denotes the absorbance at the excitation wavelength, F refers to the area under the
corrected fluorescence emission curve. Subscripts X and S represents the test sample and reference,
respectively. As expected, the emission spectra of 3a at 366 nm shows weak fluorescence without
ONOO™ (®F< 0.1). In contrast, probe 3aexhibited an immense increase at 510 nm upon addition of
ONOO™ (®F= 0.23). In addition, the emission spectra of 3b demonstrated almost no fluorescence
in the absence of ONOO™ (®F< 0.1). In contrast, probe 3b exhibited an immense increase at 431 nm
upon addition of ONOO™ (®F= 0.58).
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IV. Endogenous biological imaging in living cells

To stimulate cells to produce ONOO-, further explored the fluorescence imaging of
endogenous ONOO—, we added lipopolysaccharide (LPS, 1 pg/mL), interferon-y (IFN-y, 100
ng/mL), phorbol-12-myristate-13-acetate (PMA, 10 nM) and 3a sequentially to co-incubate with
HepG2 cells. As shown in Fig. S2, in the blue channel, the stimulation group had far more luminance
than both the control group (only incubated with 3a) and the clear group (incubated with 100 ng/mL
N-acetylcysteine and 3a). We also used the same method to further explore the fluorescence imaging
of endogenous ONOO™ for 3b, the results were encouraging that the probe 3b was capable of

imaging endogenous ONOO"™.
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Fig. S2. The bright field (Bright field) is on the left, the fluorescence (Blue channel)
is in the middle, and the superposition field of bright field and fluorescence (Merge)
is on the right. (A-C) HepG2 cells were treated with 3a. (D-F) HepG2 cells were
initially treated with NAC and 3a. (G-1) HepG2 cells were treated with IFN-y and
LPS, and then were treated PMA and 3a. (J-L) HepG2 cells were treated with 3b. (M-
O) HepG2 cells were initially treated with NAC and 3b. (P-R) HepG2 cells were
treated with IFN-y and LPS, and then were treated PMA and 3b.
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V. Characterization Data

7-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)quinoline (3a)

X White solid, 88.3% yield; *H NMR (400 MHz, CDCls) &:

| N o/\©\ 8.70-8.69 (M, 1H), 7.96-7.94 (m, 1H), 7.77-7.75 (m, 2H),
50 7.60-7.58 (m, 1H), 7.41-7.39 (m, 3H), 7.19-7.13 (m, 2H),

o 5.11 (s, 2H), 1.24 (s, 12H); 13C NMR (100 MHz, CDCls)

5:159.71, 150.40, 149.62, 139.47, 135.94, 135.14, 128.95,
126.83, 125.98, 123.69, 120.23, 119.12, 108.28, 83.87, 70.02, 24.88. HRMS m/z (ESI) calcd for
C22H24BNO3 (M+H) * 362.1922, found 362.1927.
7-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)quinolin-2-ol (3b)

| X White solid, 71.2% vyield; 'H NMR (400 MHz,

HO™ N7 o CDCls) &: 12.77(s, 1H), 7.77-7.75 (m, 2H), 7.65-
50 7.63 (m, 1H), 7.38-7.34 (m, 3H), 6.91-6.91 (m, 1H),

o 6.80-6.77 (m, 1H), 6.51-6.48 (m, 1H), 5.06 (s, 2H),

1.26 (s, 12H); 3C NMR (100 MHz, CDCls) &:
165.24, 160.96, 140.93, 140.37, 139.30, 135.08, 129.07, 126.83, 118.02, 114.48, 112.98, 99.54,
83.87, 70.15, 24.89. HRMS m/z (ESI) calcd for C2,H24BNO4 (M+H) *378.1871, found 378.1866.
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VL. MS, *H NMR and *3C NMR spectra
7-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)quinoline (3a)
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Figure S3. 'H-NMR data of 3a
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Figure S4. *C-NMR data of 3a
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7-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)quinolin-2-ol (3b)
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Figure S5. 'H-NMR data of 3b
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Figure S6. 1*C-NMR data of 3b
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7-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)quinoline (3a)

Item name: XFL-7K-B
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Figure S7. HRMS data of 3a
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7-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)quinolin-2-ol (3b)

Item name: XZH27B

Item description:
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Figure S8. HRMS data of 3b
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quinolin-7-ol

Item name: XFL-7K-BO

ltem description:
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Figure S9. MS data of 3a-OH and 3a-COOH
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quinoline-2,7-diol

Itermn name: XFL-27K-BO

Itern description:
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Figure S10. HRMS data of 3b-OH
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VII. Fluorescence change diagram
1. With the increase of ONOO™ concentration, the fluorescence intensity of 3a and 3b increased
significantly (ONOO™: 0-10 equiv) , while with the continuous increase of ONOO™ concentration,

the fluorescence intensity decreased gradually (ONOO™: 15-50 equiv) . The fluorescence changes

are shown in figure S11-S12.

Figure S12. Fluorescence change of 3b with the increase of ONOQO™ concentration
2. Under the condition that other analytes coexist with ONOQO™, 3a-ONOO™ can emit light yellow
fluorescence and 3b-ONOO™ can emit blue fluorescence. The fluorescence changes are shown in
figure S13-S14.
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Figure S13-2. 3a-ONOO~ fluorescence change diagram when coexisting with cations

ONOO- TBHP Br. I SOs3* Cos* HSOs HPO+* 5205* SCN- NO>y

H20: F. cr SO+ PO HCOs 5208% OAc i NOs

Figure S14-1. 3b-ONOO~ fluorescence changes in coexistence with other active species and anions
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Figure S14-2. 3b-ONOO™ fluorescence change diagram when coexisting with cations
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