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Section 1. Preface 
 
This document contains a detailed tutorial for using the codes of the Toolbox for Environmental Research (TEnvR, pronounced “ten-ver”). 
In order to effectively follow this tutorial, it is necessary that researchers have prior familiarity with natural organic matter (NOM), as well 
as the analytical technique for which they want to use TEnvR. This toolbox includes codes for ultraviolet-visible (UV-VIS) absorption 
spectra, excitation-emission matrix (EEM) fluorescence spectra, nuclear magnetic resonance (NMR) spectra, and ultrahigh resolution 
mass spectrometry peak lists from FT-ICR-MS or Orbitrap instrumentation (ultrahigh resolution mass spectrometry techniques). TEnvR 
also includes codes for statistical analysis of multivariate data. The scope of this tutorial is to guide researchers through the different 
capabilities of TEnvR for efficiently processing, visualizing, and mining different types of data. This tutorial will not provide detailed theory 
and background of the analytical techniques nor of the statistical approaches (e.g., principal component analysis). However, we have 
provided numerous useful references to show examples of the application of different techniques. The mathematics behind all codes are 
explained in sufficient detail, but the tutorial has been kept less technical and more novice-friendly. This tutorial is written from the 
perspective of applied analytical chemistry rather than a perspective of computer science. Knowledge and experience in programming 
with MATLAB or other languages (e.g., R, Python) is recommended but not required. Researchers that successfully follow through the 
entire tutorial will not only learn how to process, visualize, and evaluate data from different analytical techniques, but also will advance 
their knowledge and experience with MATLAB programming. For visual guidance throughout this tutorial, a PowerPoint file is provided 
as a second piece of supporting information (filename “2022 TEnvR Tutorial Slides.pptx”) containing screenshots with step-wise 
instructions of the execution of each code in the MATLAB interface. While TEnvR was developed for exploring NOM data, the codes 
herein can be useful to other analytical subfields (e.g., metabolomics) upon the appropriate code modifications. 
 
For easier comprehension of this tutorial, we have used several different font formats: Section names as well as script names are in 
Black Bold (e.g., UVVIS_Metrics, EEM_Visualize, FTMS_Compare3). Slide numbers with corresponding screenshots from the 2022 
TEnvR Tutorial Slides.pptx file are in Red Bold (e.g., Slide 1, Slide 5). Green Italic is used for commands that are to be keyed in 
MATLAB’s Command Window (e.g., clear, clc, UVVIS_Dilution('Sample 1.csv','dilute',4,16)) or for buttons in the MATLAB interface (e.g., 
Save, Set Path, etc.). Any code segments (e.g., function names such as interp1) are also written in Green Italic. 
 
This tutorial is for the second version of the toolbox (TEnvR 2022). The codes of TEnvR and this document will be revisited annually to 
include modifications, improvements of algorithms, enhancement of capabilities, and/or inclusion of new codes. Researchers are welcome 
to contact the corresponding authors with any feedback on the present codes or with any requests for new codes or capabilities to be 
included in future updates. Future versions of this toolbox as well as any related announcements will be published on GitHub 
(https://github.com/alex-goranov/TEnvR) and its website (https://www.tenvr.net/).  
 
TEnvR is free software for non-commercial use: you can redistribute it and/or modify it under the terms of the GNU General Public License 
(GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version (GPL-3.0-or-
later). The GNU GPL is a copyleft license allowing users to freely use, modify, and redistribute the codes within this toolbox. However, 
any further codes or software products derived from this product must be open-source. For further information please refer to the 
License.txt file located in TEnvR 2022\Supplementary files. TEnvR is also registered with the U.S. Copyright Office. We require that the 

https://github.com/alex-goranov/TEnvR
https://www.tenvr.net/
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copyright statement (© Old Dominion University Research Foundation) remains in the license notice section of the codes and the toolbox 
is cited accordingly in any produced work as following: 
 
Goranov, A. I., Sleighter, R. L., Yordanov, D. A., and Hatcher, P. G. (2023): TEnvR: MATLAB-Based Toolbox for Environmental Research, 
Analytical Methods, doi: 10.1039/d3ay00750b. 
 
The toolbox is free for non-commercial purposes. Users wishing to use TEnvR commercially must obtain a commercial license from Old 
Dominion University Research Foundation – for more information please contact the corresponding authors.  
 
Lastly, while TEnvR provides multiple “turn-key” tools for automated data analysis, we urge the users to avoid viewing TEnvR as a black 
box. It is important to know and understand the underlying workflow and how the data is processed. Related to this is that environmental 
samples often deviate from normality, and computational routines may have to be adjusted for particular datasets and/or types of matrices. 
Thus, users should utilize appropriate caution and ensure they have robust quality assurance/quality control checks in place in order to 
evaluate results in a reliable fashion. 
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Section 2. Installation of MATLAB and setting up the TEnvR toolbox on a Windows operating system 
 
To properly operate the scripts in TEnvR, you must have MATLAB and Microsoft Excel installed on your computer. Both must be installed 
in English. The decimal separator in Excel must be set to a dot symbol (.)1. All scripts have been tested on the MATLAB 2020b, 2021a 
and R2022a versions. To install MATLAB, please follow the guidelines on MathWorks (https://www.mathworks.com/help/install/). You 
can also watch a video using the following link (https://www.mathworks.com/videos/how-to-install-matlab-1525083586145.html) or 
contact your local IT department. During the installation, the product installer will ask which products you would like to be installed (Slide 
2). Please install the following packages: MATLAB, Communications Toolbox, Curve Fitting Toolbox, Deep Learning Toolbox, DSP 
System Toolbox, Parallel Computing Toolbox, Signal Processing Toolbox, and Statistics and Machine Learning Toolbox (total memory 
required ~13 GB). Users are welcome to install any additional packages they want or even install all. Installing all packages requires ~40 
GB of memory. For the installation, we recommend connecting to internet using a LAN cable to allow for a faster download of packages.  
 
The installation will create a folder named “toolbox” in its installation folder (e.g., C:\Program Files\MATLAB\R2022a\toolbox) where all 
internal functions and any additional packages are installed. The functions within this folder are internally accessible by MATLAB. After 
installation of the software, a folder named MATLAB is also created in the Documents folder (e.g., 
C:\Users\Administrator\Documents\MATLAB). This “MATLAB” folder is also internal, thus when a code is executed in MATLAB, the 
software will search for that particular code either in the “toolbox” or “MATLAB” folders.  
 
Once MATLAB is installed, open the application. The main software interface, known as the MATLAB desktop, will open, and it is split in 
several windows for interactive work shown on Slide 3 and described below. If your MATLAB interface is different, you can click Layout 
and select Default. If using Default does not show the Workspace window, please select Three Column. The MATLAB desktop has 
several components:  

 
→ Current Folder – this is the location on your computer where MATLAB is currently able to search for files, import data from, and 

export data to. This folder is easily changed by the Browse for folder button. Changing the “Current Folder” is going to be crucial 
for performing many of the automation steps in this toolbox, as described in the sections below. The Current Folder currently 
is selected to be C:\Users\Administrator\Documents\MATLAB (Slide 3). Please note that using folders on some virtual spaces 
(e.g., OneDrive) may cause problems though in other virtual spaces (e.g., DropBox) we have not experienced issues so far.  

→ Details window – this window generally displays the functions’ subsections used within scripts or can display figures if they are 
selected in the Current Folder. This window not be utilized in this tutorial. 

→ Command Window – this is where commands from the operator are typed in.  
→ Workspace – this is where all variables are displayed to the user. Please note that when a script is used as a function, the 

Workspace does not get populated. In order to see all variables, the function needs to be evaluated using the debugger (more 

 
1 To check this, go Click File > Options. Then, on the Advanced tab, under Editing options, you will see the settings for Decimal and Thousand separators. Make 
sure that Decimal separator is a dot (.). You may have to uncheck the “Use system separators” check box. 

https://www.mathworks.com/help/install/
https://www.mathworks.com/videos/how-to-install-matlab-1525083586145.html
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information found at the following link: https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-
features.html). 

 
When using some of the MATLAB scripts of TEnvR, the “Editor” interface will also be used. In cases when graphics are produced, figure 
windows will pop up automatically. An example is shown on Slide 4 with the use of the EEM_Process_Aqualog script. 
 

→ Editor – this is where scripts that are being opened are displayed. Please note that you do not have to have a script open to 
use it, but the script must be located in an internal MATLAB directory.  

→ Figure windows generally pop up and display numerous plots, graphs, tables, etc. that are generated using the various scripts. 
Any of the settings (fonts, styles, sizes, colors, etc.) can be changed either by altering the script or by Edit → Figure Properties...  

 
Once MATLAB is installed, download TEnvR from any of the links below:  

→ GitHub (https://github.com/alex-goranov/TEnvR) 
→ TEnvR’s website (https://www.tenvr.net/) 
→ MathWorks File Exchange (https://www.mathworks.com/matlabcentral/fileexchange/136090-tenvr-toolbox-for-environmental-

research) 
 

Please note that future versions of this toolbox will be uploaded annually on these websites. To install TEnvR, download the compressed 
file containing the toolbox. If you downloaded TEnvR from ResearchGate, this zip file will be named “TEnvR 2022.zip”. If you downloaded 
TEnvR from GitHub, this zip file will be named “TEnvR-main.zip”. Extract its contents by right-clicking on it and selecting “Extract all…”.  
 
If you downloaded the toolbox from GitHub: 1) please rename the folder as TEnvR 2022, and 2) create two new folders in the TEnvR 
2022/TestData_EEM directory named “TestData_Generic_Processed” and “TestData_Aqualog_Processed”.  
 
Move the whole “TEnvR 2022” folder to your MATLAB directory (Slide 5). The toolbox can be stored anywhere on your computer and 
then routed to MATLAB using the Set Path button (Slide 6) even though we recommend that any user-made scripts or externally 
downloaded toolboxes (such as TEnvR or drEEM (Murphy et al., 2013)) are put in the “MATLAB” folder. 
 
Once TEnvR is moved to the MATLAB directory, type the following commands (in Green Italic) into the Command Window (see Slide 5): 
 
Slide 5: addpath(genpath('TEnvR 2022')) 
savepath 
 
Alternatively, use the Set Path button (Slide 6) to internally route TEnvR to MATLAB. Click Set Path, then select Add with Subfolders… 
(Slide 6). The TEnvR folder is greyed out, because a new dialog window is open and the MATLAB desktop is in the background. In the 
popped up window, find the location of TEnvR, select it, and click Select Folder (Slide 7). Then you will see that TEnvR and its subfolders 

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
https://github.com/alex-goranov/TEnvR
https://www.tenvr.net/
https://www.mathworks.com/matlabcentral/fileexchange/136090-tenvr-toolbox-for-environmental-research
https://www.mathworks.com/matlabcentral/fileexchange/136090-tenvr-toolbox-for-environmental-research
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has been internally routed to MATLAB (Slide 8) - click Save and then Close. You can double-click on the folder to open it and see its 
contents from the MATLAB desktop (Slide 9). TEnvR contains four types of files denoted by their different icons: folders with exemplary 
data or supplementary files, scripts, functions, and configuration files. The use of these different files will be demonstrated throughout the 
different sections of this tutorial. 
 
Future versions of TEnvR will include modifications to enable its use on other operation systems such as Macintosh, which is at present 
not possible. The use on TEnvR via MATLAB Online is also not possible at present. 
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Section 3. Lists of codes and supporting files in TEnvR (version 2022)  
 

 Script Purpose 
1 EEM_Difference Calculating a differential (difference) spectrum between two EEM spectra 
2 EEM_Dilution Scaling up (undiluting) or down (diluting) an EEM spectrum 

3 EEM_Fold Converting (folding) 3D EEM spectra into 2D arrays prior to multivariate two-way 
statistics (HCA, PCA, etc.) 

4 EEM_Metrics Calculating EEM spectral metrics (peak intensities, spectral indices, etc.) 

5 EEM_Process_Aqualog 
Processing raw EEM data into processed “final” data. This code is for data acquired 
on HORIBA Aqualog spectrofluorometers (instrument-output data is already mostly 
pre-processed) 

6 EEM_Process_Generic Processing raw EEM data into processed “final” data from other spectrofluorometers 

7 EEM_ShimadzuReformat Reformatting EEM data output by Shimadzu RF-6000 spectrofluorometers into a 
readable format by codes in drEEM 

8 EEM_ThermoReformat Reformatting EEM data output by Thermo Scientific Lumina spectrofluorometers into 
a readable format by codes in drEEM 

9 EEM_Transposition Transposing EEM data (switching axes) 

10 EEM_Unfold Converting (unfolding) 2D arrays into 3D EEMs after PCA analysis (only for 
component loadings) 

11 EEM_Visualize Creating contour plots of one, two, or three EEM spectra 

12 EEM_WaterRamanAverage Averaging five replicate 2D emission scans (typically water Raman scans) from 
Shimadzu RF-6000 spectrofluorometers 

13 EEM_WaterRamanReformatAqualog Reformatting 2D water Raman spectral output by HORIBA Aqualog 
spectrofluorometers into a readable format by codes in drEEM 

   

14 FTMS_AlignmentFormulas Combining multiple formula lists and aligning formulas to produce an alignment 
matrix 

15 FTMS_Automation Automated processing of numerous peak lists and their formula assignment; metrics 
calculations and compound class categorization on numerous formula lists 

16 FTMS_Compare Comparison of two formula lists using the Presence/Absence approach 
17 FTMS_Compare3 Comparison of three formula lists using the Presence/Absence approach 
18 FTMS_Compare4 Comparison of four formula lists using the Presence/Absence approach 
19 FTMS_CompoundClass Categorization of molecular formulas into different compound classes 
20 FTMS_ConfigurationAssignment Configuration file for peak refinement and formula assignment 
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21 FTMS_ConfigurationToolbox Configuration file for all other FTMS codes in TEnvR 
22 FTMS_Figures Producing various figures for visualizing formula lists 
23 FTMS_Figures_MD Producing figures for assessing formula lists based on mass defect 
24 FTMS_FormulaAssignment Assignment of formulas to peak lists 
25 FTMS_KMD Kendrick Mass Defect series analysis of an individual formula list 
26 FTMS_KMD_Ox Kendrick Mass Defect oxygenation series analysis of an individual formula list 

27 FTMS_KMD2 Kendrick Mass Defect series analysis of two individual formula lists using the 
Presence/Absence approach 

28 FTMS_Metrics Calculating various metrics for a formula list 
29 FTMS_Peptides Identifying formulas within a formula list that can be small oligomeric peptides 

30 FTMS_Process Automated peak refinement, formula assignment, and formula refinement of an 
individual peak list 

31 FTMS_RefinementFormulas Refinement of an individual formula list 
32 FTMS_RefinementPeaks Refinement of an individual peak list 
33 FTMS_SpearmanCorrelation Spearman correlation of aligned formulas of a dataset with external parameters 

   
34 NMR_Automation Automated processing routine for 1D NMR spectra 

   
35 Stats_HCA Hierarchical cluster analysis (HCA) 
36 Stats_PCA Principal component analysis (PCA) 
37 Stats_CorrMatrix Pearson/Kendall/Spearman correlation matrix 

   
38 UVVIS_Automation Automated processing of numerous UV-VIS spectra 
39 UVVIS_Derivative Calculating a first order (or nth order) derivative spectrum 
40 UVVIS_Differentiation Calculating a differential (difference) spectrum 
41 UVVIS_Dilution Scaling up (undiluting) or down (diluting) a UV-VIS spectrum 

42 UVVIS_Metrics Calculating UV-VIS spectral metrics (E4:E6, slope ratio, etc.) and the Napierian 
absorbance spectrum 

43 UVVIS_Process Processing raw UV-VIS data into processed “final” data 

44 UVVIS_ReformatAqualog Reformatting UV-VIS spectra acquired on HORIBA Aqualog spectrofluorometers into 
a readable format by codes in TEnvR and drEEM 
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Internal codes Purpose 
Combn Internal code for FTMS_Peptides, creates combinations of elements 

FTMS_Candidate Internal code for FTMS_RefinementFormulas, creates candidates for the KMD 
filter 

FTMS_CandidateCollection Internal code for FTMS_RefinementFormulas, creates a candidate collection for 
the KMD filter 

FTMS_KMD_Collection Internal code for FTMS_RefinementFormulas, creates a KMD collection for the 
KMD filter 

FTMS_KMD_Value Internal code for FTMS_RefinementFormulas, creates KMD values for the KMD 
filter 

natsort Internal function for natsortfiles, performs natural-order/alphanumeric sorting of 
strings, character vectors, or categorical data 

natsortfiles 
Internal function for UVVIS_Automation, UVVIS_Differentiation, EEM_Fold, 
EEM_Metrics, FTMS_Automation, performs natural-order/alphanumeric sorting of 
filenames and folders 

pval_adjust 
Internal function for Stats_PCA, Stats_CorrMatrix, and 
FTMS_SpearmanCorrelation, performs p-value adjustments to control the false 
discovery rate 

spear Internal code for FTMS_SpearmanCorrelation and Stats_CorrMatrix, performs a 
Spearman correlation 

 
 

Supplementary files Purpose 
Data provided in toolbox.txt Description of the data provided in the toolbox 
EEM_Metrics.xlsx Detailed description of all metrics in the EEM_Metrics code 
FTMS_AminoAcids.xlsx Molecular formulas of amino acids used in FTMS_Peptides 
FTMS_CompoundClasses.docx Summary of different compound classes from different studies 

FTMS_PAHs.xlsx List of polycyclic aromatic hydrocarbons (PAHs) used for developing the Ring metric 
in FTMS_Metrics 

License for natsortfiles and natsort.txt License file for the externally sourced natsort and natsortfiles codes 
License for pval_adjust.txt License file for the externally sourced pval_adjust code 
License.txt License file for the TEnvR toolbox 
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Provided Test Data Description 

TestData_Aqualog (in 
TestData_EEM) 

Unpublished fluorescence EEM spectra of nine dissolved organic matter samples as well as their 
photo-irradiated counterparts. Samples were filtered using 0.1 µm filters and analyzed on a 
HORIBA Aqualog spectrofluorometer at University of Delaware (Dr. Andrew Wozniak’s laboratory).  

TestData_Generic (in 
TestData_EEM) 

Fluorescence EEM spectra of biochar water extracts and their bio-incubated counterparts. Samples 
were filtered using 0.1 µm filters and analyzed on a Shimadzu Scientific RF-600 spectrofluorometer 
at Old Dominion University. Please see the publication by Goranov et al. (2022b) for more details. 

TestData_Thermo (in 
TestData_EEM) 

Unpublished fluorescence EEM spectra of biochar water extracts and their photo-irradiated 
counterparts. Samples were filtered using 0.1 µm filters and analyzed on a Thermo Scientific 
Lumina 3 spectrofluorometer at Old Dominion University. Please see the publications by Wozniak 
et al. (2020) and (Bostick et al., 2020) for sample details. 

TestData_WaterRamanAqualog 
(in TestData_EEM) 

Unpublished two-dimensional spectra of pure water (also referred to as water Raman spectra). 
These have been acquired on a HORIBA Aqualog spectrofluorometer at Rensselaer Polytechnic 
Institute (Dr. Sasha Wagner’s laboratory). 

TestData_FTICRMS 

Unpublished mass spectra of dissolved organic matter samples from nine swamps and rivers as well 
as their photo-irradiated counterparts. Samples were filtered using 0.1 µm filters, solid-phase 
extracted using PPL cartridges (Dittmar et al., 2008), and infused into the 15-Tesla SolariXR FT-ICR-
MS housed in the Ohio State University Mass Spectrometry and Proteomics Campus Chemical 
Instrument Center (negative-mode electrospray ionization).  

PositiveMode (in 
TestData_FTICRMS) 

Unpublished mass spectra of dissolved organic matter samples from three swamps and rivers as 
well as their photo-irradiated counterparts. Samples were filtered using 0.1 µm filters, solid-phase 
extracted using PPL cartridges (Dittmar et al., 2008), and infused into the 15-Tesla SolariXR FT-ICR-
MS housed in the Ohio State University Mass Spectrometry and Proteomics Campus Chemical 
Instrument Center (positive-mode electrospray ionization).  

TestData_NMR Solid-state 13C NMR spectra of seven biochars. Please see the publication by Wozniak et al. 
(2020) for more details. 

TestData_UVVIS 
Unpublished ultraviolet-visible spectra of nine dissolved organic matter samples as well as their 
photo-irradiated counterparts. Samples were filtered using 0.1 µm filters and analyzed on a Thermo 
Scientific Evolution 201 UV-VIS at Old Dominion University.  
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Section 4. Ultraviolet-visible (UV-VIS) Spectroscopy 
 
The codes for UV-VIS spectral data are developed to import the spectral data from comma-separated values (.csv) files. The wavelengths 
must be listed in the first column, and the absorbance values must be listed in the second column. Some spectrometers (e.g., Thermo 
Scientific Evolution 201) output data sorted by wavelength from longest to shortest. Thus, all codes are equipped with a sorting function 
to reorganize the data by wavelength from shortest to longest. In order to keep the codes simple, the option to import a variety of different 
types of files was not encoded. Instead, it is recommended that users modify the codes and tailor them to their needs. For example, if 
spectral data from Excel files (.xlsx or .xls) is to be loaded, dlmread / dlmwrite functions in all scripts must be substituted with xlsread / 
xlswrite and name extensions must be changed from ‘.csv’ to ‘.xlsx’ throughout the scripts.  
 
Below is a tutorial for using the scripts pertaining to UV-VIS data. We have provided 20 test samples (Sample 1 (01) - Abs Spectra 
Graphs.dat to Sample 20 (01) - Abs Spectra Graphs.dat) as well as a blank test sample (Blank (01) - Abs Spectra Graphs.dat) generated 
using a HORIBA Aqualog spectrofluorometer.  
 
To use the UV-VIS codes, first put all of your UV-VIS data in a separate folder and select this folder as your Current Folder using the 
Browse for Folder button. An example is shown using the TestData_UVVIS folder inside the TEnvR folder (Slide 10). Please avoid using 
the symbols . , / ? * [  ] in file names as they can cause errors. 
 
• UVVIS_ReformatAqualog 
 
In many environmental labs, UV-VIS spectra are acquired in parallel with three-dimensional fluorescence spectra on HORIBA Aqualog 
spectrofluorometers. These instruments export the produced UV-VIS spectra as .dat files. Furthermore, the exported file contains much 
more data than the needed two arrays of wavelengths and absorbance values. The UVVIS_ReformatAqualog code is specifically to 
reformat such data into a TEnvR-friendly format. The code will automatically import all spectra (in .dat format) and reformat them into 
comma-separated value (.csv) files. To run this code, type UVVIS_ReformatAqualog in the Command Window with TestData_UVVIS 
being your Current Folder (Slide 11). You can also copy the command in Green Italic from here and paste it into the Command Window. 
 
Slide 11: UVVIS_ReformatAqualog 
 
After running this line in the Command Window, the code will collect all filenames in the Current Folder ending with “Abs Spectra 
Graphs.dat”. Then, the code will individually load each of these files, reformat it, and create a corresponding .csv file. Files are also sorted 
by wavelength and their filenames are trimmed to include only the filename (i.e., “(01) - Abs Spectra Graphs” is removed). These new 
files will be used in the examples below. For this and all other codes in TEnvR, once the code is done it will output a completion message 
in the Command Window (e.g., Finished reformatting Blank (01) - Abs Spectra Graphs.dat, Slide 11). 
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Note: During this tutorial, the Command Window and Workspace should be cleaned up after each code is presented. Any auxiliary 
windows (e.g., Figure windows) should also be also closed. To clean these spaces, sequentially (in different lines) type close all, clear 
and then clc in the Command Window. 
 
• UVVIS_Dilution 
 
The dilution of samples prior to UV-VIS spectrophotometric analysis is common as direct UV-VIS measurements must not exceed 
absorbance of 1.0 in order to keep the measured absorbance within the linearity limits of Beer-Lambert’s law. The UV-VIS code is used 
to rescale a UV-VIS spectrum to account for the dilution. This is done based on a dilution factor (DF), which is calculated as the volume 
of concentrated sample that was used (Vinitial) to be diluted into a final volume Vfinal. In analytical textbooks (Harris, 2015), these volumes 
are referred to as V1 and V2, respectively. The first example sample of the provided dataset was in fact diluted 11 times (an 11-fold dilution, 
or diluted with a DF of 0.0909), and that is shown in the calculation below. 
 

DF =
Vinitial
Vfinal

=
V1
V2

=
1 mL sample

1 mL sample + 10 mL water
=

1
11

= 0.0909 

 
The UVVIS_Dilution script can be used to scale up (undilutes) or scale down (dilutes) a spectrum by using a different argument in the 
function as shown below. This script can be also used to normalize/denormalize a spectrum to carbon content or another external 
parameter. Below shows an application of the code using “Sample 1.csv”. 
 
Slide 12: UVVIS_Dilution('Sample 1.csv','dilute',1,11) 
 
After running this line in the Command Window, a new .csv file is created in the Current Folder directory – “Sample 1_dil_0.0909.csv”. 
The absorbance values in this file are scaled down 11 times, which would have resulted if the sample was 11-fold diluted (i.e., diluted 
with DF = 0.0909).  
 
Slide 13: UVVIS_Dilution('Sample 1_dil_0.0909.csv','undilute',1,11) 
 
Here, this function was applied on the file that was produced in the previous example (“Sample 1_dil_0.0909.csv”). By running the script 
using the 'undilute' argument, the code scales up the data 11 times. Thus, this reverses the previous action and the data in the new output 
file (Sample 1_dil_0.0909_undil_0.0909) now matches the data in the original file (“Sample 1.csv”).  
 
Slide 14: UVVIS_Dilution('Sample 2.csv','undilute',23,1) 
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Here, this script is used to normalize the second example sample to dissolved organic carbon content, which is 23 mg/L (or 23 ppm). 
Mathematically, all absorbance values in the “Sample 2.csv” are divided by 23 to produce C-normalized decadic2 absorbance. 
 
Slide 15: UVVIS_Dilution('Sample 2_undil_23.csv','dilute',23,1) 
 
By applying the script using the ‘dilute’ argument, the data in the “Sample 2_undil_23.csv” is de-normalized, thus the data in “Sample 
2_undil_23_dil_23.csv” matches the original data in “Sample 2.csv”. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• UVVIS_Process 
 
This code is a processing script that takes raw instrumental output (absorbance values versus wavelength) and transforms the data into 
its final (processed) form. The code can be easily altered by the user to enable or disable any of these steps.  
 
Slide 16: UVVIS_Process('Sample 1.csv','Blank.csv',0.0909) 
 
By applying this script, the sample file (“Sample 1.csv”) and blank file (“Blank.csv”) are loaded and checked if they are within the same 
wavelength ranges (in the test data provided, the range is 190-1100 nm). If the absorbance data was not sampled every 1 nm (e.g., 
sampled at 220 nm, 222 nm, 224 nm, etc.), then the data is interpolated using the interp1 function (to learn more about this function, type 
help interp1 in the Command Window). The code then undilutes the data based on a dilution factor for the sample of 0.0909 (where the 
sample was diluted 11-fold), and it is assumed that the dilution factor for the blank data is 1. After that, the blank spectrum is subtracted 
from the sample spectrum. This is particularly useful in analyses where a procedural blank may have significantly contributing absorbance 
(Lu and Wu, 2001; Peacock et al., 2014).The obtained spectrum is then corrected for scattering and deviations in baseline, temperature, 
and refractive index effects by averaging the absorbance values from 701 to 800 nm (Green and Blough, 1994; Helms et al., 2008). It 
must be noted that this range is instrument-specific and may need optimization if organic matter absorbs at wavelengths longer than 700 
(edit code in lines 119-129). Lastly, the spectrum is normalized to the cuvette pathlength. Here, the value is set as 1 cm, but this can be 
changed in line 43 of the script. The processed “final” UV-VIS spectrum is exported as a “_Final.csv” file. For the example shown here, 
the file “Sample 1_Final.csv” is produced (Slide 16). 
 
To open the code and edit any of the processing parameters, type edit UVVIS_Process in the Command Window. 
 
Slide 17: edit UVVIS_Process 
 

 
2 Decadic absorbance = absorbance computed on a log10 basis 
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The Editor window will pop up (or open in a new window, depending on user settings) and the code will be opened. All codes of TEnvR 
are generally split in several logical sections, the first one being a description section (labeled with %% Description). The second section 
contains the License Notice (%% License Notice), the third section (%% Configuration), whenever applicable, contains parameters that 
can be altered by the user. Different sections are separated and denoted by two percent symbols (%%). Comments by the user are 
designated with a single percent symbol (%) before the text. Lines with no % or %% in front are commands that MATLAB will read as 
code and will not skip.  
 
To change the dilution factor for the blank, edit the DF_blank variable on line 42. To change the cuvette pathlength, edit the Pathlength 
variable on line 43. To disable the scattering correction, change the Correction variable on line 44 from true to false. There are three 
possible scenarios regarding the scattering correction:  

→ If the upper wavelength limit is ≤ 700, the code will not perform the scattering correction regardless of the value of the Correction 
variable.  

→ If the upper wavelength limit is ≥ 800, the code will perform the scattering correction using absorbance values from 701-800 
(as long as the Correction variable is set to true).  

→ If the upper wavelength limit is between 701-800, the code will perform the scattering correction using absorbance values from 
701 to the longest wavelength (as long as it is < 800 and as long as the Correction variable is set to true). For example, if a 
sample was acquired at wavelengths 300-750, absorbance values at 701-750 will be used for correcting absorbance values at 
300-700. 

After making any changes to the code, do not forget to click Save. To disable the blank-correction and not use a blank sample, use 
'NoBlank' instead of the blank filename in the second argument of the UVVIS_Process function. Users must exercise caution and consider 
the specifics of their particular dataset and sample matrices in order to perform quality control of the obtained processed data. The 
routines in UVVIS_Process are likely not applicable to all datasets and thus, may need to be adjusted depending on the application.  

Before proceeding, type close all, clear, and then clc in the Command Window. 
 
Note: the UVVIS_Process script will only work on versions of MATLAB that are 2019 and newer (the readmatrix function does not work 
on 2018 and older software versions).  
 
• UVVIS_Metrics 
 
This code takes a UV-VIS spectrum and calculates a variety of metrics listed in the table below. It also converts the decadic spectrum 
(based on a log10 basis) into a Napierian spectrum (loge, or ln, basis). 
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Metric Type Variable label in 
MATLAB 

Mathematical 
definition Description Reference 

A230 
Aromaticity 

proxy METRIC_Abs230Dec Decadic absorbance 
at 230 nm 

Metric is directly proportional to 
aromatic content  

A254 
Aromaticity 

proxy METRIC_Abs254Dec Decadic absorbance 
at 254 nm 

Metric is directly proportional to 
aromatic content3 

Summers et al. 
(1987); Weishaar et 

al. (2003) 

A280 
Aromaticity 

proxy METRIC_Abs280Dec Decadic absorbance 
at 280 nm 

Metric is directly proportional to 
aromatic content1 

Peuravuori and 
Pihlaja (1997) 

CDOM4 Aromaticity 
proxy METRIC_TotalCDOM Integrated area from 

250-450 nm 
Metric is directly proportional to 

aromatic content Helms et al. (2008) 

α350 Aromaticity 
proxy METRIC_alpha350 Napierian absorbance 

at 350 nm 
Metric is directly proportional to 

aromatic content 
Hu et al. (2002); 

Stubbins et al. (2012) 

α325 Aromaticity 
proxy METRIC_alpha325 Napierian absorbance 

at 325 nm 
Metric is directly proportional to 

aromatic content 
Hu et al. (2002); 

Stubbins et al. (2012) 

α300 Aromaticity 
proxy METRIC_alpha300 Napierian absorbance 

at 300 nm 
Metric is directly proportional to 

aromatic content 
Hu et al. (2002); 

Stubbins et al. (2012) 

α250 Aromaticity 
proxy METRIC_alpha250 Napierian absorbance 

at 250 nm 
Metric is directly proportional to 

aromatic content 
Hu et al. (2002); 

Stubbins et al. (2012) 

α254 Aromaticity 
proxy METRIC_alpha254 Napierian absorbance 

at 254 nm 
Metric is directly proportional to 

aromatic content 
Hu et al. (2002); 

Stubbins et al. (2012) 

E2: E3 
Spectral 

ratio Metric_E2E3 
A250

A356
 Metric is inversely proportional to 

molecular size 
De Haan and De Boer 

(1987) 

E4: E6 
Spectral 

ratio Metric_E4E6 
A465

A665
 Metric is inversely proportional to 

molecular size 
Chen et al. (1977); 
Senesi et al. (1989) 

S275−295 
Spectral 

slope Metric_Slope275295 
Slope of linearized 

spectrum in the 275-
295 range 

Metric related to CDOM quality 
(source, previous photochemical or 

microbial exposure, molecular 
weight) 

Helms et al. (2008) 

 
3 Use A254 and A280 to calculate SUVA254 and SUVA280 by dividing these metrics by externally measured DOC content (Weishaar et al., 2003) and multiplying by 100. 
 
4 CDOM = Chromophoric (chromophore-containing) dissolved organic matter.  
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S290−320 
Spectral 

slope Metric_Slope290320 
Slope of linearized 

spectrum in the 290-
320 range 

Metric related to CDOM quality 
(source, previous photochemical or 

microbial exposure, molecular 
weight) 

Helms et al. (2008) 

S350−400 
Spectral 

slope Metric_Slope350400 
Slope of linearized 

spectrum in the 350-
400 range 

Metric related to CDOM quality 
(source, previous photochemical or 

microbial exposure, molecular 
weight) 

Helms et al. (2008) 

S350−450 
Spectral 

slope Metric_Slope350450 
Slope of linearized 

spectrum in the 350-
450 range 

Metric related to CDOM quality 
(source, previous photochemical or 

microbial exposure, molecular 
weight) 

Helms et al. (2008) 

S𝑅𝑅 Spectral 
slope Metric_SlopeRatio 

S275−295
S350−450

 

Metric related to CDOM quality 
(source, previous photochemical or 

microbial exposure, molecular 
weight) 

Helms et al. (2008) 

 
This code must be applied on a UV-VIS spectrum in its final form. An example is shown with the previously processed Sample 1: 
 
Slide 18: UVVIS_Metrics('Sample 1_Final.csv') 
 
The code exports an Excel spreadsheet (.xlsx) with the decadic spectrum, the Napierian spectrum, and a table with the metrics (Slide 
19). For the example shown above, the new file is “Sample 1_Final_Metrics.xlsx”. 
 
Please note that in the produced Excel file, the E2:E3 and E4:E6 ratios are labeled as “E2toE3” and “E4toE6”, respectively (Slide 19). 
Using symbols such as . , / ? * [  ] for variable or file names is not recommended as they can cause errors. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• UVVIS_Derivative 
 
This code takes a spectrum and calculates its derivative. An example is shown with the previously processed Sample 1: 
 
Slide 20: UVVIS_Derivative('Sample 1_Final.csv') 
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The newly produced file (“Sample 1_Final_deriv.csv”) contains the first-order derivative spectrum. To calculate a second-order (or nth 
order) derivative spectrum, apply this code again on the .csv file containing the n-1-order derivative spectrum, as shown below for second- 
and third-order derivative spectra.  
 
Obtaining second-order derivative spectrum: 
 
Slide 21: UVVIS_Derivative('Sample 1_Final_deriv.csv') 
 
File produced: “Sample 1_Final_deriv_deriv.csv” 
Obtaining third-order derivative spectrum: 
 
Slide 22: UVVIS_Derivative('Sample 1_Final_deriv_deriv.csv') 
 
File produced: “Sample 1_Final_deriv_deriv_deriv.csv”  
 
This code can be modified to immediately produce an nth order spectrum, and we urge users to do so if higher order spectra are desired.  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• UVVIS_Automation 
 
While the codes listed above can be individually applied on samples, this is inconvenient for datasets containing a large number of 
samples. Thus, these codes are incorporated into an automation routine. The UVVIS_Automation script is capable of loading all files 
that are in the current directory (thus, do not keep any other .csv files in that folder), and applying the scripts described above in a 
sequential order to all samples. In the end, this script prepares a Master Report Excel file with all data conveniently combined together. 
The code is run by typing the following in the Command Window: UVVIS_Automation 
 
Please note: Before running this script, make sure that the only .csv files in the Current Folder are the unprocessed UV-VIS spectra of 
interest. For example, if you are following this tutorial, remove the .csv files created by the previously shown codes above (either delete 
or place elsewhere) and only leave the 20 csv files corresponding to the test samples in this folder. Files of other types (e.g., .dat) can be 
kept in this folder without interfering with the UVVIS_Automation code. To delete the files of interest, hold down the Ctrl button on your 
keyboard and select the files to delete and then press the Delete button on your keyboard (Slide 23). 
 
Slide 24: UVVIS_Automation 
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Immediately, a pop-up dialog box shows up requesting the filename of the blank (Slide 24). Input the full filename of the blank (Blank.csv), 
including the extension, with no apostrophes. Please double-check the name of the blank! If no blank is to be used, use NoBlank with no 
apostrophes. 
 
Blank.csv 
 
Immediately after the blank name is keyed in, another dialog box will pop us asking if the samples have been diluted (Slide 24). If you 
click No, the code will use a dilution factor of 1 for all samples. If you click yes, a third dialog box will pop up (Slide 24) requesting dilution 
factors for all samples. The dialog box window is coded to display the filename of each sample allowing the user to cross-reference the 
filename from a spreadsheet or laboratory notebook and transfer the dilution factor to the dialog box. These dilution factors will also be 
provided in the Master Report file. For the 20 samples of the example dataset, please use the following dilution factors:  
 

Filename Dilution Factor 
Sample 1.csv 0.0909 
Sample 2.csv 0.3333 
Sample 3.csv 0.0909 
Sample 4.csv 0.3333 
Sample 5.csv 0.3333 
Sample 6.csv 0.1667 
Sample 7.csv 1.0000 
Sample 8.csv 0.0476 
Sample 9.csv 1.0000 

Sample 10.csv 0.0909 
Sample 11.csv 0.0909 
Sample 12.csv 1.0000 
Sample 13.csv 0.3333 
Sample 14.csv 0.3333 
Sample 15.csv 0.1667 
Sample 16.csv 1.0000 
Sample 17.csv 0.1667 
Sample 18.csv 1.0000 
Sample 19.csv 0.0909 
Sample 20.csv 0.0909 
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Once the dilution factors are keyed in, the code will sequentially apply UVVIS_Process, UVVIS_Derivative, and UVVIS_Metrics on all 
sample files in the current directory (Slide 25). The code will also collect all of the data and export it in a master file named 
“UVVIS_MasterReport.xlsx” which contains four sheets: 

→ Sheet1 = All decadic spectra of the samples in a matrix format (Slide 26) 
→ Normalized = Each decadic spectrum is normalized to total spectral intensity (Slide 27). The resultant normalized matrix is 

further treated to prepare it for statistical analysis: Negative absorbance values and NaN5 values are set to zero. Wavelengths 
that have the same absorbance value for all samples are removed from the dataset to avoid creating covariance values with 
missing values if principal component analysis is employed. Additionally, wavelengths above 450 nm are removed as usually 
CDOM is insignificantly absorptive at such long wavelengths (Helms et al., 2008). Researchers are welcome to modify this cut-
off threshold for their needs. This matrix can be then loaded into the codes for multivariate statistics as shown later.  

→ Napierian = All Napierian spectra of the samples in a matrix format (Slide 28) 
→ 1st Deriv = All first-order derivative spectra of the samples in a matrix format (Slide 29) 
→ Metrics = All metrics and dilution factors of the samples in a matrix format (Slide 30) 

 
The data from this report can be then easily visualized and evaluated for trends. The dilution factors that were keyed in are also listed in 
column B of the metrics sheet (Slide 30) – please double-check them here with your spreadsheet or laboratory notebook for possible 
mistypes. Additional measurements (such as dissolved organic carbon content), can be easily added to the spreadsheet in order to 
calculate other variables such as SUVA254 and SUVA280 (Weishaar et al., 2003). Please do not delete the file “UVVIS_MasterReport.xlsx” 
and do not change the sheet name “Normalized” - the matrix in the “Normalized” sheet will be directly used in several multivariate statistical 
routines (e.g., principal component analysis) as shown later in this tutorial.  
 
Please note that in the produced Excel file, the E2:E3 and E4:E6 ratios are labeled as “E2toE3” and “E4toE6”, respectively (Slide 30). 
Using symbols such as . , / ? * [  ] for variable or file names is not recommended as they can cause errors. 
 
The UVVIS_Automation code utilizes external functions for alphanumeric sorting of filenames (natsortfiles and natsort) developed by 
Stephen Cobeldick (https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort). These codes are found 
in TEnvR\Internal codes. Their licenses are found in TEnvR\Supplementary files. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• UVVIS_Differentiation 
 
This script imports numerous UV-VIS spectra (in their processed form) and in an automated manner calculates the differential (also known 
as “difference”) spectra relative to one particular sample. Typically, this reference sample is a control in an experiment where one is 

 
5 NaN = Not a Number. Represents values that are not real. Could be complex numbers, categorical values (e.g., text), etc. 

https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort
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looking at the changes in absorbance. For example, differential spectra can be useful in photochemical experiments where the 
absorbance of the control sample (e.g., “dark” control) is subtracted from all photo-irradiated samples (Hemmler et al., 2019). In the end, 
this script prepares a Master Report Excel file with all data conveniently combined together. The code is run by typing the following in the 
Command Window: UVVIS_Differentiation 
 
Please note: The UVVIS_Differentiation will load all files that end with “_Final.csv” and thus, before running this script, make sure that 
the only “_Final.csv” files in the Current Folder are the processed UV-VIS spectra of interest. If you are following this tutorial to this point, 
you should have 20 “_Final.csv” spectra in your Current Folder. Files of other types (.dat, .xlsx, etc.) or other .csv files not containing the 
_Final suffix can be kept in this folder without interfering with the UVVIS_Differentiation code. 
 
Slide 31: UVVIS_Differentiation 
Immediately, a pop-up window will request the filename of the control sample (the sample that will be subtracted from all others). Input 
the full filename, including the extension, with no apostrophes, as shown here: 
 
 
Sample 1_Final.csv 
 
 
 
 
The code will then proceed to perform the calculations and will compile all resultant differential spectra in an Excel file named 
“UVVIS_Differentiation.xlsx”. The original spectra are compiled in “Sheet1” (Slide 32). The differential spectra are compiled in sheet 
“Differential” (Slide 33).  
 
Note: the UVVIS_Differentiation script will only work on versions of MATLAB that are 2019 and newer (the readmatrix function does not 
work on 2018 and older software versions). 
 
The UVVIS_Differentiation code utilizes external functions for alphanumeric sorting of filenames (natsortfiles and natsort) developed by 
Stephen Cobeldick (https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort). These codes are found 
in TEnvR\Internal codes. Their licenses are found in TEnvR\Supplementary files. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
  

https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort


S21 
 

Section 5. Fluorescence Spectroscopy 
 
In earlier years in the application of this technique to environmental research, spectrofluorometry was mainly used to acquire two-
dimensional data (Coble et al., 2014). A common approach was to excite the sample at a single excitation wavelength (λEX), e.g., 370 
nm, and then measure the emitted fluorescence over a range of emission wavelengths (λEM) to obtain a two-dimensional fluorescence 
spectrum (McKnight et al., 2001). Synchronous spectrofluorometry, where the excitation and emission monochromators were off-set with 
a certain gap (e.g., 25 nm), and the emission was detected, was also popular (Cabaniss and Shuman, 1987). Currently, it is preferred to 
acquire excitation-emission matrices (EEMs), which provide a representative three-dimensional spectrum of the FDOM content of 
samples. In earlier spectrofluorometric designs, in order to acquire an EEM spectrum both monochromators would have to sequentially 
scan all wavelengths, thus acquisition of an EEM could take 30-50 min/sample. After the implementation of faster detectors (photo-diode 
arrays or charge-coupled devices) capable of measuring the fluorescence intensity at all emission wavelengths within ~5 s for each 
excitation wavelength, the time to acquire an EEM decreased to ~5 min/sample, making EEM data acquisition much more efficient (Coble 
et al., 2014) and increasingly employed on a routine basis.  
 
The codes in TEnvR for working with fluorescence EEM data were developed to supplement the decomposition routines for the Excitation 
Emission Matrices (drEEM) toolbox by Murphy et al. (2013). While most of the codes in TEnvR can be used independently of drEEM, 
they must be applied on processed “final” EEM spectra. There are several mandatory data correction procedures, as described by Murphy 
et al. (2010), and these can be performed by several scripts of the drEEM toolbox. We show an example using the codes in drEEM, but 
this could be also done by other software products. Certain spectrofluorometers, such as HORIBA Aqualogs, are able to perform these 
steps using their own software right after EEM acquisition.  
 
In TEnvR, two scripts are provided to serve as examples of how to process raw EEM data into “final” data (EEM_Process_Generic and 
EEM_Process_Aqualog). As these scripts utilize functions of the drEEM toolbox, installation of drEEM is necessary. To install drEEM, 
download the toolbox from its website (http://dreem.openfluor.org/). For the most recent version (drEEM-0.6.5), after downloading and 
extracting all files of the compressed (zipped) folder, follow the instructions below for installation (Slide 34) or watch an instructional video 
here: https://www.youtube.com/watch?v=9OyxSKEWmbE.  
 
Briefly, set the drEEM folder as your Current Folder and use the following command:  
 
Slide 34: dreeminstall 
 
The installation routine executed by the dreeminstall command will internally route the codes of drEEM and set it up for use. Once 
installation is complete you may clear up the Command Windows using clc.  
 
While the use of drEEM is beyond the scope of this manuscript and tutorial, it is recommended that users of TEnvR also explore drEEM 
and familiarize themselves with the tools for performing parallel factor analysis (PARAFAC). There are several useful tutorials for importing 
and correcting EEM data, as well as for PARAFAC modeling, that can be found here: http://dreem.openfluor.org/tutorials/. Additionally, 

http://dreem.openfluor.org/
https://www.youtube.com/watch?v=9OyxSKEWmbE
http://dreem.openfluor.org/tutorials/
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there are tutorial scripts located in the tutorials folder of drEEM (folder named “tutorials” in versions 0.1.0 to 0.4.0, folder named 
tutorials_demos in the more recent versions 0.5.0 to 0.6.5) that can also be used for self-teaching purposes.  
 
The drEEM toolbox is highly versatile and can import EEM files output from a variety of instruments (HORIBA Aqualog and Fluoromax, 
Hitachi, Varian, Shimadzu, etc.). In this tutorial, we have provided two different datasets of EEM spectra, one acquired on a HORIBA 
Aqualog and one acquired on a Shimadzu RF-6000 spectrofluorometer. Both datasets will be used as examples of how to use raw data 
(output from the instrument) to acquire processed data using the functions within drEEM. Then the obtained processed spectra will be 
subsequently used to show the application of the TEnvR codes for EEM spectra.  
 
• EEM_Process_Aqualog 
 
HORIBA Aqualog spectrofluorometers appear to be the most common instruments utilized in the aquatic fluorescence field. These 
instruments are not only very fast in acquiring EEMs (~5 min per spectrum) but are also capable of performing several of the data 
processing steps. Blank-subtraction can be enabled in the very beginning prior to acquiring the EEMs (in the “Experimental Setup” menu 
after selecting “EEM 3D + Absorbance” in the 3D menu). Once each EEM is acquired, the instrument software automatically performs 
the correction for removal of instrument-specific responses (Cory et al., 2010). Then, after acquisition of all samples, the user has the 
options to perform: 1) Inner filter effect correction using the absorbance method (Kothawala et al., 2013) by clicking the following button: 

; 2) Remove 1st and 2nd order Rayleigh and Raman scattering using the Rayleigh Masking tool (button: ); and normalize the sample, 
typically to Raman Units (RU) (Lawaetz and Stedmon, 2009) or Quinine Sulfate Units (QSU) (Coble et al., 1993), using the normalization 
tool (button: ). Note that the instrument software is also capable of applying these correction steps automatically to a whole dataset of 
samples (e.g., see “Automatic sample queueing” in the manual). Once these steps are applied, the exported spectra are nearly in their 
processed “final” form. These spectra only need to be rescaled to account for dilution and possibly trimmed to exclude wavelengths of 
higher noise. Typically, the Aqualog software exports the spectra in generic data files (.dat) and the drEEM toolbox is capable of reading 
those files and importing them in MATLAB. The instrument can also export data in .csv files that are also compatible with drEEM.  
 
The EEM_Process_Aqualog script serves as an example of how to load multiple Aqualog-acquired EEM spectra (exported as .dat files) 
in MATLAB, rescale them to account for any dilution, evaluate and clean up the spectra from noise, and finally export the final EEMs as 
.csv files that can be used in the rest of the codes of TEnvR. First, set the folder with example data 
(TEnvR/TestData_EEM/TestData_Aqualog) as your Current Folder. Then, open the EEM_Process_Aqualog script either using the Open 
button in the “Home” tab or by executing the following command:  
 
Slide 35: edit EEM_Process_Aqualog 
 
This will open the EEM_Process_Aqualog script in the Editor window, which may open as a new, separate window or be docked within 
your current layout. Please note that three new tabs will show up once a script is open in the “Editor” window: Editor, Publish, and View. 
These have various capabilities for editing scripts and only two of their buttons will be used in this tutorial: Save and Run Section (noted 
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in red in Slide 35). In difference with all previously shown scripts for UV-VIS codes, here this script is executed in several steps, also 
known as sections (separated by %%). Please note that MATLAB may suggest opening EEM_Process_Aqualog as a live script. As this 
feature is beyond the scope of this tutorial, we suggest closing this suggestion pop-up using the X button on the top right corner.  
 
The first section of all codes within TEnvR are descriptive of the code and its capabilities (labeled %% Description inside the script). They 
also include any necessary citations. The second section (%% Configuration) is where any input by the user is required. Here, the user 
needs to specify the location of the data and the sample log, as well as where the processed data will be exported. Please note that there 
is an empty folder named TestData_Aqualog_Processed in the TestData_EEM folder – that is where EEM spectra will be exported once 
processed with the EEM_Process_Aqualog script. This script also requires a sample log formatted in a specific way (see Appendix A of 
Murphy et al. (2013) for more details), and we have provided one in the TestData_EEM folder (“SampleLog_Aqualog.csv”). Please avoid 
using the symbols . , / ? * [  ] in file names as they can cause errors. Once the location of the raw data (line 34, variable: 
Location_RawData), the location of the sample log (line 35, variable: Location_SampleLog) and the location of the folder for exported 
data (line 40, variable: Location_ProcessedData) are correctly defined for your specific computer, click Save and then click Run Section. 
MATLAB will execute all lines from 24 to 40 and will skip lines starting with % or %%. Once Run Section is executed, the Workspace 
becomes populated with the three new variables that were just created (see Slide 36).  
 
Then, click in the next stage (%% Stage 1: Import EEM files, creates a cube “X” with all the data). Modify the arguments in readineems 
function accordingly (line 44):  

→ The first argument (3) is specific for the type of data format. This argument specifies how the data is organized, and the 
argument of 3 is specific for data from HORIBA Aqualog spectrofluorometers (excitation wavelengths in columns, emission 
wavelengths in rows, and excitation wavelengths are in descending order).  

→ The second argument specifies the type of file. The data provided here are in generic data file format (.dat) corresponding to 
the argument of 'dat'.  

→ The third argument is the range of cells of the data. This is dependent on the excitation and emission ranges that were set up 
before sample analysis. To determine this range, open one of the provided files. Double-click on the file via the Current Folder 
in MATLAB, which will open the .dat in a separate MATLAB window called “Import”. The range of data in the file is automatically 
shown in the menu bar (here, the range is A1:IC128). However, because of the way HORIBA Aqualog spectrofluorometers 
export data, the second and third rows do not contain EEM data, and the numeric EEM data begins from row 4 (Slide 37). 
Therefore, the EEM data of this dataset starts in cell A4 and ends in cell IC128, thus the third argument of the readineems 
function is 'A4..IC128'.  

→ The fourth argument ([0 1]) specifies if the first row or column of the imported data matrix contain the excitation or emission 
wavelengths. Here, the excitation wavelengths were omitted but the emission wavelengths are included – this situation 
corresponds to an argument of [0 1].  

→ The fifth argument is for specifying if the user desires the code to display each EEM while importing them. We prefer to not to 
visualize them at this stage (thus we use 0 equivalent to FALSE), but users may choose to see the EEMs by enabling this 
function by changing the argument to 1 (equivalent to TRUE).  
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→ The sixth argument is about export, which we also choose to disable at this stage (using the argument of 0). We choose not to 
use these two capabilities of this function, because EEM data being imported at this stage often need extensive further 
correction (accounting for dilution, denoising, etc.). EEMs will be visualized and exported later in the code (see below).  

 
For more information about any of these arguments or how this function works, please type help readineems in the Command Window.  
 
Once these arguments are edited accordingly, click Save and click Run Section. Data files being imported will be listed in the Command 
Window. Once the code finishes importing data, the Workspace will populate with the new variables (see Slide 38).  
 
The next part of the code (%% Stage 2: Align the imported data with the sample log) is for extracting data from the sample log and aligning 
the already imported EEM spectra with those data. In this example, the sample log is used to import dilution factors and assign a dilution 
factor for each EEM spectrum. Typically, this section is run as-is, as long as there have been no format changes to the sample log file 
(see Appendix A of Murphy et al. (2013) for more details). Simply click on this section and then Run Section (Slide 39). The alignment of 
EEM spectra with the data from the sample log will be listed in the Command Window. Please note that the Current Folder directory will 
automatically change to the directory defined by the variable Location_ProcessedData (line 40, here: TestData_Aqualog_Processed) and 
this directory will be populated with a file named “EEM_DataCorrectionLog.txt”. This is a “diary” file that will record anything output or 
typed in the Command Window from here on and serves as a digital record for the following data processing.  
 
The next stage of the code (%% Stage 3: Correct the EEMs) is for any corrections of the data. Because most of them were already 
performed by the HORIBA Aqualog’s software, the EEMs only need to be rescaled to account for dilution prior analysis. In the second 
EEM data processing code of TEnvR (EEM_Process_Generic described below), this section of the code is much more populated. Run 
this section after selecting it and clicking Run Section (Slide 40).  
 
At this point, the EEM spectra are generally representative of the analyzed samples – all mandatory corrections (see Murphy et al. (2010)) 
were performed and spectral intensities were rescaled to take into account dilution factors. The next stage of the code is for evaluating 
the EEMs and determining if they need to be further refined. Note that this section will be executed line-by-line instead of running the 
whole section at-once (i.e., the Run Section button will not be used).  
 
First, EEMs need to be visually inspected. Copy the code from line 85 and paste it in the Command Window. If no figure pops up, type 1 
and enter to manually request the code to show sample 1.  
 
Slide 41: eemview(DS_undiluted,'X',[],[],[],[],[],'rotate','colorbar',[],[]) 
 
Please note that we prefer to view the EEMs with the emission wavelengths as x-axis. To view the EEMs with emission wavelengths as 
y-axis, simply replace ‘rotate’ with [] in the line of code (i.e., eemview(DS_undiluted,'X',[],[],[],[],[],[],'colorbar',[],[])) 
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A figure will pop up with the first EEM spectrum (EEM names are not displayed, rather their indices are shown as defined by column 1 in 
the sample log). Use the Enter button on your keyboard to go through and visualize all EEMs and note any issues with them. On Slide 
41, two issues were identified and labeled on the first EEM. After clicking Enter and going through the whole dataset, these issues were 
found to be in all other spectra as well. Close the figure window once all spectra were viewed. As the Rayleigh Masking function of the 
HORIBA Aqualog spectrofluorometer is only a crude approach to remove 1st and 2nd order Rayleigh and Raman scattering, residual 
scatter signals were apparent in the EEMs. Thus, the data needs to be further corrected to fully eliminate them. Copy the code of line 91 
and paste it in the Command Window (Slide 42).  
 
Slide 42: DS_Smooth=smootheem(DS_undiluted,[10 10],[10 10],[20 20],[10 10],[0 0 0 0],[],3382,'pause'); 
 
Use the Enter button on your keyboard to go through all EEMs and identify if all residual scattering is sufficiently removed. We suggest 
maximizing the figure to fit your whole screen. If scattering is not sufficiently removed, you may need to modify the parameters in the 
arguments of the smootheem function (type help smootheem in the Command Window for more details).  
 
The second issue that was noted earlier (Slide 41) was that these EEMs were acquired over very large excitation and emission ranges 
and there appear to be primarily noise signals in these long-wavelength regions. The EEMs can be trimmed to exclude these regions by 
using the subdataset function (for more information about this function, type help subdataset in the Command Window). To trim the EEMs, 
copy the code from lines 94-95 and run it into the Command Window.  
 
Slide 43: DS_Denoised=subdataset(DS_Smooth,[],DS_Smooth.Em>650,DS_Smooth.Ex>600); 
DS_Denoised=subdataset(DS_Denoised,[],DS_Denoised.Em<300,DS_Denoised.Ex>500); 
 
After these two fine refinements are done, view the EEMs again, using line 98 of the code, to determine if the previously observed issues 
were resolved. If no figure pops up, type 1 and enter to manually request the code to show sample 1. It is common that you will have to 
go back-and-forth and change the function arguments of the smootheem and subdataset functions to fully refine the spectra. The provided 
arguments in the functions above were optimized after running these refinement functions several times with different parameters (see 
Appendix A of Murphy et al. (2013) and online tutorials at http://dreem.openfluor.org/tutorials/ for more details). 
 
Slide 44: eemview(DS_Denoised,'X',[],[],[],[],[],'rotate','colorbar',[],[]) 
 
Again, to view the EEMs with emission wavelengths as y-axis, simply replace ‘rotate’ in this line with []. This evaluation showed that all 
noisy regions have been successfully removed, and the Rayleigh and Raman scattering removal was effectively refined. Please note that 
here the scattering regions were substituted with zeros while the Rayleigh Masking function of the instrument only interpolates the data. 
Interpolation can also be performed by the smootheem function (type help smootheem in the Command Window for more details). During 
this final evaluation, however, it was identified that the EEM with index 11 has an instrument error (a very sharp signal of unusually high 
intensity for its region, see Slide 45). Such instrument errors can be removed using the function zap (type help zap in the Command 
Window for more details).  

http://dreem.openfluor.org/tutorials/
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Slide 46: DS_Denoised=zap(DS_Denoised,11,[535 555],[238 242]); 
 
The arguments of the zap function require the user to identify the index of the EEM that needs to be corrected, as well as the location of 
the region that needs to be removed (excitation range = [238 242]; emission range = [535 555]). After applying this correction (line 101), 
view the EEMs one last time, using line 104 of the code, to confirm that they are in their processed (“Final”) form and do not need any 
further refinement. If no figure pops up, type 1 and enter to manually request the code to show sample 1.  
 
Slide 47: eemview(DS_Denoised,'X',[],[],[],[],[],'rotate','colorbar',[],[]) 
 
Click through all EEMs and verify that they do not need further refinement. Note that the instrument error on EEM 11 is now removed. If 
no other refinements are necessary, you may proceed to the last section (%% Stage 5: Export processed data as csv files). Run this 
section selecting it and clicking Run Section (Slide 48).  
 
This section will export all EEMs to the folder with their original file names and add a suffix “_Final” to indicate that these data are 
processed and can be further used for plotting, extraction of metrics (e.g., humification index), etc. The EEMs are exported in the folder 
that was defined in the beginning of this script (variable: Location_ProcessedData, see Slide 36). The code will also export a MATLAB 
file (.mat) that contains all variables from the workspace (“EEM_DataProcessing_Aqualog.mat”). These two export files are utilized for 
keeping a paper trail of all performed data processing steps. We thank Dr. Kathleen Murphy for providing this export code on the online 
support page for drEEM on ResearchGate.net (https://www.researchgate.net/project/drEEM-user-support). 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
Processing EEM data from non-Aqualog Instruments 
 
Most research-grade spectrofluorometers are not capable of doing the correction steps that can be performed by HORIBA Aqualog 
spectrofluorometers, thus the EEM corrections must be performed post-acquisition in MATLAB. Here, a dataset of EEMs acquired on a 
Shimadzu RF-6000 spectrofluorometer is provided. It is located in TEnvR/TestData_EEM/TestData_Generic. There are five folders as 
described below:  
 

→ BlankEEMs – EEM spectra of the blanks (as .txt files).  
→ CorrectionFiles – files for correcting the EEMs for instrument-specific responses (Cory et al., 2010). These files are usually 

generated by the engineer installing the instrument. Some instruments (e.g., HORIBA Aqualog, Shimadzu RF-6000, Thermo 
Lumina) are capable of correcting the EEM spectrum immediately after acquisition. However, for EEMs acquired on other 
instruments, the user must obtain (or develop) these correction files and perform the correction in MATLAB. In this folder, a 
comma-separated value (.csv) file must be provided for correction of both the excitation and emission dimensions (files are 
named “ExcitationCorr.csv” and “EmissionCorr.csv”, respectively). The instrument that was used to acquire this dataset, a 

https://www.researchgate.net/project/drEEM-user-support
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Shimadzu RF-6000, is in fact able to correct the EEMs on its own. However, the correction function fdomcorr from the drEEM 
toolbox has a mandatory requirement of correction files to be imported. Thus, the two files that are provided in the 
CorrectionFiles folder are “ghost” files – they contain a correction factor of 1 for all wavelengths. In the Supplementary Files 
folder of TEnvR, we provide three .pdf files for developing correction factors on the following spectrofluorometers: Thermo 
Scientific Lumina, PerkinElmer, and Agilent Cary Eclipse. We thank Dr. Kathleen Murphy for providing two of these files on the 
online support page for drEEM on ResearchGate.net (https://www.researchgate.net/project/drEEM-user-support). 

→ RawEEMs – EEM spectra of the samples (as .txt files) 
→ UVVIS_IFE – UV-VIS absorbance spectra of the samples. Please note that both the EEM and UV-VIS spectra must be with 

the same concentration of organic matter (i.e., if the sample was diluted prior measuring the EEM, a UV-VIS spectrum of the 
same diluted sample must be acquired and provided in this folder). 

→ WaterRaman350 – folder containing 2D emission spectra of water acquired at an excitation wavelength of 350 nm (.txt files).  
 
Before processing these data, some of them must first be reformatted as shown below. 
 
• EEM_WaterRamanAverage 
 
EEM spectra are generally normalized to Raman Units (RU) (Lawaetz and Stedmon, 2009) or Quinine Sulfate Units (QSU) (Coble et al., 
1993). RU normalization is simpler and thus appears to be more common. To normalize the EEM spectra to RU, we acquire five sequential 
water Raman scans at λEX = 350 nm and collect emission from 365.0 to 450.0 nm in 0.5 nm intervals. The EEM_WaterRamanAverage 
code simply takes these five replicate spectra (or any five 2D fluorescence spectra) and averages them out into a single 2D spectrum 
(wavelengths in column 1, emission intensity in column 2). The code loads text files that were output by the instrument (.txt) and exports 
the averaged spectrum in a .csv file. Twenty example spectra acquired on a Shimadzu RF-6000 spectrofluorometer are provided in the 
following folder: TEnvR\TestData_EEM\TestData_Generic\WaterRaman350. These spectra are designated by the time they were 
acquired (e.g., 3 PM, 10 PM). Please avoid using the symbols . , / ? * [  ] in file names as they can cause errors. The obtained averaged 
spectra will be used later for normalizing EEM data, but first each group of five replicates must be turned into one single averaged 
spectrum.  
 
First, set the WaterRaman350 folder as your Current Folder. Then, double-click on one of the files from the Current Folder window to 
determine the range of the actual data. The text file will open in the Editor window of MATLAB. Scroll down to determine the data range 
– in the provided example spectra, data begin on row 38 and end on row 208 (Slide 49). Because the data are in two columns, this 
corresponds to the range of A38 to B208 (i.e., argument of ’A38:B208’ for the import function). Once the range is determined, run the 
code as shown below: 
 
Slide 49: EEM_WaterRamanAverage('WaterRaman_1PM_1.txt','A38:B208') 
 

https://www.researchgate.net/project/drEEM-user-support
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It is critical that your five replicates are labeled with a numeric suffix at the end (i.e., _1, _2, _3, _4, _5). As only the filename of the first 
(_1) replicate is input as a function argument, the code derives the filenames of the other four replicates. The second argument is the 
data range (i.e., ’A38..B208’). The code will automatically delete the numeric notation and substitute it with “AVG” for the newly created 
file (i.e., new filename is “WaterRaman_1PM_AVG.csv”). Make sure that the newly produced filenames match with those in the sample 
log. The code also prints text in the Command Window summarizing what has been done; double-check the names of the input and 
output spectra.  
 
Apply this code to all water Raman scans to obtain four averaged spectra – these will be for data normalization later.  
 
Slide 49: EEM_WaterRamanAverage('WaterRaman_3PM_1.txt','A38:B208') 
EEM_WaterRamanAverage('WaterRaman_5PM_1.txt','A38:B208') 
EEM_WaterRamanAverage('WaterRaman_10PM_1.txt','A38:B208') 
 
Note: the EEM_WaterRamanAverage script will only work on versions of MATLAB that are 2019 and newer (the readmatrix function 
does not work on 2018 and older software versions). 
 
• EEM_ShimadzuReformat 
 
EEM data acquired on Shimadzu RF-6000 spectrofluorometers is organized in a way that does not make it easily importable using the 
codes from drEEM. The EEM_ShimadzuReformat code takes numerous spectra exported by the instrument (_.txt format) and converts 
them into a readable format (Slide 50). The newly output spectra are denoted with the suffix _ref (in .csv format). We have provided 32 
example files located in TEnvR/TestData_EEM/TestData_Generic/RawEEMs. To use this code, make the RawEEMs folder to be your 
Current Folder and run EEM_ShimadzuReformat in the command window: 
 
Slide 51: EEM_ShimadzuReformat 
 
Make sure you reformat any blank files as well. Make the BlankEEMs folder to be your Current Folder and run the code there as well: 
 
Slide 52: EEM_ShimadzuReformat 
 
The Shimadzu RF-6000 spectrofluorometer has an automatic capability to correct the acquired data for instrument-specific responses 
(Cory et al., 2010), but all other corrections need to be made further post-acquisition. These reformatted EEM files need to be fully 
corrected following the recommendations by Murphy et al. (2010) and be processed using the EEM_Process_Generic script as shown 
below.  
 
Note: the EEM_ShimadzuReformat script will only on using versions of MATLAB that are 2019 and newer (the readmatrix function does 
not work on 2018 and older software versions). Please avoid using the symbols . , / ? * [  ] in file names as they can cause errors. 
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Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• EEM_Process_Generic 
 
This script parallels the previous script for processing EEMs acquired on HORIBA Aqualog spectrofluorometers 
(EEM_Process_Aqualog) but includes a higher degree of processing steps.  
 
To begin processing this dataset in the TestData_Generic folder, open the EEM_Process_Generic script either using the Open button 
in the “Home” tab or by executing the following command: edit EEM_Process_Generic. Set the folder TestData_Generic as your Current 
Folder. Edit the first section (%% Configuration) to specify the location of the data and the sample log, as well as where the processed 
data will be exported. Please note that there is an empty folder named TestData_Generic_Processed in the TestData_EEM folder – that 
is where EEM spectra will be exported once processed with the EEM_Process_Generic script. This script also requires a sample log 
formatted in a specific way (see Appendix A of Murphy et al. (2013) for more details), and we have provided one in the TestData_EEM 
folder (“SampleLog_Generic.csv”).  
 
Slide 53: edit EEM_Process_Generic 
 
Once the location of the raw data (line 30, variable: Location_RawData), the location of the sample log (line 31, variable: 
Location_SampleLog), and the location of the folder for exported data (line 34, variable: Location_ProcessedData) are defined for your 
specific computer, click Save and then click Run Section (see Slide 53). Then, proceed to the next section of the code. 
 
In this section (%% Stage 1: Import EEM data and other auxiliary files, creates a cube "X" with all the EEM data), all data that is provided 
in the five folders is imported. The readineems function and its arguments were described in detail earlier for the EEM_Process_Aqualog 
script. Because of the different initial format of the “raw” (sample) and blank EEMs, the readineems function is capable of importing both 
the excitation and emission wavelengths (the fourth argument now is [1 1] in difference with the earlier example of this function). The 
readinscans function is analogous but is designed for two-dimensional spectra (type help readinscans in the Command Window for more 
details). Make sure to double-check all data ranges. Also, the excitation wavelength to produce the water Raman scan (usually 350 nm) 
is also listed in line 57 (variable = RamEx). After any edits are made to this section, click Save and then Run Section (see Slide 54). 
Please note that the .txt files do not need to be removed from the folder containing fluorescence data (EEMs or Water Raman scans), as 
the import functions (readineems and readinscans) will only be importing the files that are in comma-separated value (.csv) format. After 
executing this code, the WaterRaman350 folder automatically becomes the Current Folder, as shown in Slide 54.  
 
No necessary edits are typically needed in the next section (%% Stage 2: Align the imported data with the sample log), as long as there 
have been no format changes to the sample log file (see Appendix A of Murphy et al. (2013) for more details). Simply click on this section 
and then Run Section (Slide 55). The alignment of EEM spectra with the data from the sample log will be listed in the Command Window. 
Please note that the Current Folder directory will automatically change to the directory defined by the variable Location_ProcessedData 
(line 34, here: TestData_Generic_Processed), and this directory will be populated with a file named “EEM_DataCorrectionLog.txt”. This 
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is a “diary” file that will record anything output or typed in the Command Window from here on and serves as a digital record for the 
following data processing. 
 
The next section (%% Stage 3: Correct the EEMs) is very different from the previous script. Click on it and press Run Section (Slide 56). 
After organizing some of the imported data, water Raman spectra are integrated with the ramanintegrationrange function. Following 
integration, a figure (Slide 56) pops up that describes the integration, lists the integration boundaries, and shows the integrated area 
(shaded in black with orange lines). The different panels and figure elements are described in detail by Murphy (2011). This figure is 
created for each integrated water Raman spectrum (here, a total of 4) and these figures are saved in a PostScript (.ps) file (Slide 56). 
PostScript files are easily converted into .pdf files using Acrobat by double-clicking on the .ps file.  
 
Then, the fdomcorrect function is used to perform corrections in the following order:  

→ Spectral correction for instrument-specific response (Cory et al., 2010) using the “ExcitationCorr.csv” and “EmissionCorr.csv” 
files; 

→ Apply inner-filter effect correction using the absorbance data in the UVVIS-IFE folder following Kothawala et al. (2013). Please 
note that the code assumes 1-cm cuvette pathlength, and you must modify the fdomcorrect script for differently sized cuvettes; 

→ Normalization of the spectra using the water Raman scans (Lawaetz and Stedmon, 2009); 
→ Subtracts blanks from their corresponding sample EEMs. 
 

The function outputs information about the processing in the Command Window as shown on Slides 57 & 58. This output is being 
recorded into the diary file “EEM_DataCorrectionLog.txt”.  
 
The obtained data is then rescaled to account for the dilution factors. At this point, the EEM spectra are generally representative of the 
analyzed samples – all mandatory corrections (see Murphy et al. (2010)) were performed and spectral intensities were rescaled to take 
into account dilution factors. In the next section (%% Stage 4: EEM evaluation and fine correction) the EEMs will be evaluated and further 
refined. Note that this section will be executed line-by-line instead of running the whole section at-once (the Run Section button will not 
be used).  
 
First, the EEMs need to be visually inspected. Copy the code from line 120 and paste it in the Command Window. If no figure pops up, 
type 1 and enter to manually request the code to show sample 1. 
 
Slide 59: eemview(DS_undiluted,'X',[],[],[],[],[],'rotate','colorbar',[],[]) 
 
For consistency throughout this tutorial, EEMs will be displayed with the emission wavelengths as x-axis. To view the EEMs with emission 
wavelengths as y-axis, simply replace ‘rotate’ with [] in the code (i.e., eemview(DS_undiluted,'X',[],[],[],[],[],[],'colorbar',[],[])) 
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A figure will pop up with the first EEM spectrum (EEM names are not displayed, rather their indices are shown as defined from column 1 
in the sample log). Use the Enter button on your keyboard to go through the EEMs and note any issues with them. Significant Rayleigh 
and Raman scattering signals were present in all EEM spectra. It must be noted that because the previous example with the 
EEM_Process_Aqualog script, HORIBA Aqualog’s software (using its “Rayleigh Masking” capability) had crudely removed the scattering 
signals and only residual intensities remained (see Slide 41). As no such correction had been made for the “Generic” dataset, the 
scattering signals were so intense that all fluorophoric signatures were significantly hindered. Close the figure window once all spectra 
were viewed. To perform scattering removal, copy the code of line 123 and paste it in the Command Window. 
 
Slide 60: DS_Smooth=smootheem(DS_undiluted,[15 300],[15 15],[350 20],[10 10],[0 0 0 0],[],3382,'pause'); 
 
Use the Enter button on your keyboard to go through all EEMs and identify if all scattering is effectively removed. For this dataset, we 
also removed signals from wavelengths where no significant signals were observed (at very long excitation and short emission 
wavelengths or vice versa). As previously mentioned, you may need to run this function several times and modify the arguments to find 
the optimal arguments for effective scattering removal (type help smootheem in the Command Window for more details). During the 
scattering removal, it was noted that EEMs can be further trimmed from regions of noise. Thus, subdataset was used again. Copy the 
code from lines 126 and 127 and run it into the Command Window:  
 
Slide 61: DS_Denoised=subdataset(DS_Smooth,[],DS_Smooth.Em>600,DS_Smooth.Ex>450); 
DS_Denoised=subdataset(DS_Denoised,[],DS_Denoised.Em<270,[]); 
 
After these fine refinements are done, view the EEMs again using line 130 of the code to verify that the previously observed issues were 
resolved. If no figure pops up, type 1 and enter to manually request the code to show sample 1. It is common that you will have to go 
back-and-forth and change the function arguments of the smootheem and subdataset functions to fully refine the dataset.  
 
Slide 62: eemview(DS_Denoised,'X',[],[],[],[],[],'rotate','colorbar',[],[]) 
 
This evaluation showed that all noisy regions and Rayleigh and Raman scattering signals were completely removed. Proceeding to the 
last section (%% Stage 5: Export processed data as csv files), run this section by selecting it and clicking Run Section (Slide 63).  
 
This section will export all EEMs to the folder with their original file names and add a suffix “_Final” to indicate that these data are final 
and can be further used for plotting, extraction of metrics (e.g., humification index), etc. The EEMs are exported in the folder that was 
defined in the beginning of this script (variable: Location_ProcessedData, see Slide 53). The code will also export a MATLAB file (.mat) 
that contains all variables from the workspace. Lastly, the code will export a “diary” file (“EEM_DataCorrectionLog.txt”), which contains 
everything that was input by the user or output by the code in the Command Window(“EEM_DataProcessing_Generic.mat”). These two 
export files are for keeping a paper trail of all performed data processing steps. We thank Dr. Kathleen Murphy for providing the export 
code on the online support page for drEEM on ResearchGate.net (https://www.researchgate.net/project/drEEM-user-support). The Xout 
variable in the workspace (created on line 133) can be further taken and used for PARAFAC modeling as explained in the drEEM tutorials.  

https://www.researchgate.net/project/drEEM-user-support
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Please note that the two processing scripts described above (EEM_Process_Aqualog and EEM_Process_Generic) are only examples 
that complement the drEEM tutorials and serve as examples of how processed data is obtained prior to using the codes of TEnvR. There 
are many more codes and diverse capabilities within drEEM, and in no way does the text within this tutorial aim to provide a 
comprehensive overview of the drEEM toolbox. Please refer to the drEEM support page (http://dreem.openfluor.org/) for more information, 
questions, or tutorials of drEEM. Additionally, users must exercise caution and consider the specifics of their particular dataset and sample 
matrices in order to perform quality control of the obtained processed data. The routines described are solely an example of how EEM 
data is processed and are likely not applicable to all datasets, and thus, the employed parameters may need to be adjusted depending 
on the application. 
 
• EEM_Visualize 
 
Once the processed EEMs are exported by the last section of the two processing codes above, they can be visualized using 
EEM_Visualize. Please note that drEEM does contain a visualization function (eemview); however, it is aimed to be used on a dataset 
of multiple EEMs stacked together (or in MATLAB-language: a structure). EEM_Visualize is a simpler function that is to be used on 1-3 
EEMs exported as .csv files. This code is great for producing publication-grade figures and can be easily modified to customize any of 
the figure elements (font sizes, color of the peak labels, etc.).  
As a reminder, before using this code, sequentially (in different lines) type clc, close all, and clear in the Command Window to clear up 
the Workspace, the Command Window, and close any previously opened Figure windows. If you have been following this tutorial so far, 
your Current Folder should be TestData_Generic_Processed. These processed spectra will be used for the next examples.  
 
Slide 64: EEM_Visualize('Sample 1_ref_Final.csv') 
 
The EEM_Visualize code will produce a contour plot figure (Slide 64). It contains standard elements (color bar, axis labels, etc.) that can 
be easily modified by the user. The code can be used further to visualize multiple EEM spectra (Slides 65 and 66): 
 
Slide 65: EEM_Visualize('Sample 1_ref_Final.csv','Sample 2_ref_Final.csv') 
 
Slide 66: EEM_Visualize('Sample 1_ref_Final.csv','Sample 2_ref_Final.csv','Sample 3_ref_Final.csv') 
 
This code has four capabilities that can be easily “switched on” and “switched off” once the code is open using edit EEM_Visualize:  

→ Peak labeling – the common peaks of NOM fluorescence (peaks A, C, B, T, etc.) are displayed on 
the visualized plots by default and are useful for visual referencing on changes on the plots. Peak 
labels can be disabled by changing the value for the Peak_Labels variable on line 42 from true to 
false (Slide 67). More elaborate peak labeling can be achieved by going to lines 308-338 and 388-
418 of the script and enabling (by deleting the % symbol) or disabling (by adding a % symbol) the 
peak labels of interest (Slide 68). For convenience, multiple lines can be selected and the  button 

http://dreem.openfluor.org/
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in the “Edit” section of the Editor tab (see to the right) can be used to delete the % symbol from numerous lines (thus “enabling” 
them). Conversely, the  can be used to add % symbols in front of multiple lines to “disable” them. The positions of the peak 
labels are obtained from Coble et al. (2014). After making any changes to the code, click Save before running it.  

→ Switching axes to plot the excitation dimension either on the x-axis or the y-axis. To plot the excitation on the x-axis, use true 
as a variable for the Excitation_Xaxis variable in line 45. To plot the excitation on the y-axis, use false (Slide 69). After making 
any changes to the code, click Save before running it. 

→ In cases when two or three EEMs are displayed, the default version of this code creates a color bar for each individual plot that 
is specific for the EEM’s intensity range (e.g., color bar for the first EEM corresponds to 0-1600 RU and the color bar of the 
second EEM corresponds to 0-3500 RU). It is often beneficial to “normalize” the color bars and use the same intensity range 
for the displayed EEMs. Use true as a variable to the Same_Intensity_Scale variable on line 48 (Slide 70). After making any 
changes to the code, click Save before running it. The figures shown in Slide 65 and Slide 66 have line 48 set as false. 

→ Normalization – the code can normalize each EEM spectrum to the sum of its intensity, allowing for qualitative comparisons 
that would usually be hindered due to severe differences in concentration. EEMs are displayed with their own color bar intensity 
ranges. To enable the normalization, use true as a variable to the Normalization variable on line 51 (Slide 71). After making 
any changes to the code, click Save before running it. If the user desires to have the same color bar intensity range for the 
three EEMs after normalization, true can be set as a variable for both the Normalization and Same_Intensity_Scale variables 
(Slide 72).  

 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• EEM_Difference 
 
Another useful approach to evaluate changes in EEM spectra is to use differential or difference spectra (analogous to what was explained 
earlier for UV-VIS spectra). They are very practical for cases when a sample has gone through a treatment (e.g., photochemical 
degradation), and the user is interested to see which fluorophores were formed and which were degraded during this treatment (e.g., 
(Hemmler et al., 2019). The user must define which two samples are compared, with the first sample being subtracted from the second 
as explained below: 
 
Slide 73: EEM_Difference('Sample 1_ref_Final.csv','Sample 2_ref_Final.csv') 
 
The produced figure is a three-panel plot. The spectrum on the left (considered a “control”) is subtracted from the EEM in the middle 
(considered an “experimental” sample that has changed somehow) to produce the difference spectrum on the right. A lot of the code 
behind this script is identical to the code from the script above (EEM_Visualize). This code has some of the customization capabilities 
discussed earlier for EEM_Visualize. They are briefly explained below (for more details, see the tutorial for EEM_Visualize above). 

→ Peak labeling – common DOM fluorophoric peaks (peaks A, C, B, T, etc.) can be displayed on the visualized plots by using 
true as a value for the Peak_Labels variable on line 41. More elaborate peak labeling can be achieved by going to lines 198-
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228 and 270-300 of the script and enabling or disabling (by adding or removing % symbols) the peak labels of interest. The 
positions of the peak labels are obtained from Coble et al. (2014). After making any changes to the code, click Save before 
running it.  

→ Switching axes to plot the excitation dimension either on the x-axis or the y-axis. To plot the excitation on the x-axis, use true 
as a variable for the Excitation_Xaxis variable in line 44. To plot the excitation on the y-axis, use false. After making any changes 
to the code, click Save before running it. 

→ Normalization – the code can first normalize each EEM spectrum to the sum of its intensity prior subtraction. This approach 
can be used for qualitative presence/absence evaluation of fluorophoric signals that would usually be hindered due to 
differences in concentration. EEMs are displayed with their own color bar intensity ranges. To enable the normalization, use 
true as a variable to the Normalization variable on line 47. After making any changes to the code, click Save before running it. 
The figure shown in Slide 73 has the Normalization variable on line 47 set as true. 

 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• EEM_Metrics 
 
Fluorescence EEM spectra are commonly used to extract various metrics to describe the fluorophoric (or fluorescent) dissolved organic 
matter (FDOM) of environmental samples. The code presented here has a high versatility and can process both individual files and a 
whole dataset automatically. It can calculate a total of 148 different metrics, and they are broadly classified into 3 categories: 1) General 
spectral descriptors; 2) Indices; and 3) Fluorophoric peaks. The full list of the 148 metrics is elaborately described in the Excel spreadsheet 
(“EEM_Metrics.xlsx”) provided in the main Supplementary Files folder of TEnvR. The three different categories are described below: 
 

→ General spectral descriptors: these are parameters that are derived from the whole EEM spectrum and are bulk descriptors of 
the composition of the evaluated fluorophoric (or fluorescent) dissolved organic matter (FDOM) mixture. These metrics are: the 
sum of all signals in the EEM spectrum (Total Spectral Intensity, FTOTAL), the average spectral intensity calculated by dividing 
FTOTAL by the number of data points (Average Spectral Intensity, FAVG), the highest fluorescence emission value (Maximum 
Spectral Intensity, FMAX), and the position of the most intense peak (defined by both excitation, Most Intense Peak (Ex), and 
emission, Most Intense Peak (Em), positions). These parameters can be very useful for doing quantitative evaluations, as well 
as tracking the bulk FDOM composition using the Maximum Peak Position (EXMAX & EMMAX) (Coble et al., 2014). Additionally, 
once EXMAX & EMMAX are calculated, the intensity in the surrounding 5 nm x 5 nm region is also summed and output (i.e., if 
EXMAX = 300 & EMMAX = 400, the intensity encompassed by excitation of 295-305 nm and emission of 395-305 nm is summed 
and provided as a metric). Because EEM data is often not measured in 1 nm steps (e.g., excitation is acquired every 5 nm), 
interpolation of the data is necessary as many of the metrics require specific wavelength positions of 1 nm spacing. The code 
will automatically determine if data interpolation is necessary and will perform it automatically. The code will also compute the 
general spectral descriptors described above for both the original and interpolated data, and they can be compared for quality 
control of the interpolation procedure.  
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→ Index proxies from fluorescence data have been used to characterize NOM for decades. The EEM_Metrics code has been 
developed to export the most common indices, as summarized by Coble et al. (2014), which are also described in the table 
below and in the provided spreadsheet (“EEM_Metrics.xlsx”). This list is not exhaustive, and we urge users of TEnvR to further 
modify the EEM_Metrics script to add, remove, and or modify existing metrics.  

 
Index Variable in MATLAB  Description Mathematical Definition* Reference 

Humification Index (HIXSYN) 
version a METRIC11a_HIXsyn 

Indicative of C/N ratio, aromatic 
content, and degree of 

condensation of fulvic acids. 

IEM=488EX=470

IEM=378EX=360  Kalbitz et al. 
(1999) 

Humification Index (HIXSYN) 
version b METRIC11b_HIXsyn 

Indicative of C/N ratio, aromatic 
content, and degree of 

condensation of fulvic acids. 

IEM=418EX=400

IEM=378EX=360  Kalbitz et al. 
(1999) 

Humification Index (HIXSYN) 
version c METRIC11c_HIXsyn 

Indicative of C/N ratio, aromatic 
content, and degree of 

condensation of groundwater. 

IEM=408EX=390

IEM=373EX=355  Kalbitz et al. 
(2000) 

Humification Index (HIXEM) 
version a METRIC12a_HIXem Indicative of degree of 

humification 
AEM=435−480
EX=254

AEM=300−345
EX=254  Zsolnay et 

al. (1999) 

Humification Index (HIXEM) 
version b METRIC12b_HIXem Indicative of degree of 

humification 
AEM=435−480
EX=254

AEM=300−345
EX=254 + AEM=435−480

EX=254  Ohno (2002) 

Freshness Index (BIX)  
old version METRIC15_BIXold 

Indicative of ratio between 
recently produced vs. old 

organic matter. 

MAXEM=380−420EX=310−320

MAXEM=420−480EX=330−350  Parlanti et 
al. (2000) 

Freshness Index (BIX)  
new version METRIC16_BIXnew 

Indicative of ratio between 
recently produced vs. old 

organic matter. 

IEM=380EX=310

MAXEM=420−435EX=310  
Wilson and 
Xenopoulos 

(2009) 

Fluorescence Index (FI)  
old version METRIC17_FIold Differentiate between terrestrial 

and marine composition. 
IEM=450EX=370

IEM=500EX=370  McKnight et 
al. (2001) 

Fluorescence Index (FI)  
new version METRIC18_FInew Differentiate between terrestrial 

and marine composition. 
IEM=470EX=370

IEM=520EX=370  
Cory and 
McKnight 

(2005) 

T/C ratio  
version a METRIC19a_TtoC 

Proxy of biogeochemical 
oxygen demand relative to 
dissolved organic carbon. 

IEM=350EX=270

MAXEM=410−430EX=320−340  Baker 
(2001) 
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T/C ratio  
version b METRIC19b_TtoC 

Proxy of biogeochemical 
oxygen demand relative to 
dissolved organic carbon. 

MAXEM=320−350EX=270−280

MAXEM=420−480EX=330−350  Baker 
(2001) 

Proctor Index METRIC20_ProctorIndex Indicative of degree of 
humification 

IEM=420EX=350

IEM=470EX=390  Proctor et al. 
(2000) 

Perrette Index METRIC21_PerretteIndex Indicative of degree of 
humification 

IEM=514EX=364

IEM=457EX=364  Perrette et 
al. (2005) 

*Mathematical notations: 
I = intensity at a given EEM location (e.g., IEM=488EX=470  = fluorescence intensity at excitation = 470 nm and emission = 488 nm); 
A = integrated area over a given range (e.g., AEM=435−480

EX=254  = integrated area of a fluorescence spectrum acquired at excitation 254 nm and 
emission 435-480 nm); 
MAX = maximum fluorescence signal in a given range (e.g., MAXEM=380−420EX=310−320  = the maximum intensity value found in the region enclosed 
by excitation of 310-320 nm and emission of 380-420 nm). 
 
Numerous different types of fluorophores have been observed over the years, and they generally fit the operationally defined peaks 
summarized in the table below and in the “EEM_Metrics.xlsx” file. It must be noted that because there is variability in their definitions, 
there are different “versions” of these peak labels in the literature. The EEM_Metrics code has been developed to export parameters for 
the peaks summarized by Coble et al. (2014). This list is in no way comprehensive, and we urge users of TEnvR to further modify the 
EEM_Metrics script in order to add new or modify existing peaks. It must be noted that recent advances in aquatic fluorescence indicate 
that the fluorophores that these peaks represent can occur in environmental samples independently of sample source (Wünsch et al., 
2019). Furthermore, using specific regions of the EEM spectrum can introduce artificial trends due to shifts in peak positions or changes 
in spectral shapes (Korak et al., 2014). Thus, the use of these operationally defined peaks or spectral indices must be done with great 
care. While this “peak picking” approach has been beneficial for over two decades now, users should consider PARAFAC modeling using 
the drEEM toolbox (Murphy et al., 2013) in order to extract real fluorophoric signatures from their spectra. Employing PARAFAC is a 
holistic approach that considers all of the data and is therefore less prone to the biases described by Korak et al. (2014). The obtained 
PARAFAC components can then be further validated using spectral matching via the OpenFluor database (Murphy et al., 2014) and 
related to fluorophoric signatures observed in previously published studies.  
 

Peak  Type of fluorophores (“source”) Definition 1 Definition 2 

α Fluorophores from older, more decomposed organic matter  
(humic-like FDOM from soils or terrigenous/allochthonous FDOM) 

λEX = 330-350 
λEM = 420-480 

Table 9.1 

No second 
definition 

β Fluorophores from recently created organic matter  λEX = 310-320 
λEM = 380-420 

No second 
definition 
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(free amino acids, combined amino acids, 
proteinaceous/microbial/autochthonous FDOM) 

Table 9.1 

B1 Tyrosine as a free amino acid or as part of complexes or peptides; 
proteinaceous/microbial/autochthonous FDOM 

λEX = 230 
λEM = 305 
Table 3.1 

λEX = 225-235 
λEM = 300-310 

 

B2 (or B) Tyrosine as a free amino acid or as part of complexes or peptides; 
proteinaceous/microbial/autochthonous FDOM 

λEX = 275 
λEM = 305 
Table 3.1 

λEX = 270-280 
λEM = 300-320 

Table 9.2 

T1 Tryptophan as a free amino acid or as part of complexes or peptides; 
proteinaceous/microbial/autochthonous FDOM 

λEX = 230 
λEM = 340 
Table 3.1 

λEX = 225-235 
λEM = 335-345 

 

T2 (or T) Tryptophan as a free amino acid or as part of complexes or peptides; 
proteinaceous/microbial/autochthonous FDOM 

λEX = 275 
λEM = 340 
Table 3.1 

λEX = 270-280 
λEM = 320-350 

Table 9.2 

N Unknown FDOM fluorophores, likely from 
proteinaceous/microbial/autochthonous FDOM 

λEX = 280 
λEM = 370 
Table 3.1 

λEX = 275-285 
λEM = 365-375 

 

M1 Proteinaceous/microbial/autochthonous FDOM,  
fluorophoric by-products of photochemical degradation of DOM 

λEX = 240 
λEM = 350-400 

Table 3.1 

λEX = 235-245 
λEM = 350-400 

 

M2 (or M) Proteinaceous/microbial/autochthonous FDOM,  
fluorophoric by-products of photochemical degradation of DOM 

λEX = 290-310 
λEM = 370-420 

Table 3.1 

λEX = 310-320 
λEM = 380-420 

Table 9.2 

C1 (or A) Humic-like FDOM from soils or terrigenous/allochthonous FDOM 
λEX = 260 

λEM = 400-460 
Table 3.1 

λEX = 250-260 
λEM = 380-480 

Table 9.2 

C2 (or C) Humic-like FDOM from soils or terrigenous/allochthonous FDOM 
λEX = 320-365 
λEM = 420-470 

Table 3.1 

λEX = 330-350 
λEM = 420-480 

Table 9.2 

C1+ Humic-like FDOM from soils or terrigenous/allochthonous FDOM 
λEX = 250 

λEM = 470-504 
Table 3.1 

λEX = 245-255 
λEM = 470-504 

 

C2+ Humic-like FDOM from soils or terrigenous/allochthonous FDOM 
λEX = 385-420 
λEM = 420-504 

Table 3.1 

No second 
definition 
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D Fulvic-like FDOM from soils or terrigenous/allochthonous FDOM 
λEX = 390 
λEM = 509 
Table 2.1 

λEX = 385-395 
λEM = 504-514 

 

E Fulvic-like FDOM from soils or terrigenous/allochthonous FDOM 
λEX = 455 
λEM = 521 
Table 2.1 

λEX = 450-460 
λEM = 516-526 

 

P Fluorophores of pigments or phytoplankton 
λEX = 398 
λEM = 660 
Table 3.1 

λEX = 393-403 
λEM = 655-665 

 

H Fluorophoric by-products of photochemical degradation of FDOM 
λEX = 230 

λEM = 275-350 
Table 3.1 

λEX = 225-235 
λEM = 275-350 

 
 
In the table above, most of the definitions are taken from Tables 3.1, 9.1, and 9.2 of Coble et al. (2014). In cases when the first peak 
definition is based on single emission and excitation points (e.g., Peak B1 defined at λEX = 230 nm and λEM = 305), a second alternative 
definition is provided where the excitation and emission ranges are expanded with ± 5 nm (e.g., Peak B1 defined at λEX = 225-235 nm 
and λEM = 300-310 nm). If the peak is originally defined as a range, no alternative definition is needed.  
 
For each peak, several parameters are computed: 

→ Maximum Intensity – the highest intensity value within the defined range of the peak. Labeled as Max Int in the report file. 
→ Summed Intensity – sum of intensity values within the defined range of the peak. Labeled as Sum Int in the report file. 
→ Averaged Intensity – the average intensity in the defined range of the peak. Labeled as Avg Int in the report file.  
→ Normalized Averaged Intensity – the average intensity in the defined range of the peak divided by the Average Spectral 

Intensity. Labeled as Avg Int/Avg in the report file. 
→ Peak Position of Maximum (Ex) – the excitation wavelength at which the highest intensity value occurs. Labeled as Peak (Ex) 

in the report file.  
→ Peak Position of Maximum (Em) – the emission wavelength at which the highest intensity value occurs. Labeled as Peak (Em) 

in the report file. 
 
As some peaks are not defined as ranges (e.g., peak B1 at λEX = 230 nm and λEM = 305 nm), the intensity at the defined excitation and 
emission position is output under the “Maximum intensity” metric. The script does not output a value for the other parameters as their 
computation requires a range.  
 
The EEM_Metrics script can be executed in two different ways: on one sample and on multiple samples. To run the code, place the 
samples (.csv files) containing the processed data and run the code as shown below for one of the example data files. If you have been 
following this tutorial so far, your Current Folder should be TestData_Generic_Processed. 
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Slide 74:  EEM_Metrics  
 
Immediately, a pop-up window will request the filename. Input the full filename, including the extension, with no apostrophes, as shown 
to the right. 
 
 
Sample 1_ref_Final.csv 
 
 
Once the sample name has been provided, the code will find the data file, import the data, calculate all metrics, and produce an Excel 
file (here, named “Sample 1_ref_Final_Metrics.xlsx”) in the Current Folder (Slide 74). This report (Slide 75) will contain the original EEM 
data in sheet “Sheet1” and the interpolated EEM data in sheet “Interpolated Data” (in cases when no interpolation has been done, the 
original data will be copied there). The last sheet named “Metrics” will contain three tables corresponding to the three categories of metrics 
described above. Please note that for peaks that are only defined at single wavelengths (e.g., Tyrosine-1, def1 in this example), no metrics 
besides Maximum Intensity will be computed. Peaks that are outside of the EEM range (e.g., peaks E and P in this example) will also 
have no computed metrics.  
 
To apply this code on a whole dataset automatically, place all processed EEM files in a folder and make this folder to be the Current 
Folder. Here, the provided dataset in TestData_Generic_Processed will serve as an example. It is important that all data files have 
“_processed” as suffix.  
 
Slide 76: EEM_Metrics 
 
A pop-up window will request an input. In contrast with the application of this code to a single sample, here the code requires the argument 
ALL with no parentheses or apostrophes, as shown to the right and on Slide 76. 
 
 
ALL 
 
 
Once this argument has been provided, the code will find all .csv data files having the suffix _Final, import them, calculate all metrics, and 
produce an Excel file named EEM Metrics Report in the Current Folder (Slide 76). This report (Slide 77) will contain the metrics for all 
samples in a matrix format. Please note that for peaks that are only defined at single wavelengths, only data for the intensity at that 
excitation and emission position will be provided (under the label maximum intensity). Peaks that are outside of the EEM range will have 
no computed metrics.  
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The EEM_Metrics code utilizes external functions for alphanumeric sorting of filenames (natsortfiles and natsort) developed by Stephen 
Cobeldick (https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort). These codes are found in 
TEnvR\Internal codes. Their licenses are found in TEnvR\Supplementary files. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• EEM_Dilution 
 
While the EEM data is already corrected for the dilution factor during the processing steps, it is sometimes useful to be able to rescale an 
EEM spectrum that has already been processed and exported as a .csv file. This code, analogous to UVVIS_Dilution, can scale up 
(undilutes) or scale down (dilutes) the fluorescence intensity values based on the input argument. It can be also used to normalize or 
denormalize the intensity values to an external measurement (e.g., dissolved organic carbon content).  
 
Slide 78: EEM_Dilution('Sample 1_ref_Final.csv','dilute',1,5) 
 
In this example, the sample named “Sample 1_ref_Final.csv” was scaled down (diluted) with a dilution factor of 0.2 (or 5-fold). The diluted 
data is found in the newly produced file “Sample 1_ref_Final_dil_0.2.csv”. More examples of the code are shown below: 
 
Slide 79: EEM_Dilution('Sample 1_ref_Final.csv','undilute',1,10) 
 
In this example, the sample named “Sample 1_ref_Final.csv” was scaled up (undiluted) with a dilution factor of 10, as if the sample was 
diluted 10 times prior analysis, yielding the output file “Sample 1_ref_Final_undil_0.1.csv”.  
 
Slide 79: EEM_Dilution('Sample 1_ref_Final.csv','undilute',2,1) 
 
In this example, the sample named “Sample 1_ref_Final.csv” was normalized to a dissolved organic carbon content of 2 mg/L (or 2 ppm). 
Mathematically, all intensity values in the “Sample 1_ref_Final.csv” are divided by 2 to produce C-normalized fluorescence (found in the 
new file “Sample 1_ref_Final_undil_2.csv”). 
 
Slide 79: EEM_Dilution('Sample 1_ref_Final_undil_2.csv','dilute',2,1) 
 
In this example, the previous action is reversed – the C-normalized data in “Sample 1_ref_Final_undil_2.csv” is denormalized to result in 
the data in “Sample 1_ref_Final_undil_2_dil_2.csv”, which data is identical to the original data (“Sample 1_ref_Final.csv”). 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
 

https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort


S41 
 

• EEM_Fold 
 
EEM data is three-dimensional: the data for each sample have independent6 variables in two dimensions (excitation and emission 
wavelengths) and one dependent variable (fluorescence intensity). Data in such a 3D format cannot be evaluated using hierarchical 
cluster analysis (HCA) or principal component analysis (PCA), tools that have a strict requirement for only one dimension of independent 
and only one dimension of dependent variables (which also categorizes HCA and PCA as “two-way” methods). In other words, prior to 
HCA/PCA, the EEM data must be converted to two-dimensional arrays (two columns of data: one column being an independent variable, 
the other column being the dependent variables that change among different samples). The excitation and emission independent 
variables are converted into non-numeric (categorical) composite wavelength variables (EX230EM270, EX230EM275, etc.) (Slide 80). 
This conversion of 3D into 2D is referred to as folding. This enables the use of HCA and PCA on EEM data, which even though are less 
superior than PARAFAC (Bro, 1997), have been shown to be a useful for exploratory analysis of EEM data (Boehme et al., 2004). 
 
Slide 81: EEM_Fold 
 
The EEM_Fold script takes multiple EEM spectra that are located in your Current Folder (ending with “_Final.csv”) and folds them into 
2D arrays and stacks them all into a matrix that is output in “Sheet1” of an Excel file named “EEM_AlignmentMatrix.xlsx” (Slide 82). This 
matrix is then normalized to total spectral intensity per sample so that the sum of all values equals 1. The normalized matrix is further 
treated to prepare the data for statistical analysis: Negative intensity values and NaN values are set to zero. Wavelengths that have the 
same value for all samples are removed from the dataset to avoid creating covariance values with missing values if HCA or PCA are 
employed. The normalized matrix is found in sheet “Normalized” of the “EEM_AlignmentMatrix.xlsx” file (Slide 83). This matrix can be 
then directly loaded into statistical codes. Please do not delete the “EEM_AlignmentMatrix.xlsx” file and do not change the sheet name 
“Normalized”- this file and the matrix in the “Normalized” sheet will be directly used as examples later in the tutorial. 
 
The EEM_Fold code utilizes external functions for alphanumeric sorting of filenames (natsortfiles and natsort) developed by Stephen 
Cobeldick (https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort These codes are found in 
TEnvR\Internal codes. Their licenses are found in TEnvR\Supplementary files. 
 
• EEM_Unfold 
 
This code contains an algorithm that converts 2D folded EEM data into its typical 3D format. While the algorithm of this code may be used 
to reverse the action of EEM_Fold, this is not a useful capability as the original EEM files in 3D format are already available. However, if 
PCA is performed, it creates variable loadings that are of a folded 2D format. Thus, the EEM_Unfold code is needed and therefore, this 
code is exclusively used for unfolding PCA component loadings into 3D EEM loadings spectra. The application of this code will be shown 
later during the tutorial for PCA. 

 
6 Variable independency is based on which variables do and do not change with different samples. Throughout an EEM dataset, excitation and emission wavelengths 
are kept constant (ergo, are independent variables) while fluorescence intensities are different for each sample (ergo, are dependent variables). 

https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort
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Please note that the EEM_Unfold code will only work on versions of MATLAB that are 2021a and newer (older versions contain a different 
version of the readtable function, which is does not work for this code).  
 
• EEM_Transposition 
 
EEM data, output by the two processing codes described above (EEM_Process_Aqualog and EEM_Process_Generic), is organized 
as excitation wavelengths as columns and emission wavelengths as rows. While all codes in TEnvR require that the codes are organized 
this way, in working with collaborators or other software it has been found necessary that the EEM files are converted into a new format 
– excitation wavelengths as rows and emission wavelengths as columns. This flipping of axes is known as transposition (Slide 84). The 
EEM_Transposition code is designed to take multiple EEM spectra and transpose them into new .csv files denoted with the suffix 
_transposed (e.g., “Sample 1_ref_Final_transposed.csv”).  
 
To apply this code on a whole dataset automatically, place all processed EEM files in a folder and make this folder your Current Folder. 
Here, the provided dataset in TestData_Generic_Processed will serve as an example. If this code is to be run on only one EEM file, place 
the file in an empty folder and set that folder as your Current Folder. 
 
Slide 85: EEM_Transposition 
 
The code specifically identified any files in the current folder with the suffix “_Final.csv” and transposes them. Thus, the files that were 
previously created during the previous exercise (with EEM_Dilution) and do not have the “_Final” suffix directly before .csv were not 
transposed.  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• EEM_ThermoReformat 

 
EEM data acquired on Thermo Scientific Lumina spectrofluorometers is organized in a way that does not make it easily importable using 
the codes from drEEM. The EEM_ThermoReformat code takes numerous spectra exported by the instrument (_3DScan.xls format) and 
converts them in a readable format (Slide 86). The newly output spectra are denoted with the suffix _ref (in .xlsx format). We have 
provided 14 example files located in TEnvR/TestData_EEM/TestData_Thermo. To use this code, make the TestData_Thermo folder to 
be your Current Folder and run EEM_ThermoReformat in the command window: 
 
Slide 87: EEM_ThermoReformat 
 
The Thermo Scientific Lumina spectrofluorometer has an automatic capability to correct the acquired data for instrument-specific 
responses (Cory et al., 2010), but all other corrections need to be made further post-acquisition. This parallels the data processing pipeline 
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for EEMs acquired on Shimadzu spectrofluorometers. The reformatted files need to be fully corrected following the recommendations by 
Murphy et al. (2010) and be processed using the EEM_Process_Generic script. To import the spectra, use the following arguments for 
the readineems function in the EEM_Process_Generic script at lines 39 (blanks) and 48 (samples): readineems(1,'xlsx','A1..AU4102',[1 
1],0,0). 
 
Please note that the Thermo Scientific Lumina software considers each emission scan at each excitation wavelength to be a different 
sample. Therefore, excitation wavelengths in the _3DScan.xls files are labeled as different samples (e.g., Excitation at 230 nm = Sample 
1, Excitation at 235 nm = Sample 2, etc.). Once files are reformatted these confusing labels are removed (Slide 86). Please note that 
symbols such as . , / ? * [  ] should not be used in file names as they can cause errors. 
 
• EEM_WaterRamanReformatAqualog 
 
HORIBA Aqualog Spectrofluorometers have the capability to analyze a water sample for its Raman spectrum with pre-defined settings. 
These spectra can be used for data normalization online using the instrument’s software as described above or be exported and used for 
normalization in MATLAB. For the second scenario, the EEM_WaterRamanReformatAqualog is an automated approach that will 
reformat many water Raman spectra into a format that can be easily loaded in MATLAB using drEEM’s readinscans function. We have 
provided 8 example files located in TEnvR\TestData_EEM\TestData_WaterRamanAqualog. To use this code, make the 
TestData_WaterRamanAqualog folder to be your Current Folder and run EEM_WaterRamanReformatAqualog in the command window: 
 
Slide 88: EEM_WaterRamanReformatAqualog 
 
The code loads .dat files that end with the suffix “Raman Area Graph.dat”. A .csv file containing wavelengths in column A and fluorescence 
intensity in column B will be created in the Current Folder for each of the loaded files. 
 
Please note that symbols such as . , / ? * [  ] should not be used in file names as they can cause errors. 
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Section 6. Ultrahigh Resolution Mass Spectrometry 
 
The codes for processing ultrahigh resolution mass spectrometry were developed using data acquired only on Fourier transform – ion 
cyclotron resonance – mass spectrometers (FT-ICR-MS). In our experience, we have mainly used the 12 Tesla Bruker Daltonics Apex 
Qe spectrometer equipped with an Apollo II electrospray ionization (ESI) source at the College of Sciences Major Instrumentation Cluster 
(COSMIC) facility at Old Dominion University (Norfolk, VA). The instrument is currently operating at a magnetic field strength of 10 Tesla 
due to a recent magnet quenching incident. We also have limited experience with the 15 Tesla Bruker SolariXR FT-ICR-MS housed in 
the Ohio State University Mass Spectrometry and Proteomics Campus Chemical Instrument Center (Columbus, OH). While theoretically 
it is possible that these codes can be applied to spectra acquired on Orbitrap spectrometers (10x lower resolving power), further testing 
and validation would be required for the codes on spectral processing and formula assignment. Codes here that use assigned formulas 
(for plotting figures, calculating metrics, etc.) will work properly regardless of spectral resolution. 
 
Typically, environmental samples are analyzed using soft ionization (i.e., ESI), producing spectra of several thousand peaks (Sleighter 
and Hatcher, 2007). While broadband excitation mode is commonly employed, sequential selective ion accumulation (SSIA), also known 
as continual accumulation of selected ions (CASI), can also be employed for enhancing the spectral qualities (Sleighter et al., 2009). 
Generally, 300-400 scans are acquired, and the software sums them into a final co-added spectrum. Technical details about the 
instrument have been described by Marshall et al. (1998). The instrument in COSMIC is calibrated daily with a polyethylene glycol 
standard and instrument blanks are analyzed throughout the day to verify that no sample carryover occurs. We have previously used in-
house laboratory surrogate NOM standards (such as whole water from the Great Dismal Swamp, Virginia) for evaluating tuning 
parameters. Since our involvement in the recent inter-laboratory comparison study (Hawkes et al., 2020), we have implemented the use 
of the Suwannee River fulvic acid (SRFA) standard sample (purchased from the International Humic Substances Society (IHSS), 
http://humic-substances.org/) as a NOM standard to verify our tuning parameters and ensure that the instrument is properly functioning 
prior to analyzing unknown samples.  
 
Once spectra are acquired, they are initially processed with the Bruker Daltonics Data Analysis software. This can be done immediately 
after sample analysis on the same computer that is used to control the instrument or at a separate processing station later. The raw 
instrumental data is in proprietary Bruker format (.d), making it necessary to utilize the Bruker software for the first steps of data 
processing. This is the first stage of processing of FT-ICR-MS data (see Fig. 3 in the manuscript as an overview of the entire processing 
pipeline). First, peak picking is performed based on the signal-to-noise (S/N) ratios. Typically, a S/N threshold of 3 is used for data 
acquired on the FT-ICR-MS instrument at Old Dominion University (Sleighter et al., 2012), and a S/N threshold of 7-10 is used for data 
acquired on the FT-ICR-MS instrument at Ohio State University. The precision of the m/z measurements is generally set to 6 for the two 
mass spectrometers mentioned above. They measure m/z with ultrahigh precision of up to five decimals, but the sixth decimal is also 
exported as that is the uncertainty of the measurement. Peak picking parameters may also be set to exclude peaks of insignificant 
intensity. In the Bruker Data Analysis software, by default, peaks with intensity below 0.01% of the intensity of the base peak are not 
picked. This value can be changed as needed, and setting it to 0.000001% generally removes the intensity threshold as a parameter for 
peak picking. The spectra are then evaluated visually by the user for any severe artifacts, such as peak splitting from space-charge 
effects, electronic noise signals, or shoulder peaks. Even with the recent developments in data processing automation, for ultrahigh 

http://humic-substances.org/
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resolution mass spectrometry or other types of instrumentation, visual inspection of the individual raw spectra is critical for obtaining high-
quality results. This has also been recommended recently by Patriarca and Hawkes (2021) who identify that multiply charged peaks 
introduce significant artifacts in the molecular formula lists. Once peak picking and inspection are done, the spectrum is internally 
calibrated using naturally present fatty acids and other NOM compounds belonging to various CH2 homologous series (e.g., C14H27O2-, 
C15H29O2-,C16H31O2-, etc.), following Sleighter et al. (2008). Spectra are then exported as text files (.txt), containing m/z, magnitude, and 
S/N values for each peak. This type of data will be hereafter referred to as a “peak list”. Any further processing in performed in MATLAB 
using TEnvR as described below.  
 
For this tutorial, we have provided calibrated peak lists for 20 samples and one procedural blank acquired in negative-mode ESI (found 
in TEnvR/TestData_FTICRMS, Slide 89) and five samples and one procedural blank acquired in positive-mode ESI (found in 
TEnvR/TestData_FTICRMS/PositiveMode, Slide 90). While we will show examples of processing and assessing data from negative-
mode ESI, all codes in TEnvR work on peak lists of spectra acquired in positive-mode ESI as well (sample data provided in 
TEnvR/TestData_FTICRMS/PositiveMode, Slide 90). The codes of TEnvR have not been tested on data acquired on other types of 
sources (APPI, LDI, MALDI, etc.), thus using TEnvR for such data will likely require some code modification. For such requests, users 
are invited to communicate with the corresponding authors. 
  
Please note that users may export a different data property in the third column instead of S/N (e.g., resolving power, retention time in 
case of LC-MS applications). The codes in TEnvR currently do not depend on S/N data to function properly. If users choose to export a 
different property in column 3 (or not export anything at all), this will only affect the data quality control figure exported at the end of the 
FTMS_RefinementFormulas code (described in detail later) and will eliminate the ability to trim data based on S/N ratio as described 
below for the FTMS_RefinementPeaks code. 
 
Please note that symbols such as . , / ? * [  ] should not be used in file names as they can cause errors. 
  
• FTMS_ConfigurationAssignment and FTMS_ConfigurationToolbox 
 
The FTMS side of TEnvR requires the use of two configuration files (FTMS_ConfigurationAssignment and 
FTMS_ConfigurationToolbox). Different from all previous codes where the user had to open the code itself and alter parameters, here 
all such parameters are consolidated into configuration files.  
 
Slide 91: edit FTMS_ConfigurationAssignment 
 
The FTMS_ConfigurationAssignment file contains all parameters required for processing FTMS data (refining peak lists, assigning 
formulas, refining formulas) shown on Slides 91 and 92. These parameters will be described in detail later. This code often requires 
modification by the user to tailor the FTMS data processing to their specific type of samples. 
 
Slide 93: edit FTMS_ConfigurationToolbox  
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The FTMS_ConfigurationToolbox code defines the file format of the produced formula lists (lines 68-72, Slide 93) and informs how the 
rest of the codes (pertaining to data analysis, visualization, etc.) import and manipulate data (lines 44-62). We advise users to never alter 
the file format parameters (lines 68-72) unless they are altering the formula refinement code (FTMS_RefinementFormulas) and the way 
formulas are exported. Variables on lines 44-62 are to be altered depending on the used dataset of samples and instrumentation. These 
parameters will be described in detail later. This code often requires modification by the user to tailor the FTMS data processing to their 
specific type of samples. 
 
We recommend that users take these default configuration codes and create new ones for each different dataset. We recommend 
modifying the file name to be specific for each individual project (e.g., FTMS_ConfigurationAssignmentAmazonSoils, 
FTMS_ConfigurationToolboxOceanPhoto, etc.) and thus configuration files can be easily distinguished. These files can be preserved 
to keep a paper trail for the employed parameters in formula assignment and formula evaluation using TEnvR. Please note that if you 
change the name of the file, you also must make an identical edit inside the code on line 1 for the variable corresponding to classdef.  
 
• FTMS_RefinementPeaks 
 
The next step of processing FT-ICR-MS data is the refinement of peak lists. A previous version of this code had been previously published 
(Obeid, 2015) but the script has undergone significant modifications since. The FTMS_RefinementPeaks script loads the peak lists of a 
sample and its corresponding blank (instrument blank, procedural blank, etc.). The code identifies which peaks of the blank are found in 
the sample within the defined mass accuracy range (the part per million (ppm) difference in their m/z values). Mass accuracy of 1 ppm is 
typical for the two FT-ICR-MS instruments we have experience with, and this parameter must be tested and adjusted when the codes of 
TEnvR are employed on data from other instruments. This is particularly important for instruments of lower resolving power, such as 
Orbitrap FT-MS. The identified blank peaks will be removed. Then, peaks of inorganic origin, such as solvent-salt or NOM-salt adducts 
(Brown and Rice, 2000; Chen et al., 2011; Stenson et al., 2002) are identified based on their mass defect (i.e., the distance that the peak 
is displaced from its nominal mass) as described in the table below. These peaks are referred to as “salt” peaks. These peaks cannot be 
assigned molecular formulas using the elemental criteria described later, or if are assigned, they are of abnormal elemental composition. 
Therefore, peaks of inorganic origin are removed from the peak list.  
 

For peaks with m/z: Peaks of inorganic origin are with mass defect of: 
< 300 0.4 – 0.97  

300-500  0.5 – 0.96  
500-800  0.6 – 0.95  

> 800 0.7 – 0.94 
 
Once salt peaks are identified, then 13C, 34S, 54Fe, 37Cl, and 200Hg isotopologue peaks are identified. For example for carbon, a 
monoisotopic peak contains only carbon-12 atoms (12C). The corresponding 13C isotopologue peaks are of ions containing one or more 
carbon-13 isotopes, with the remaining C-atoms being 12C. Typically in NOM spectra, only isotopologue ions containing one 13C are 
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detected. For some peaks of very high magnitude, isotopologue ions having two 13C peaks are also sometimes observed. The FTMS_ 
RefinementPeaks code identifies 13C, 34S, 54Fe, 37Cl, and 200Hg isotopologue peaks based on mass differences and intensity thresholds 
as described in the table below. For example for carbon, 13C isotopologue peaks are defined as peaks occurring with a m/z spacing of 
1.003355 (13C – 12C), and the peak magnitude of the 13C isotopologue peak(s) must be lower than 50% of the peak magnitude of the 
monoisotopic (12C only) peak. Peak identification is done with a user-defined mass accuracy (typically ± 1 ppm). It must be noted that 
37Cl and 200Hg isotopologues have a more complex isotopic distribution and therefore their magnitude threshold is a range. For more 
information about 37Cl and 200Hg isotopologues and their identification, readers are referred to the article by Chen et al. (2017). The 
magnitudes of the monoisotopic and first isotopologue peaks can be used to estimate the number of elements in the ion using the equation 
shown in the last column of the table below:  
 

Isotopologue m/z spacing Magnitude threshold Estimation of number of elements: 

13C 13C – 12C = 1.003355  Below 50% Number of C =  
Magnitude of C13  
Magnitude of C12 × 0.011 

34S 34S – 32S = 1.995796  Below 30% Number of S =  
Magnitude of S34  
Magnitude of S32 × 0.045 

54Fe 56Fe – 54Fe = 1.995327  Below 20% Number of Fe =  
Magnitude of Fe54  
Magnitude of Fe56 × 0.063 

37Cl 37Cl – 35Cl = 1.99705 Above 20% & Below 200% Number of Cl =  
Magnitude of Cl37  
Magnitude of Cl35 × 0.32 

200Hg 202Hg – 200Hg = 2.002316  Above 50% & Below 200% Number of Hg =  
Magnitude of Hg202  
Magnitude of Hg200 × 0.77 

 
Once isotopologue peaks are identified, doubly-charged peaks are identified. While molecules of NOM generally ionize as singly-charged 
ions due to loss (in negative ESI) or gain (in positive ESI mode) of a hydrogen ion (Kujawinski and Behn, 2006), doubly-charged ions can 
sometimes be observed. These ions have lost (or gained) two H+, and if that is the case, their 13C isotopologues occur at a m/z spacing 
of 0.501678 (1.003355/2). The formation of doubly-charged ions has been recently evaluated in detail by Patriarca and Hawkes (2021), 
and it has been determined that these ions must be removed prior formula assignment. Otherwise, doubly-charged ions may be 
misinterpreted as unique ions, and therefore, misassigned with incorrect molecular formulas. FTMS_RefinementPeaks includes the 
MATLAB code that is provided by Patriarca and Hawkes (2021), which has been slightly modified. After identification of all peaks 
described above (blank, salt, doubly-charged, and isotopologues), they are removed from the mass list.  
 
This code can be applied on both comma-separated values (.csv) files and text files (.txt). To see an application of this code, set the 
folder TestData_FTICRMS as your Current Folder.  
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Slide 94: FTMS_RefinementPeaks('Sample 1.txt','Blank PPL.txt',FTMS_ConfigurationAssignment) 
 
The first argument of the code ('Sample 1.txt') is the sample name, while the second one is the blank name ('Blank PPL.txt'). The code 
also requires a configuration file (FTMS_ConfigurationAssignment) described in detail later. The code creates an Excel file (“Sample 
1_Refinement.xlsx”) with two sheets: “Sheet1” and “DataRefined”. Sheet “Sheet1” contains all information about the refinement process 
(Slide 95). The first three columns (A, B and C) contain the data of the sample that was loaded (here, this is the peak list in “Sample 1.txt” 
containing m/z, magnitudes, and S/N values). The next three columns identify blank, salt, and doubly-charged peaks (columns D, E, and 
F). Their cells are populated with the m/z value of the peak that is identified to be blank, salt, or doubly-charged, respectively. For example 
(Slide 96), the peak with m/z 220.911872 (row 227) is identified as a salt peak and the “Salt” column (column D) is populated with its m/z 
value (220.911872). The following columns (G → AE) correspond to the isotopologue analysis. There are four columns for each element 
(C, S, Fe, Cl, Hg) as described below for carbon: 

→ Column G, label “13C” – This column is populated for 13C isotopologue peaks with their m/z value (e.g., row 244 on Slide 96).  
→ Column H, label “Estim C#” – This column will provide a computation of the estimated number of carbons in a molecule that 

would have ionized to produce the 12C isotopologue peak (e.g., row 241 on Slide 96). This is calculated based on the 13C/12C 
magnitude ratio threshold listed in the table above. Please note that carbon estimates are reliable only when 13C isotopologues 
of high S/N (e.g., ≥ 25) are used (Koch et al., 2007). 

→ Column I, label “13C m/z” – This column will provide the m/z value of the corresponding 13C isotopologue peak (e.g., row 241 
on Slide 96). 

→ Column J, label “13C Int” – This column will provide the magnitude value of the corresponding 13C isotopologue peak (e.g., row 
241 on Slide 96). 

→ Column K, label “difC13” – This column will provide the difference in m/z values between the 13C and 12C isotopologue peaks 
(e.g., row 241 on Slide 96). This difference should be nearly identical to the one listed in the table above (for carbon = 1.003355) 

 
These data can be very useful in detailed molecular assessments, validating formula assignments, or determining the contributions of 
heteroelements (e.g., Cl). We urge users to explore these evaluations and expand this code for other heteroelements (e.g., Br) if needed.  
 
On the top right (in the range AG2:AJ13), a table is provided with a summary listing the number of peaks of each category (all peaks, 
blank, inorganic, etc.), including two types of percentages. The number-based percentage (% Num) is based on number of formulas. For 
example, in the Sample 1 given as an example here, there are 130 salt peaks and 9526 total peaks. Thus, the number-based percentage 
is based on these numbers (130/9526 * 100 = 1.36%). The magnitude-based percentage (% Magn) is based on the spectral magnitude 
of peaks. Thus, the magnitude-based percentage of salt peaks in Sample 1 is the summed magnitude of all salt peaks divided by the 
summed magnitude of the total peaks resulting in 0.19%.  
 
The results found in this table are very important for quality control and must be evaluated for each sample. The absolute number of blank 
peaks, along with their number- and magnitude-based percentages, are generally used to assess for contamination. We generally 
consider blanks to be “clean” if there are 500 peaks or less, but we have also observed blanks of 1000+ peaks in cases where we have 
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performed procedural blanks covering a whole experiment. The parameters for salt peaks can be used to evaluate the cleanliness of the 
sample matrix. The presence of too many salt peaks (% Num > 10%) can indicate that the sample matrix is not suitable for ESI-FT-ICR-
MS analysis and a desalting procedure may need to be employed. Commonly, such procedures include solid-phase extraction (SPE) 
using PPL (Dittmar et al., 2008), C18 cartridges (Kim et al., 2003b; Louchouarn et al., 2000; Sleighter and Hatcher, 2008), XAD resins 
(Mopper et al., 2007; Wilson et al., 1983), or reverse osmosis-electrodialysis (Chen et al., 2011; Chen et al., 2014). However, it must be 
noted that any of these methods can fractionate NOM, and this will affect the observed molecular formulas (Green et al., 2014). The 
parameters regarding the other isotopologues can be used to determine if unusual heteroelements (Cl, Hg, Fe) are present in the sample 
and therefore, if one of these heteroelements needs to be involved in the formula assignment process (described later). In a nutshell, the 
results in this table are to be evaluated to perform quality control of the peak list.  
 
The second sheet, “DataRefined”, contains the refined mass list (Slide 97). It contains the m/z, magnitude, and S/N values in addition to 
the estimated numbers of carbon atoms for peaks which have 13C isotopologues. This refined list is also exported as a text file (here, as 
“Sample 1_Refinement.txt”) and is used further for formula assignments in the next steps of the data processing pipelines (Slide 98).  
 
The processing pipelines of TEnvR are versatile and can be fine-tuned. This is done by modifying the parameters in the 
FTMS_ConfigurationAssignment configuration file.  
 
The FTMS_RefinementPeaks code has several modifiable capabilities. First, it has a mass filter allowing the user to trim the m/z range 
down to a specified region. This filter is configured in FTMS_ConfigurationAssignment (Slide 91). The desired range is defined using 
the MZcutoff_low and MZcutoff_high variables on lines 42 and 43, respectively. It is sometimes beneficial to trim the data to a specific 
m/z range (e.g., 300-800), especially if there are significant tuning differences among samples and the detection of ions below m/z 
MZcutoff_low and above MZcutoff_high is less reproducible. To disable this feature, simply put numbers outside of the range you will be 
working with. For example, with the provided dataset, using MZcutoff_low = 0 and MZcutoff_high = 2000 (Slide 91) is sufficient to disable 
this feature as mass spectra have been acquired over m/z 100-1000. Additionally, the code can also trim the inputted peak lists based 
on S/N values. To enable this feature, set the SN_trim variable on line 44 to true and specify the S/N threshold value on line 45 (variable 
SN_threshold). For choosing the most appropriate S/N export threshold, users are referred to the publication by Sleighter et al. (2012). 
 
Another capability of the code is the export of a .txt file containing 35Cl isotopologue peaks. These peaks contain organically bound 
chlorine (e.g., CHOCl, CHONCl) and have an associated 37Cl isotopologue peak. The formula assignment of peaks attributed to 
halogenated molecules is not straight-forward, and thus it must be supervised by the user. We use this feature to manually export 35Cl 
isotopologue peaks and separately assign them in cases where organochlorine compounds are suspected to be significantly contributing 
to the sample composition (Wozniak et al., 2020). This feature can be enabled using the Export_Cl variable on line 48 in 
FTMS_ConfigurationAssignment (use true to enable this feature and false to disable this feature). Lastly, mass accuracy and precision 
must be defined using the MassAccuracy and Precision variables on lines 51 and 52. Currently their values are set to 1 ppm and 5 
decimals, respectively (Slide 91). These parameters may need tuning for instruments of lower resolving power (e.g., Orbitrap FT-MS). 
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Note: the FTMS_RefinementPeaks script will only work on versions of MATLAB that are 2019 and newer (the readmatrix function does 
not work on 2018 and older software versions). 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_FormulaAssignment  
 
Once the calibrated peaks are refined using the FTMS_RefinementPeaks code, formulas are assigned to them using the 
FTMS_FormulaAssignment code. Fundamentally, this code creates all possible combinations of C, H, O, N, S, P, and optionally, other 
elements, and then refines the corresponding formulas based on their DBE (described in detail later). DBE must be zero or a positive 
whole number to satisfy the nitrogen rule (McLafferty and Turecek, 1993). Formulas are matched to the imported peak m/z values based 
on the user-determined mass accuracy in the FTMS_ConfigurationAssignment (line 51, variable MassAccuracy, Slide 91). This code 
has been previously published by Obeid (2015). The formula assignment algorithm is configured using the 
FTMS_ConfigurationAssignment file (Slides 91-92).  
 
Slide 91: edit FTMS_ConfigurationAssignment 
 
There are several key parameters described below. The parameters currently set are the ones that we consider as default and are in no 
way serving a universal purpose. In addition to evaluating their appropriateness for each dataset, the user must consider them in the 
formula assignments assessment and data interpretation. We recommend taking a screenshot and saving it in the folder with the dataset 
or recording these parameters in your laboratory notebook. 

→ Ionization mode: This is dependent on the analysis and the user must choose 'negative' or 'positive' (line 56, variable 
Ionization_Mode). Please note that if positive mode is used, sodium (23Na) and potassium (40K) must be also included in the 
elemental criteria (described below).  

→ Default elemental criteria for negative-mode ESI: 12C5-∞, 1H5-100, 16O1-50, 14N0-5, 32S0-4, 31P0-2. These notations mean that, for 
example for oxygen (its 16O isotope), the number of oxygens in a molecule must be between 1 and 30. It must be noted that 
these elemental criteria ranges are variable among studies. The ranges we provide here are broadly applicable for NOM 
samples but must be verified on a per-project basis to ensure for their appropriateness. The masses of the elements used are 
listed in lines 61-63 and correspond to the mass of the element of the highest isotopic abundance (12C, 1H, etc.).  

→ Heteroelements: the user is able to assign one additional element other than C H O N S P K Na (referred to as heteroelement 
hereafter and labeled as E). This can be 35Cl (Wozniak et al., 2020), 202Hg (Chen et al., 2017), or others. Enable this feature 
by changing the Heteroelement_Halogen variable (line 57) to true. If the heteroelement happens to be 15N, change the 
Heteroelement_N15 variable (line 58) to true and keep the Heteroelement_Halogen variable (line 57) as false. To indicate the 
mass of the heteroelement, use the Mass_Heteroelement variable on line 59. Indicate the range of heteroelements using the 
E_min and E_max variables on lines 69 and 70, respectively. Please note that adding different heteroelements may require 
adjusting the codes as well as parameters in the configuration files as certain mathematics (e.g., DBE and AIMOD computations) 
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will be affected by the variable valences of different heteroelements. We urge users to be very cautious and carefully assess 
the assignment of formulas and their refinement throughout the different stages of the FTMS_FormulaAssignment and 
FTMS_RefinementFormulas codes. 

→ Default elemental criteria for positive-mode ESI: 12C5-∞, 1H5-100, 16O0-50, 14N0-5, 32S0-4, 31P0-2, 23Na0-1, 40K0-1. When samples are 
analyzed in positive-mode ESI, many ions can form adducts with naturally present sodium ([M+Na]+) or potassium ([M+K]+) 
ions (Konermann et al., 2013). These ions are also known as being “sodiated” or “potassiated”. When assigning peak lists from 
mass spectra acquired in positive-mode ESI, the codes in TEnvR require the inclusion of 23Na and 40K in the elemental criteria. 
Do this by setting both K_max and Na_max variables to 1 (line 70). 

 
Once the settings in the FTMS_ConfigurationAssignment file are set, you can run the FTMS_FormulaAssignment code on the 
“Sample 1_Refinement.txt” file.  
 
Slide 99: FTMS_FormulaAssignment('Sample 1_Refinement.txt',FTMS_ConfigurationAssignment) 
 
The code produces a file named “Sample 1_Refinement_F.txt” which contains all formulas. Given that the mass spectrometric data 
represents m/z values for singly-charged ions (multiply-charged ions, if such existed, had been removed), the assigned formulas here 
are for ions and we refer to them as ion formulas. Later, these formula data will be corrected to represent the initial molecules (i.e., obtain 
the molecular formulas). In this file (Slide 100), it can be seen that there are two different m/z values for each formula, labeled m/z and 
m/z2. For example, the first peak at m/z = 177.055598 has an m/z2 = 177.0557173799. Here, the m/z value of 177.055598 is the m/z 
value of the ion that was measured by the instrument, calibrated, and loaded by the user into the code. The m/z2 value corresponds to 
the calculated molecular weight of the ion plus the mass of one electron. Therefore, the m/z2 for the first peak is equal to (10 x 12.000)C 
+ (9 x 1.007825)H + (3 x 15.9949146)O + (1 x 0.0005485799)electron. The m/z2 values (the molecular weight of the ions) are not used 
anywhere further in TEnvR as the molecular weight of the neutral molecule (i.e., the ExactMass) is computed later by the 
FTMS_RefinementFormulas code. 
 
Upon further inspection of this file (scrolled down in “Sample 1_Refinement_F.txt”, Slide 101), it can be seen that there are two possible 
assignment scenarios for each mass peak:  

→ There is only one formula generated for one mass peak: this means that, with the assignment parameters described above, 
only one ion formula could be generated for the m/z value of the mass peak (i.e., the peak is assigned unambiguously). For 
example (Slide 101), the peak at m/z = 241.071765 has been assigned unambiguously (only one possible formula: C11H13O6). 
Such formulas are often referred to as “unique” or “unambiguous” assignments. The value in the first column of the “Sample 
1_Refinement_F.txt” file for such formulas is 1, as there is only one formula option for this peak. 

→ There are two or more formulas generated for one mass peak: this means that, with the assignment parameters described 
above, multiple ion formulas could be generated for the m/z value of the mass peak (i.e., the peak is assigned ambiguously). 
For example (Slide 101), the peak at m/z = 237.004066 has been assigned ambiguously (two possible formulas: C5H10ON4S2P 
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and C10H5O7). Such formulas are often referred to as “ambiguous” assignments. The value in the first column of the “Sample 
1_Refinement_F.txt” file for such formulas is 2 or more, as there are multiple formula options for this peak. 

 
This list of formula assignments, however, is far from final. Ambiguous assignments need to be refined. Furthermore, some formulas, 
even though they are assigned unambiguously, need to be removed from the dataset as they are chemically unrealistic (Stubbins et al., 
2010). The list of ion formulas will be further processed and refined using the next code of the toolbox. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_RefinementFormulas 

 
The final step of processing ultrahigh resolution mass spectrometry data is refining the list of assigned formulas. This is necessary, 
because many of the mass spectral peaks have more than one option of assignable formulas (i.e., most peaks are assigned ambiguously, 
see Slide 101). It is critical that the final formula list contains only one molecular formula per mass peak. Thus, the major goal of the 
refinement process using FTMS_RefinementFormulas is to evaluate all ambiguous formula assignments and determine the ones that 
have the highest probability to be the most accurate molecular formula. The code will also filter formulas that are abnormal for NOM in 
dependence on user-defined constraints (Stubbins et al., 2010). Due to the associated mathematics and high dimensionality of data, the 
FTMS_RefinementFormulas script is likely the most complex code of TEnvR. We advise users to be highly cautious when performing 
modifications to this script. To apply this code, please keep the folder TestData_FTICRMS as your Current Folder. The configuration file 
FTMS_ConfigurationAssignment contains the processing parameters, and they must be edited if necessary. For the example below, 
keep the settings in FTMS_ConfigurationAssignment as set by default.  
 
Slide 102: FTMS_RefinementFormulas('Sample 1_Refinement_F.txt',FTMS_ConfigurationAssignment) 
 
While the script is running, in the bottom left corner of MATLAB will show “Busy”. If at any time the user wants MATLAB to stop an 
execution, use Ctrl+C on Windows computers. The formula refinement algorithm is generally fast and the whole code takes a couple of 
minutes to complete per sample.  
 
Once the code finishes refining the formula list in “Sample 1_Refinement_F.txt”, it will output two Excel files (“Sample 
1_Refinement_Processing.xlsx” and “Sample 1_Final.xlsx”), as well as a figure in a portable network graphic (PNG) format (“FTMS 
Processing_Sample 1.png”) (Slide 102). The figure will be shown as a pop-up MATLAB window that will maximize on the whole screen 
(Slide 103). All processing steps, figure, and output files are described in detail below. Conceptually, the formula refinement process is 
described on Slide 104.  
 
The FTMS_RefinementFormulas code is split into eight processing stages. During the first stage of the code (%% Stage 1: Import Data 
& Reorganize file from Molecular Formula Calculators), the assigned formulas are loaded into MATLAB. Immediately after import, the 
data is reorganized to a consistent format. Then, an index parameter is computed to identify ambiguous assignments – formulas having 
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the same index value indicate two or more ambiguous formulas per peak that need refinement (e.g., the ambiguous formulas C10H5O7 
and C5H10ON4S2P assigned to m/z 237.004066, Slide 101). This index value is used later in the formula refinement steps. In this stage 
of the code, the results from the FTMS_RefinementPeaks code found in the “_Refinement.xlsx” are also loaded (here, from “Sample 
1_Refinement.xlsx”). Therefore, it is critical that all processing files are kept in the same folder. The data before (from “_Refinement.xlsx”) 
and after formula assignment (from “_F.txt”) are aligned together. The S/N and estimated C-number data from the “_Refinement.xlsx” file 
are transcribed into the new file containing the assigned formulas. Once this is done, the code creates the “Sample 
1_Refinement_Processing.xlsx” file and writes the data at the current stage in “Sheet1” (Slide 105). This processing file will serve as 
paper trail for the whole formula refinement process. This formula list in “Sheet1” at this stage of the code has had no refinements and 
this exported list is solely the reformatted data from the “_F.txt” file (columns B-O) with the calculated index parameter (column A) and 
the imported S/N and estimated C-numbers from the “_Refinement.xlsx” file (in columns P and Q, respectively). It must be noted that in 
this list, the number of assigned H-atoms (column F, named Hion) are for the detected ion, and thus these are ion formulas and not 
molecular formulas. Column K is where the number of assigned heteroelements (if any) are listed under the label “E”. If no such element 
is assigned, this column is populated with zeros. If K and Na are assigned for samples analyzed in positive ionization mode, columns L 
and M will be populated with their numbers, respectively. Otherwise for negative ionization mode, columns L and M are populated with 
zeros.  
 
The next stage of the code (%% Stage 2: H-correction, Reformatting, and Initial Filtering using Elemental Constraints) takes this list of 
formulas and performs the first refinement steps. Remember, the imported formulas are for the detected ions by the ICR cell. Here, the 
number of hydrogens (H-number, denoted as “H” in calculations below) is computed for the molecule that would have been ionized to 
produce the singly-charged ion. This is critical for obtaining the molecular formulas corresponding to the original molecules. This 
computation is dependent on the ionization mode. Molecules analyzed using negative-mode ESI lose one hydrogen atom to become 
singly-changed ions ([M-H]-). Thus, the H-number of the molecule simply needs one additional hydrogen atom. This requires that all ions 
are singly-charged, which is why removal of multiply-charged ions is critical prior to formula assignment (Patriarca and Hawkes, 2021). 
Molecules analyzed using positive-mode ESI gain either a hydrogen ([M+H]+), a sodium ([M+Na]+), or a potassium ([M+K]+) ion. In cases 
when they have gained a hydrogen ion, the computed H-number of the ion already contains it and therefore it must be subtracted. In 
cases when they have gained a K+ or Na+, the H-number for the molecule is identical to that of the potassiated or sodiated ion. Therefore, 
the equation for positive-mode ESI below shows the subtraction of 1 plus the gained K+ or Na+ to obtain the H-number of the molecule. 
Please note that in all equations, the number of elements (e.g., number of hydrogen atoms) in a molecule/ion are expressed as the atom 
label with the species type, where applicable, as a subscript (e.g., 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖). These computations are done automatically in the 
second stage of the FTMS_RefinementPeaks code, but the user must define the ionization mode in the 
FTMS_ConfigurationAssignment (line 56, variable: Ionization_Mode, Slide 91). The user must choose between ‘negative’ or ‘positive’. 
Usage of other wording will produce an error message.  

 
If 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ ∶  𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 + 1 

 
If 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ ∶  𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖  − 1 + 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 
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Once the H-number is corrected, the obtained set of elements now represents the formulas of the original molecules (i.e., molecular 
formulas). For example for negative-mode ESI, a peak with m/z = 177.019261 is assigned with a formula C9H5O4. This formula represents 
a [C9H6O4-H]- ion. The code will correct the H-number using the equation above, and therefore, the obtained molecular formula will be 
C9H6O4. All further calculations described below will be made using elemental values of molecular formulas and not ion formulas. For 
example for positive-mode ESI for a hydrogenated ion ([M+H]+), a peak with m/z = 189.091012 is assigned with a formula C12H13O2. This 
formula represents a [C12H12O2+H]+ ion. The code will correct the H-number using the equation above, and therefore, the obtained 
molecular formula will be C12H12O2. For example for positive-mode ESI for a sodiated ([M+Na]+) or a potassiated ion ([M+K]+), a peak 
with m/z = 211.05763 is assigned with a formula C8H12O5Na. This formula represents a [C8H12O5+Na]+ ion. The code will correct the H-
number using the equation above and therefore the obtained molecular formula will be C8H12O5 (in this case the H-number does not 
change). All further calculations described below will be made using elemental values of the molecular formulas and not ion formulas. 
The exact molecular weight (ExactMass) of molecular formulas is then computed using the user-defined atomic weights in the 
FTMS_ConfigurationAssignment (lines 61-63, Slide 91). Again, this ExactMass is for the neutral molecule. Therefore, if a molecule 
was ionized and detected as both [M+H]+ and [M+Na]+ species, the resultant ExactMass will be duplicated and the same for the two 
different m/z measurements.  
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_12𝐶𝐶 + 𝐻𝐻 ∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_1𝐻𝐻 + 𝑂𝑂 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_16𝑂𝑂 + 𝑁𝑁 ∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_14𝑁𝑁 + 𝑆𝑆 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_32𝑆𝑆 + 𝑃𝑃 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_31𝑃𝑃  
+𝐸𝐸 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

 
If an additional heteroelement is specified in line 57 or 58 of FTMS_ConfigurationAssignment (variable: Heteroelement_Halogen, Cl, 
Br, Fe, Hg, etc. or variable: Heteroelement_N15 for 15N isotopic labeling), the atomic weight of the heteroelement must also be listed (line 
59, variable: Mass_Heteroelement, Slide 91). The value given to this variable is irrelevant if no heteroelements are assigned (we prefer 
to keep 0 if no heteroelement is used in the assignment).  
 
The code then calculates five additional metrics from the molecular formulas: hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) 
molar ratios as well as double-bond equivalencies (DBE), C-normalized DBE (DBE/C), and modified aromaticity index (AIMOD). H/C and 
O/C are critical parameters for evaluating molecular composition and viewing (visualizing) FT-ICR-MS data (Kim et al., 2003a; Van 
Krevelen, 1950). They are described in detail later in this tutorial.  
 

𝐻𝐻/𝐶𝐶 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐻𝐻
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶

 

 

𝑂𝑂/𝐶𝐶 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑂𝑂
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶

 

 
DBE is a measure of the total number of π-bonds (usually double C-bonds, C=C) and alicyclic rings in a molecule (Bae et al., 2011). It is 
also known under the names “degree of unsaturation” (DoU or DU), “degree of hydrogenation” (DoH or DH), “index of hydrogen deficiency” 
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(IHD), and “unsaturation index”. When normalized to the number of carbons in the molecule, the DBE/C measure can serve as a proxy 
for the aromaticity of molecules (Hockaday et al., 2006). In difference with DBE, which only quantifies π-bonds + alicyclic rings in the total 
molecular structure, the modified aromaticity index (AIMOD) measures the double-bond density in a molecule (Koch and Dittmar, 2006, 
2016). Molecules with AIMOD ≥ 0.67 have the highest probability of having many double-bonds concentrated in one region of their structure, 
and thus are operationally defined as “condensed aromatic”. Molecules with 0.5 ≤ AIMOD < 0.67 are classified as aromatic. Molecules with 
0 < AIMOD < 0.5 have the probability of having either a smaller aromatic moiety that is highly functionalized with aliphatic groups or have 
many olefinic/alicyclic bonds spread out throughout their structure. Compounds with AIMOD = 0 are classified as aliphatic.  
 
The computation of DBE and AIMOD is dependent on the assignment of a heteroelement and its valence. The current version of the 
FTMS_ConfigurationAssignment code can consider how the presence of two types of heteroelements alter the way DBE and AIMOD 
are calculated. Halogens in NOM (Cl, Br, etc.) are of valence = 1, are highly electronegative (enhancing molecular ionization), and they 
behave similarly like hydrogen in terms of bonding with organic molecules (they substitute hydrogen). Thus, in terms of the DBE and 
AIMOD computations, they are involved in the calculation in the same way as hydrogen is. Deuterium-labeling has recently become a 
popular approach (Bianca et al., 2020; Zherebker et al., 2020a; Zherebker et al., 2020b) and if 2H (or D) is assigned, the user must define 
its mass in the FTMS_ConfigurationAssignment (line 59, variable: Mass_Heteroelement, Slide 91) and inform the code that the 
heteroelement behaves like a halogen. To define that the assigned heteroelement is a halogen or behaves in a similar way regarding 
DBE and AIMOD computations, change the variable Heteroelement_Halogen in the FTMS_ConfigurationAssignment (line 57, Slide 91) 
from false to true. In our experience, we have previously used 15N-labeling and had to assign 15N as a heteroelement. If 15N is assigned 
as the heteroelement, change the variable Heteroelement_N15 in the FTMS_ConfigurationAssignment (line 58, Slide 91) from false 
to true. Future versions of TEnvR will incorporate mathematics inclusive to other elements as well as groups (e.g., UO22+).  
 
In the calculations below and in the rest of this tutorial, the number of elements (e.g., C-number, H-number) in formulas is going to be 
only defined by the element label (e.g., C, H). The label “E” is used to denote the number of heteroelements (if none assigned, all E 
values = 0). 
 

If 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =′ 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 ′ & 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑁𝑁15 =′ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ′  

⎩
⎪⎪
⎨

⎪⎪
⎧ DBE = 1 +

2 ∗ C − H + N + P − E
2

AIMOD =
1 + 𝐶𝐶 − 𝑂𝑂

2 − 𝑆𝑆 − 𝑁𝑁 + 𝑃𝑃 + 𝐻𝐻 + 𝐸𝐸
2

𝐶𝐶 − 𝑂𝑂
2 −𝑁𝑁 − 𝑆𝑆 − 𝑃𝑃
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If 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =′ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 ′ & 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑁𝑁15 =′ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ′  

⎩
⎪⎪
⎨

⎪⎪
⎧ DBE = 1 +

2 ∗ C − H + N + P + E
2

AIMOD =
1 + 𝐶𝐶 − 𝑂𝑂

2 − 𝑆𝑆 − 𝑁𝑁 + 𝑃𝑃 + 𝐻𝐻 + 𝐸𝐸
2

𝐶𝐶 − 𝑂𝑂
2 − 𝑁𝑁 − 𝑆𝑆 − 𝑃𝑃

 

 

If 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =′ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 ′ & 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_15𝑁𝑁 =′ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ′   

⎩
⎪⎪
⎨

⎪⎪
⎧ DBE = 1 +

2 ∗ C − H + N + P
2

AIMOD =
1 + 𝐶𝐶 − 𝑂𝑂

2 − 𝑆𝑆 − 𝑁𝑁 + 𝑃𝑃 + 𝐻𝐻
2

𝐶𝐶 − 𝑂𝑂
2 − 𝑁𝑁 − 𝑆𝑆 − 𝑃𝑃

 

 
It must be noted that if the computed AIMOD value ends up being negative, the AIMOD value is then set to 0 as AIMOD cannot be negative 
(Koch and Dittmar, 2006, 2016). Formulas with AIMOD ≥ 1 are considered abnormal for NOM and are therefore excluded (see table below).  
  
After H-correction and the calculation of these metrics is completed, the first level of formula refinement begins. Formulas are first filtered 
using 18 elemental constraints summarized in the table below. Most of them were summarized by Stubbins et al. (2010). The formulas 
that fall outside of the defined elemental constraints are either chemically impossible to exist or are unlikely to occur as part of NOM. 
Hence, formulas that do not adhere to these 18 elemental constraints are rejected from the formula list. However, it must be noted that 
these constraints may need adjustment for specific datasets and projects. The recommended values in the table below are only 
acceptable for non-problematic NOM samples and in our experience, we have had to adjust some of them to better fit specific project 
needs. The values for constraints 1 – 15 are changeable and are defined in the FTMS_ConfigurationAssignment, lines 79-87 (Slide 
92). 
 

 Elemental Constraint Description Recommended 
value Reference 

1 Minimum O/C No minimum number of O in a molecule 0 Stubbins et al. (2010) 
2 Maximum O/C No more than 1 oxygen per 6 carbons 1.2 Stubbins et al. (2010) 
3 O-C At least 2 more carbons than oxygens 2 Stubbins et al. (2010) 
4 Minimum H/C Minimum of 1 hydrogen per 3 carbons 0.33 Stubbins et al. (2010) 
5 Maximum H/C Maximum of 9 hydrogens per 4 carbons 2.25 Stubbins et al. (2010) 
6 Minimum N/C No minimum number of N in a molecule 0 Stubbins et al. (2010) 



S57 
 

7 Maximum N/C Maximum of 1 nitrogen per 2 carbons 0.57 Stubbins et al. (2010) 
8 Minimum S/C No minimum number of S in a molecule 0 Stubbins et al. (2010) 
9 Maximum S/C Maximum of 1 sulfur per 5 carbons 0.2 Stubbins et al. (2010) 

10 Minimum P/C No minimum number of P in a molecule 0 Stubbins et al. (2010) 
11 Maximum P/C Maximum of 1 phosphorus per 10 carbons 0.1 Stubbins et al. (2010) 
12 Minimum O/P At least 3 oxygens per 1 phosphorus 38  
13 Maximum O/P No limitations on maximum oxygens relative to P Inf9  
14 Minimum DBE DBE must be a positive number 010 McLafferty and Turecek (1993) 

15 Maximum DBE Molecules with DBE > 50 will be very large and 
likely not be soluble nor ionizable by ESI 50 Wozniak et al. (2020) 

16 Maximum AIMOD AIMOD ranges from 0 – 1 1 Koch and Dittmar (2006),  
Koch and Dittmar (2016) 

17 Maximum K+Na 
Only singly-charged peaks exist in the mass list. 

Therefore, multiply-charged formulas (e.g., 
[M+K+Na]2+) must be removed. 

1  

18 Unionizable molecules See below. n/a  
 
The 18th elemental constraint refines molecules based on their ionizability in electrospray ionization. This 18th criterion considers the 
ionization mode (defined in the FTMS_ConfigurationAssignment, line 56, variable: Ionization_Mode, Slide 91) and the electronegativity 
of the assigned heteroelement (defined in the FTMS_ConfigurationAssignment, line 57, variable: Heteroelement_Halogen, Slide 91). 
In negative ionization mode, only molecules having at least one oxygen, one sulfur, or one halogen can ionize. Therefore, formulas of 
elemental composition of CH, CHN, CHP are rejected from the formula lists. If the assigned heteroelement is not a halogen (or another 
highly electronegative element enhancing ionization), CHE formulas (e.g., CHHg, CHFe) are rejected as well. In positive ionization mode, 
only molecules having at least one oxygen, one sulfur, or one nitrogen can ionize. Therefore, formulas of elemental composition of CH 
and CHP are removed. The presence of a halogen here is irrelevant and therefore, CHE formulas (CHCl, CHBr, CHFe, CHHg) are 

 
7 While the recommended value per Stubbins et al. (2010) is 0.5, for some of our research involving samples of high proteinaceous content, we had to increase this 
value to 1 to allow the assignment of some unusual N-rich molecules.  
 
8 This rule assumes that the molecular phosphorus in NOM is found exclusively as PO3 groups (Sleighter and Hatcher, 2008; Maizel and Remucal, 2017; Kurek et 
al., 2021). Limited knowledge about the speciation of organic P in NOM exists (Reemtsma, 2009). Furthermore, organic P exists at such low concentrations (Cooper 
et al., 2005) that special isolation/concentration procedures are needed for its evaluation. 
 
9 The notation for “infinity” in MATLAB is Inf.  
 
10 Please note that DBE must be zero or a positive whole number (McLafferty and Turacek 1993). While this requirement is not explicitly listed in the Elemental 
Constraints in the FTMS_RefinementFormulas code, the formula assignment algorithm in FTMS_FormulaAssignment uses this rule to generate molecules with 
valid (whole) DBE values resulting in formulas adhering to the nitrogen rule (McLafferty and Turacek 1993).  
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rejected as well. It must be noted that these rules are broad and may not be applicable to all samples/datasets and thus, the values for 
the 18 constraints in the table above are only recommended. For example, P-containing formulas with no oxygen (CHP) will likely be not 
ionizable in either negative or positive mode, but knowledge about such compounds in NOM is highly limited. Therefore, users are urged 
to evaluate these different elemental constraints and tailor the codes to their samples and datasets. The 18th elemental constraint is 
summarized below: 
 

If 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′: Reject formulas with O = 0 & S = 0 & E = 0 (CH, CHN, and CHP) 
 

If 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ′𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓′: Reject formulas with O = 0 & S = 0 (CH, CHN, CHP, and CHE) 
 

If 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑 = ′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ ∶  Reject formulas with O = 0 & S = 0 & N = 0 (CH, CHP, and CHE) 
 
After the formula list is refined using these constraints, the list of refined formulas and list of rejected formulas are output to the Excel file 
“_Refinement_Processing.xlsx” (here, “Sample 1_Refinement_Processing.xlsx") in the sheets “Refined with Elem.Constraints” and 
“Rejected with Elem.Constraints” (Slide 106). It must be noted that the formula lists in these sheets are formatted differently than in 
“Sheet1”. This new format includes the type of molecular formula (CHO, CHON, etc. as shown in Column E) as well as the calculated 
O/C, H/C, DBE, DBE/C, and AIMOD. This will be the standard formula list format for TEnvR.  
 
The third stage of the formula refinement (%% Stage 3: Formula Refinement 
using Isotopic Filter and selection of Unique Formulas) is focused on selecting 
Formulas of High Confidence. These formulas are most likely to match the 
elemental composition of the actual molecule that was ionized to produce the 
measured ion peak. The Formulas of High Confidence will be critical for the 
following formula refinement in the later stages of the code. The first approach 
for selecting Formulas of High Confidence is by using the Isotopic Filter 
capability of this code. This filter evaluates the assigned number of carbons in 
the molecules and compares it to the estimated number of carbons using the 
13C/12C magnitude ratio. If any of the assigned formulas’ C-number is close to the estimated C-number, the code will select that particular 
molecular formula and will label it as a Formula of High Confidence11. This is conceptually explained on the figure above. This filter is 
enabled or disabled using in the FTMS_ConfigurationAssignment, line 92, variable: Filter_Isotopes, Slide 92). By default, the Isotopic 
Filter looks for a carbon match within a specified range. The default range is two carbons (± 1 C), but this range can be modified by the 
user in the FTMS_ConfigurationAssignment, line 93, variable: Filter_Isotopes_Range, Slide 92). This range will also need adjustment 
if instruments of different resolving power are used, as the complete resolution and precise measurement of 13C isotopologues here is 
critical. The 13C isotopologue peak must have a high S/N in order to be used in reliably predicting the carbon number (Koch et al., 2007).  

 
11 If multiple formulas contain a number of carbons within the search range, the code will accept all matching formulas into the pool of Formulas of High 
Confidence.  
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Carbon-estimates only from 13C isotopologue peaks with S/N ratio ≥ 25 are used in the isotopic filter. The S/N ratio threshold of 25 is 
used as an example here and can be modified by the user in the FTMS_ConfigurationAssignment, line 94, variable: 
Filter_Isotopes_SNthreshold, Slide 92). As this threshold is likely instrument specific, we recommend analyzing a standardized sample, 
such as SRFA, which has been studied for years and has its molecules confidently assigned (Hawkes et al., 2020; Herzsprung et al., 
2016; Stenson et al., 2003), to develop such threshold as described by Koch et al. (2007). Formulas selected using the Isotopic Filter are 
listed in a newly created sheet “Isotopic Filter” in the “_Refinement_Processing.xlsx” file (here, “Sample 1_Refinement_Processing.xlsx”) 
(Slide 107). In our experience, we usually do not use this filter as the estimated C-numbers from the 13C/12C magnitude ratios can 
sometimes be unreliable, as discussed previously (Koch et al., 2007; Mitchell and Smith, 1995; Stenson et al., 2003). However, usage of 
this isotopic filter can be very beneficial in validating molecular formulas (Khatami et al., 2019; Merder et al., 2020; Wagner et al., 2015a), 
and users are urged to explore this capability for their samples.  
 
The second approach for selecting Formulas of High Confidence is to evaluate their ambiguity and identify only unambiguously assigned 
(unique) molecular formulas. The second filter of this code, the Uniqueness Filter, selects formulas with unique index values and they are 
separated out. We most commonly use this filter and in our experience the formulas that are assigned unambiguously are representative 
of the whole sample. The Uniqueness Filter is enabled or disabled in the FTMS_ConfigurationAssignment (line 97, variable 
Filter_Unique, Slide 92). Formulas selected using the Uniqueness Filter are listed in a newly created sheet “Unique” in the 
“_Refinement_Processing.xlsx” file (here, “Sample 1_Refinement_Processing.xlsx”) (Slide 108). The FTMS_RefinementFormulas code 
requires that at least one of the two filters, or both, be enabled. It is critical that some Formulas of High Confidence are selected prior the 
next refinement step.  
 
The next stage of the code (%% Stage 4: Formula refinement using KMD Filter) refines the rest of the molecular formulas using Kendrick 
Mass Defect series analysis (Kendrick, 1963; Koch et al., 2007; Kujawinski and Behn, 2006). This filter is enabled or disabled in the 
FTMS_ConfigurationAssignment (line 100, variable Filter_KMD) using true or false (Slide 92). First, the code identifies which formulas 
have to be refined. It takes all NOM-like molecular formulas that were sorted using elemental constraints and picks formulas that are not 
Formulas of High Confidence. The selected formulas are the Refinable Formulas that the KMD filter will work on (Slide 104). The KMD 
filter establishes KMD series using the Formulas of High Confidence. Formulas that sit in these series have formulas with the same KMD 
value within the user-defined precision in the FTMS_ConfigurationAssignment (line 52, variable Precision, Slide 91). Series are 
established using user-defined molecular building blocks in the FTMS_ConfigurationAssignment (lines 101-103, variable 
Filter_KMD_Series, Slide 92): 
 
Filter_KMD_Series = double([14/14.015650, 2/2.015650, 44/43.989829, ... 
        30/30.010565, 44/44.026215, 16/15.994915, 18/18.010565, 17/17.026549, ... 
        36/35.976678]); 
 
These ratios correspond to the nominal mass (rounded value to the closest whole number) over the whole mass of the following building 
blocks: CH2, H2, COO, CH2O, C2H4O, O, H2O, NH3, HCl. Users are welcome to adjust this parameter (Filter_KMD_Series) for their needs. 
Another critical parameter is that the user may define the minimum number of points on a KMD series in order for the series to be validly 
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used for a formula refinement. We usually require a minimum of 3 points to exist on the series using Formulas of High Confidence. This 
minimum threshold can be modified in the FTMS_ConfigurationAssignment (line 104, variable Filter_KMD_Series_Threshold, Slide 
92). Once KMD series with 3 or more points within them are established, the formulas in the pool of Refinable Formulas are tested to 
determine if they have the same KMD value (within the user-defined precision, variable Precision) as the KMD values of the established 
series. Refinable Formulas that fall into any of the series (i.e., are the 4th or further data point) are extracted from the Refinable Formulas 
pool and moved into the matrix of Formulas of High Confidence. Then, new KMD series are created using the expanded pool of Formulas 
of High Confidence. The new KMD series are then utilized to again search all remaining Refinable Formulas.  
 
This is iterative algorithm is conceptually explained on Slide 109. The Formulas of High Confidence (panel A) are used to build KMD 
series (panel B). Then, the Refinable Formulas (panel C) are checked to see if any of them fall within these KMD series (panel D). 
Formulas that align (24 red dots son panel D) are then moved to the pool of Formulas of High Confidence (panel E). Then, new KMD 
series (panel F) are built using the new pool of Formulas of High Confidence (panel E). It can be seen that there are 3 new series (panel 
F) once new Formulas of High Confidence are added. These new KMD series (panel F) are then used to search the remaining Refinable 
Formulas (24 formulas from panel C are now removed from panel G). It can be seen that 5 new formulas are identified (panel I) and 
added to Formulas of High Confidence (panel J). Again, new KMD series (panel K) are built, and an additional 4 new series are identified 
once new Formulas of High Confidence are added. These new KMD series (panel K) are then used to search the remaining Refinable 
Formulas (an additional five formulas are missing in panel L, in comparison to panel G). It can be seen that 3 new formulas are identified 
to be Formulas of High Confidence (panel M) and are added to the new pool of Formulas of High Confidence (panel N). Again, new KMD 
series (panel O) are built, but in this case, no additional series are identified. This cycle of creating KMD series using Formulas of High 
Confidence, searching the Refinable Formulas for formulas of matching KMD values, and moving Refinable Formulas into the pool of 
Formulas of High Confidence is repeated multiple times until the iterative algorithm reaches a termination point.  
 
The termination point can occur in two different cases. In the first case (Slide 109), the algorithm will terminate if a new pool of Formulas 
of High Confidence (panel N) does not produce any new KMD series (panel O) relative to previous set of KMD series (panel K) using the 
previous pool of Formulas of High Confidence (panel J). In the second case (Slide 110), a new KMD series is produced (panel O), but 
the remaining Refinable Formulas (an additional three formulas are missing between panel L and panel P) do not give any formulas 
aligning within the new KMD series (panel Q).  
 
It must be noted that the code checks if the formulas in each KMD series (i.e., formulas with the same mass defect within the user-defined 
precision in the FTMS_ConfigurationAssignment, line 52, variable Precision, Slide 91) are of the same elemental composition (CHO, 
CHON, CHOS, etc.). For example, CHO and CHON formulas cannot sit within the same KMD series but may coincidentally have the 
same KMD value for a certain building block. Each KMD series must be constructed of formulas of the same type (e.g., CHO only, CHON 
only). This additional step enhances the validity of the formulas refined using the KMD Filter and strengthens our confidence in the 
formulas selected by it.  
 
If the user desires to perform the KMD search only once, they can disable the unlimited iterations feature in the in the 
FTMS_ConfigurationAssignment (line 105, variable Filter_KMD_Unlimited_Iterations, Slide 92). The pool of Formulas of High 
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Confidence at the end of this filter is comprised of the formulas selected using Isotope and Uniqueness and some fraction of the Refinable 
Formulas that was selected using the KMD filter. This final pool of Formulas of High Confidence is exported in a newly created sheet 
“Refined w KMD” in the “_Refinement_Processing.xlsx” file (here, “Sample 1_Refinement_Processing.xlsx”) (Slide 111).  
 
At the next stage of the formula refinement code (labeled as the “Middle Stage”), the code will compare the new pool of Formulas of High 
Confidence (found in the “Refined w KMD” sheet) with the remaining formulas in the Refinable Formulas pool. For each peak (i.e., each 
m/z value) in the Formulas of High Confidence, the code will identify formulas that are assigned to the same m/z in the Refined Formulas 
pool. As these formulas are ambiguous formulas that could not be placed into the Formulas of High Confidence pool using the Isotope, 
Unique, or KMD filters, they are assignments that are very unlikely to be the real molecule that was ionized and other formulas exist for 
that m/z value that are much more probable (of higher confidence). Thus, these ambiguous formulas are rejected and exported to a newly 
created sheet “Rejected at Middle Stage” (Slide 111). Any remaining Refinable Formulas that were not rejected are then concatenated 
with the Formulas of High Confidence, and this new matrix of data is exported in a newly created sheet “Middle Stage” (Slide 111). This 
sheet contains molecular formulas that are still possible assignments, and as such, this sheet will still contain many ambiguous formulas.  
 
The next stage of the code (%% Stage 5: Formula refinement using Compositional Filter) refines the formula list based on the elemental 
composition. Formulas of CHO, CHON, CHOS, CHOP composition are labeled as “simple” versus other formulas containing more than 
one non-CHO element that are labeled “complex” (CHONS, CHONP, CHONSP, etc.). The code evaluates any remaining ambiguous 
assignments and selects the simple formula and rejects the complex one, as molecular formulas of lower complexity are more 
biogeochemically feasible (Koch et al., 2007). This is conceptually explained in the figure below.  
 

 
 
In the two examples shown on the left side of the figure above, the code can clearly identify that the two peaks (m/z = 344.988907 and 
m/z = 346.020470) are assigned ambiguously. The code selects the formulas that are of simple composition (CHO, CHON, CHOS, 
CHOP). Complex formulas are rejected. This filter is unable to refine ambiguous formulas that are both simple or both complex, as shown 



S62 
 

on the right side of the figure. Further refinement is necessary for these cases. The Compositional Filter is enabled or disabled in the in 
the FTMS_ConfigurationAssignment (line 108, variable Filter_Composition) using true or false (Slide 92). If enabled, the code will 
export the refined formula list into a newly created sheet “Refined w Compositional Filter” in the “_Refinement_Processing.xlsx” file (Slide 
112). Rejected formulas are also exported in a new sheet (“Rejected w Compositional Filter”) (Slide 112). 
 
The next stage of the code (%% Stage 6: Formula refinement using Error Filter) refines the formula list based on the assignment error 
(difference between the m/z value (electron-corrected) and the exact mass of the assigned molecular formula). Formulas with an 
assignment error closer to 0 are more probable assignments than formulas with higher assignment errors. Formulas with the same error 
(absolute values!) cannot be further refined. This is conceptually explained in the figure below.  
 
In the two examples shown on the left side of the figure below, the code can clearly identify that the two peaks (m/z = 343.022529 and 
m/z = 348.048694) are assigned ambiguously. These same ambiguous assignments could not be refined using the compositional filter 
earlier (see previous figure). The code can successfully choose a molecular assignment of lower error for these two peaks. On the right 
side of the figure below, two peaks are shown with ambiguous assignments that cannot be refined further (they have the same error and 
same complex type of elemental composition). The Error Filter is enabled or disabled in the FTMS_ConfigurationAssignment (line 111, 
variable Filter_Error) using true or false (Slide 92). If enabled, the code will export the refined formula list into a newly created sheet 
“Refined w Error Filter” in the “_Refinement_Processing.xlsx” file (Slide 113). Rejected formulas are also exported in a new sheet 
(“Rejected w Error Filter”) (Slide 113). 
 

 
 
The next stage of the code (%% Stage 7: Final Refinement) is for finalizing the refinement process, to ensure that only one formula exists 
for each m/z value. The code first identifies any remaining ambiguous assignments and rejects them. For example, the two formulas per 
each of the peaks at m/z 829.088547 and 801.334584 shown on the right side of the figure above will be rejected from the list and these 
two peaks will be left unassigned. Choosing one or the other of these molecular formulas manually by the user would require manual 
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inspection, but this will also introduce user-induced bias into the dataset. Should users decide to manually pick what they believe to be 
the “correct” formula is their own prerogative. 
 
Once any remaining ambiguous assignments are rejected, the code evaluates if there are two or more peaks assigned with the same 
molecular formula. Such cases occur rarely but several reasons explained below can lead to their existence. For any incidence of multiple 
peaks assigned with the same exact formula, the code evaluates the differences in their m/z values, peak magnitudes, and assignment 
errors to determine how to proceed:  

→ If there are two peaks (i.e., two m/z values with different magnitudes) with the same molecular formula assigned: 
o (Common) If the two peaks have a larger difference in their m/z values (e.g., higher than 10), then two different ion 

species are detected per molecule. Commonly, either a sodiated ([M+Na]+) or potassiated ([M+K]+) ion is detected in 
addition to the hydrogenated ion ([M+H]+). In more uncommon cases, both the sodiated ([M+Na]+) or potassiated 
([M+K]+) ion species are detected and the hydrogenated ion ([M+H]+) is not detected. Remember that if a peak is 
detected as two different ion species (e.g., detected as both [M+H]+ and [M+Na]+), the two ions will have two different 
m/z values (e.g., differing by ~23) but their corresponding ExactMass will be the same as the ExactMass corresponds 
to the neutral molecule. If a peak was detected as more than one species, the code will select the peak with the lower 
m/z value. Therefore, if both [M+H]+ and [M+Na]+ peaks are detected, the code will select the [M+H]+ peak.  

o (Rare) If the two peaks have similar m/z (within the user defined error, usually 1 ppm), their peak magnitudes differ by 
more than 20%, and the larger (higher magnitude) peak has the smaller error, this is a case when the smaller peak is a 
shoulder peak to the larger peak. While shoulder peaks are generally identified and manually removed during peak 
picking prior to the internal calibration of mass spectrum, shoulder peaks can be missed by the user. The code will retain 
the more abundant peak (higher magnitude, smaller error) and will reject the less abundant shoulder peak (smaller 
magnitude, higher error). 

o (Moderately Rare) If the two peaks have similar m/z (within the user defined error, usually 1 ppm) and their magnitudes 
differ by less than 20%, this is a case of a split peak, which may be due to two poorly resolved ions. Peak splitting is 
also possible due to space-charge effects (Ledford et al., 1984), but if that was the case, most peaks in the spectrum 
(or most peaks at high m/z) would be split, and this would have been identified during the manual mass spectral 
inspection prior to internal calibration. In this situation, the code will select the peak with the smaller assignment error 
and reject the peak with the higher assignment error (peak magnitude is not considered). 

o (Very Rare) If the two peaks have similar m/z (within the user defined error, usually 1 ppm), peak magnitudes differ by 
more than 20%, and the larger (higher magnitude) peak has the higher error, this is typically a case when there is a 
highly ionizable compound (a “spike”) that sticks up above the typical Gaussian-like mass spectrum of NOM. Often these 
peaks require an individual mass calibration or need to be assigned with a lower mass accuracy (up to 2 ppm instead of 
1 ppm). In this situation, the code rejects both peaks and displays a warning to the user in the command window notifying 
that “Peaks with ExactMass = XXXXXXX need inspection and manual assignment!”. These peaks are then moved to 
the list of rejected peaks and if they are important, they may be manually assigned by the user and manually moved to 
the final list of formulas. We generally do not use these formulas further as we do not have high confidence in them. 

→ If there are more than two peaks with the same molecular formula assigned: 
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o (Extremely Rare) In this situation, the three or more peaks with the same ExactMass are rejected and the code displays 
a warning to the user in the command window notifying that “ExactMass = XXXXXXX is assigned to more than two 
peaks – inspect spectrum!”. This may occur in positive ionization mode if [M+H]+, [M+Na]+, and [M+K]+ were detected. 
The user will have to manually check out these abnormalities and manually extract the formula corresponding to the 
[M+H]+ peak. This could also occur if electronic noise produces numerous peaks within a very small m/z window, in 
which case all formulas should be deleted (and those peaks should also be deleted from the original peak list).  This 
type of occurrence is usually only confirmed when visually inspecting the mass spectra and seeing a disturbance of the 
baseline that looks abnormal. Generally, these abnormal frequency noise regions also occur in the blank and are thus 
typically removed at that stage of peak list refinement (during blank-subtraction). 

 
After the final formula list is trimmed of any ambiguous formula assignments and of peaks assigned with the same formulas, the code 
exports the final formula assignment list into a newly created sheet “Final Refinement” in the “_Refinement_Processing.xlsx” file (Slide 
114). Any rejected formulas are exported in a “Rejected w Final Refinement” sheet. The code also identifies which peaks of the refined 
peak list (that was used for formula assignment) were left unassigned and exports them into a newly created sheet “Not Assigned” in the 
“_Refinement_Processing.xlsx” file (Slide 111). Lastly, the code exports the final refined formula list into a separate Excel file named 
“_Final.xlsx” (here, “Sample 1_Final.xlsx”) (Slide 102) that will be used as an example for the rest of the codes of TEnvR.  
 
The next and last stage of the code (%% Stage 8: Quality Control) creates a quality control figure for the whole data processing pipeline. 
The figure is visualized by MATLAB in a maximized Figure window (Slide 103) and is also exported as a portable network graphic (PNG) 
picture file (named “FTMS Processing_Sample 1.png”) (Slide 102). It is worth noting that if this figure is generated on a laptop, it may 
appear quite crowded and look slightly different from that shown in Slide 103, where the figure was generated on a larger monitor. Users 
are welcome to modify the code and adjust the figure parameters for different screen sizes and resolutions. The furthest left panel of the 
figure shows the van Krevelen (vK) diagram (Kim et al., 2003a; Van Krevelen, 1950) of the sample using the formulas after Final 
Refinement. This is a scatterplot of H/C vs O/C of the sample, and this particular vK diagram has its data points color-coded according to 
S/N (per the color bar to the right). This plot, along with the S/N histogram in the top middle panel can help assess the quality of the mass 
spectrum. The title of the S/N histogram will also list the center position, as well as the standard error of the fitted curve (μ ± σ). 
Abnormalities in these plots may indicate that the S/N threshold for peak picking must be increased. They can also be indicative of 
samples that were analyzed with poor instrumental conditions. The second histogram is of the assignment error. The title will list the 
center position, as well as the standard error of the fitted curve (μ ± σ). It is critical that this distribution is centered at ~zero. A large shift 
in the center position (more than 0.2 ppm) would indicate a significant misassignment of formulas, as seen in the example by Tolic et al. 
(2017). A histogram as such would indicate that there is an extra element that needs to be incorporated (e.g., a halogen), or the elemental 
criteria (12C5-∞, 1H5-100, 16O1-30, 14N0-5, 32S0-4, 31P0-2, lines 66-70 in FTMS_ConfigurationAssignment, Slide 91) or constraints (lines 79-
87 in FTMS_ConfigurationAssignment, Slide 92) need modification. The panel on the top right is assessing the comparability between 
assigned and estimated C-numbers. The goodness-of-fit (R2) of the linear fit (dashed line shown in black), as well as the line equation, 
are given in the title, and a one-to-one line is also plotted (in red) for easier slope comparison. Generally, an R2 value closer to 1 is 
targeted, though we are unable to provide recommendations for a specific R2 threshold because, as mentioned earlier, the use of the 
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estimated C-number from the 13C/12C ratio can be problematic when 13C isotopologues of low S/N are used (Koch et al., 2007; Mitchell 
and Smith, 1995; Stenson et al., 2003).  
 
The final and most critical part of this figure is the table in the lower right corner. It has all quality control data from the peak refinement 
stage (calculated by FTMS_RefinementPeaks). Additionally, the metrics for Unassignable and Assigned peaks are also listed. Their 
percentages are based on the number of peaks and the total magnitude of the Refined Peaks. Ergo, in the example with Sample 1, the 
number of Refined Peaks (6626) equals the number of Unassignable Peaks (152) + the number of Assignable Peaks (6474). The number- 
and magnitude-based percentages of the Assigned Peaks must be above 80% (here, 97.71% and 99.02%, respectively). This validates 
the formula assignment and confirms that the assigned formulas represent the molecular composition of the analyzed sample. We have 
found that for less problematic NOM samples (e.g., riverine NOM), these percentages are often above 90% (number-based) and 95% 
(magnitude-based).  
 
The final list of molecular formulas (in the “_Final.xlsx” file) can be further refined depending on the particular study. Refinement criteria 
vary per project and sometimes can be very conservative. For example, Khatami et al. (2019) only used formulas that had a corresponding 
13C isotopologue peak. Smith et al. (2016) used only formulas of CHO composition. Wozniak et al. (2020) only used formulas containing 
C, H, O, N and Cl (CHO, CHON, CHOCl, CHONCl) in their study. Wagner et al. (2019) used a less conservative approach but still 
performed further refinement by discarding the following formulas from their dataset: NSP (formulas containing N, S, and P), N2S, N3S, 
N4S, N2P, N3P, N4P, and NS2. These examples highlight that there is no current consensus about formula refinement, and this is expected 
due to the known extreme molecular diversity of NOM. Further details in formula assignment and refinement can be found in previous 
publications on these topics (Fu et al., 2020; Herzsprung et al., 2014, 2016; Koch and Dittmar, 2006; Koch et al., 2007; Lu et al., 2021; 
Ohno and Ohno, 2013; Reemtsma, 2009; Sleighter and Hatcher, 2007; Sleighter and Hatcher, 2011; Tolic et al., 2017). In this tutorial, 
we cannot provide recommendations for which approach is best under all circumstances, and it is up to users of TEnvR to decide which 
formula refinement capabilities of TEnvR they should use and if any further manual refinements are needed. Future versions of this code 
will include additional filters for formula refinement.  
 
Once assigned and refined, formula catalogs are highly comparable to those obtained by other research groups. In a recent study 
(Goranov et al., 2022a), we acquired three separate spectra of SRFA and compared the assigned molecular formulas to those published 
by Hawkes et al. (2020). It was observed that the molecular assignments were highly comparable, indicating a high accuracy of the 
formula assignment pipeline. To more comprehensively confirm accurate formula assignment and comparability to data obtained from 
other software/toolboxes available to environmental scientists, we followed the recommendations by Yi et al. (2023) for testing different 
data processing strategies. The study by Yi et al. (2023) provides molecular results for a set of samples along a freshwater-to-marine 
continuum (a salinity gradient). Molecular results were obtained by using three different tools: the server-based tool ICBM described by 
Merder et al. (2020), the commercial software Composer, and an in-house code described by He et al. (2020). It was found that while the 
three sets of molecular formula catalogs differed to some extent, the overall trends remained the same, and thus, the biogeochemical 
story did not change. Thus, the authors concluded that the three software packages produced highly comparable results, and it is more 
or less a personal preference of which software to use for data processing. To compare the routine of TEnvR to their results, we 
downloaded the calibrated peak lists (.csv files in the Exported data folder in the repository of the project: https://osf.io/6gxdy/) and 

https://osf.io/6gxdy/
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processed them via TEnvR. We used the default settings in the FTMS_ConfigurationAssignment (Slide 91) with the following 
exceptions: no phosphorus allowance (i.e., line 70, P_max = 0;) and we trimmed all formulas with a S/N ratio below 6 (i.e., set SN_Trim 
= false; on line 44 and SN_threshold = 6; on line 45). The obtained molecular results correlated excellently to those obtained using the 
ICBM tool (for simplicity, only comparisons to molecular catalogs from ICBM are shown). Admittedly, there were subtle differences in the 
molecular results as shown on the first figure below (red line is the linear fit, green line is the 1:1 line). The excellent linearities (high R2 
values) indicate that the source of deviation from the 1:1 line is systematic and must have been caused by differences in processing: 
different peak-picking routines (e.g., we used S/N threshold of 6 whereas another peak-picking routine was used for the ICBM processing) 
or formula generation/refinement criteria. These discrepancies will be investigated in the future, which is also what Yi et al. (2023) 
recommends as future direction for the community using ultrahigh resolution mass spectrometry. Detailed description of the different 
molecular parameters can be found in the following sections corresponding to the FTMS_CompoundClass and FTMS_Metrics codes. 
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Nevertheless, the obtained molecular catalogs from TEnvR showed a highly comparable biogeochemical trend to the trend from the other 
three tools explored by Yi et al. (2023). For simplicity, only the comparison to the ICBM data is shown on the figure below. Displayed is 
the magnitude-weighted H/C ratio for each sample relative to salinity. The correlational parameters and its overall appearance between 
the two tools are practically identical, concluding that TEnvR produces comparable results to those obtained from other software tools.  
 

 
 
Please note that the FTMS_RefinementFormulas code will only work on versions of MATLAB that are 2021a and newer (older versions 
contain a different version of the readtable function, which is does not work for this code).  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 

 
• FTMS_Process 
 
So far, the explained capabilities of TEnvR for processing FT-ICR-MS data have depended on the use of three separate codes 
(FTMS_RefinementPeaks, FTMS_FormulaAssignment, and FTMS_RefinementFormulas). This stepwise approach is very helpful for 
assigning problematic NOM samples (rainwater, aerosol, ice cores, marine oil snow, biochar leachates, etc.). However, this approach 
causes a discontinuity in the data processing routine and automation is challenging. For less problematic NOM samples, such as terrestrial 
(riverine, lake, swamp) and marine (estuarine, coastal, marine, deep ocean) NOM samples, as well as various soil extracts and their 
humic/fulvic fractions, the data processing does not require stepwise processing and detailed monitoring by the user. Automating these 
routines can allow for high efficiency when working with larger datasets. This will be exemplified later in this tutorial. 
 
The FTMS_Process code loads the calibrated lists of a sample, a blank, and the FTMS_ConfigurationAssignment file. Prior to using 
this code, the user must define the elemental criteria (e.g., 12C5-∞, 1H5-100, 16O1-30, 14N0-5, 32S0-2, 31P0-1), ionization mode, accuracy and 
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precision, and other relevant formula assignment/refinement parameters inside the configuration code (lines 42-111, Slides 91-92). Then, 
the FTMS_Process code can be used as shown below. Here, we will employ it on Sample 2: 

 
Slide 115: FTMS_Process('Sample 2.txt','Blank PPL.txt',FTMS_ConfigurationAssignment) 
 
This code has the FTMS_RefinementPeaks, FTMS_FormulaAssignment, and FTMS_RefinementFormulas codes internally 
connected. Therefore, once the FTMS_Process code is executed using the command above, the sample and blank list are automatically 
processed using FTMS_RefinementPeaks as previously described. Then, the refined peak list (exported as “_Refinement.txt”) is 
automatically re-loaded in MATLAB by the FTMS_FormulaAssignment code and formulas are assigned. The produced formula 
assignments are then directly refined as discussed previously using FTMS_RefinementFormulas. After the FTMS_Process code is 
employed, it will produce all files that were collectively produced for Sample 1 and described earlier (Slide 115), and a quality control 
figure is also visualized by MATLAB in a maximized Figure window (Slide 116). 
 
In summary, TEnvR includes two data processing pipelines for ultrahigh resolution mass spectrometry data: a manual pipeline involving 
the use of FTMS_RefinementPeaks, FTMS_RefinementFormulas, and FTMS_RefinementFormulas; and an automated pipeline 
using FTMS_Process. It must be noted that users must exercise caution and consider the specifics of their particular dataset and sample 
matrices in order to perform quality control of the obtained molecular formula catalogs. The processing parameters described are not 
universal and should not be applied to all datasets without performing appropriate quality control of the obtained results. Thus, the 
employed parameters in FTMS_ConfigurationAssignment may need to be adjusted depending on the application. 
 
Note: the FTMS_Process script will only work on versions of MATLAB that are 2021a and newer due to the readtable function within 
FTMS_RefinementFormulas (older versions of MATLAB contain a different version of the readtable function, which does not work for 
this code). 
 
Please also note that all codes below are going to use the FTMS_ConfigurationToolbox configuration file (Slide 93). 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_Metrics 
 
Once molecular formulas are refined and the formula list is finalized, a variety of metrics can be computed that can serve as bulk 
descriptors for the molecular composition. These are various averages of metrics derived from the molecular formulas. For example, five 
of these metrics were already discussed above (H/C, O/C, DBE, DBE/C, and AIMOD). Metrics can be calculated in two modes: number-
based and magnitude-weighted. The number-based averages are solely based on the metric for each molecular formula. For example, 
for the H/C average (𝐻𝐻/𝐶𝐶������), it is calculated by taking the arithmetic mean of all formulas (total number of formulas = n) in the formula list: 
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𝐻𝐻/𝐶𝐶������ =
∑ 𝐻𝐻/𝐶𝐶𝑖𝑖𝑛𝑛
1

𝑛𝑛
 

For Sample 1 (Slide 117): 

𝐻𝐻/𝐶𝐶������ =
∑ 𝐻𝐻/𝐶𝐶𝑖𝑖𝑛𝑛
1

𝑛𝑛
=

1.00 + 0.89 + 0.83 + 1.80 + 2.00 + ⋯
6465

= 0.99 
 
The magnitude-weighted averages take into account the spectral magnitude of each peak. They are calculated by first scaling (“weighing”) 
the metric of interest to the peak magnitude. This is done by multiplying the metric with the relative magnitude of the formula. Here, 
relative magnitude of peaks is calculated by dividing each peak magnitude by the total spectral magnitude (i.e., the sum of all peaks). 
This magnitude normalization approach is known as total sum scaling (TSS) and is the approach employed by the codes in TEnvR. Other 
normalization approaches do exist and some may be more appropriate for certain datasets (Thompson et al., 2021). The limitation of 
TEnvR to strictly employ TSS normalization will be overcome in future versions of it. The calculation of the magnitude-weighted H/C 
average (𝐻𝐻/𝐶𝐶𝑤𝑤�������) is shown below: 
 

𝐻𝐻/𝐶𝐶𝑤𝑤������� = ��𝐻𝐻/𝐶𝐶𝑖𝑖 ×
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛
1

�
𝑖𝑖

𝑛𝑛

1

 

For Sample 1 (Slide 118): 
 

𝐻𝐻/𝐶𝐶𝑤𝑤������� = �1.00 ×
3678250

2.35 × 1011
� + �0.89 ×

3750509
2.35 × 1011

� + �0.83 ×
5339945

2.35 × 1011
� + �1.80 ×

4030800
2.35 × 1011

� + �2.00 ×
5368680

2.35 × 1011
� + ⋯ = 0.94 

 
The user must carefully select which type of average to use in their study. Number-based averages are useful when one wants to see 
how all molecules12 in a sample contribute to the particular metric. This number-based metric, however, can be biased by formulas of low 
magnitude having vastly different values for the particular metric. Thus, magnitude-weighted averages may be used that will not be 
severely impacted by formulas of low magnitude. The resultant value can be more representative of the average metric (e.g., H/C) of the 
whole sample as peaks of minor magnitudes (and likely low S/N) will barely impact this metric. However, whenever spectral magnitudes 
are used, it must be considered that they are a product of ionization and not quantity (D'Andrilli et al., 2020), as ESI-FT-ICR-MS is not 
quantitative. Thus, magnitude-weighted metrics can be particularly biased to represent a particular group of highly ionizable compounds, 
and other compounds of poor ionizability will be underrepresented. It is particularly critical for cases when magnitude-weighted averages 
are to be used that all spectra are acquired with proper tuning and are reproducible (Hawkes et al., 2020). If spectra are acquired on 
different days, they must be comparable and reproducible in order for their spectral magnitudes, and therefore their magnitude-weighted 
metrics, are to be compared later.  
 

 
12 All molecules that have been observed in the analytical window of the ESI-FT-ICR-MS. 
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The FTMS_Metrics code computes number-based averages, number-based standard deviations, as well as magnitude-weighted 
averages13 of 31 parameters derived from molecular formulas:  

→ Average number of elements: C, H, O, N, S, P, E 
→ Elemental ratios: O/C, H/C, N/C, Cl/C, H/N, O/N, H/S, H/P, O/S, O/P, N/S, P/S, H/E, O/E, N/E 
→ Average mass of the whole molecule (ExactMass) 
→ Double-bond equivalencies (DBE), C-normalized DBE (DBE/C), H-normalized DBE (DBE/H), O-normalized DBE (DBE/O), and 

O-corrected DBE (DBE-O). DBE/C, DBE/H, and DBE/O are generally using in classifying molecular formulas as “carboxyl-rich 
alicyclic molecules” or CRAM (Hertkorn et al., 2006). The DBE-O measure has been found useful in classifying molecules 
based on their photo-reactivity in photochemical studies of NOM (Gonsior et al., 2009). DBE/C is a measure of aromaticity 
(Hockaday et al., 2006), as described above.  

→ Modified Aromaticity Index (AIMOD) – a more robust measure of aromaticity. It is based on the probability of having a high density 
of π-bonds in a molecule (Koch and Dittmar, 2006, 2016). 

→ Number of Condensed Rings (Ring) – an estimation of the number of rings of condensed aromatic molecules. This metric is 
derived using a list of 193 polycyclic aromatic hydrocarbons (PAHs) with known structure, number of condensed rings, and 
molecular formula. The compounds in the list are of a varied number of rings (2-21), molecular weight (117-1167 g/mol), and 
nitrogen content (0-3). This list of PAHs is provided in the “FTMS_PAHs.xlsx” file located in the Supplementary Files folder of 
TEnvR. It was identified that the number of rings (known from structure) and DBE have a strong relationship (R2=0.9805) that 
can be used to develop a calibration curve (Slide 119). This calibration can be used to estimate the number of rings for formulas 
in unknown samples. It must be noted that this calculation is valid only for compounds of highly condensed character (PAHs 
and ionizable condensed aromatic compounds). Thus, this calculation is done only for compounds with AIMOD ≥ 0.67 (Koch and 
Dittmar, 2006, 2016) and C-number ≥ 15 (Osterholz et al., 2016).  
 

Ring =
DBE − 3.1374

2.436
 

 
→ Nominal oxidation state of carbon (NOSC) – the average oxidation state of all carbons in a molecule. This parameter can be a 

proxy for polarity, solubility, biogeochemical reactivity, and bioavailability of substances (Kroll et al., 2011; LaRowe and Van 
Cappellen, 2011). For example, it has been used to study the alteration of NOM by polyvalent cations (Riedel et al., 2012). The 
presence of halogens is critical in this computation. The user must indicate whether a halogen was additionally assigned in the 
FTMS_ConfigurationToolbox file (line 49, variable Heteroelement_Halogen, Slide 93).  

 

If 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′ ∶  NOSC = 4 −
4𝐶𝐶 + 𝐻𝐻 − 3𝑁𝑁 − 2𝑂𝑂 − 2𝑆𝑆 + 5𝑃𝑃 − 𝐶𝐶𝐶𝐶

𝐶𝐶
 

 

 
13 A standard deviation cannot be calculated for the metric when it is magnitude-weighted. 
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If 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ′𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓′ ∶  NOSC = 4 −
4𝐶𝐶 + 𝐻𝐻 − 3𝑁𝑁 − 2𝑂𝑂 − 2𝑆𝑆 + 5𝑃𝑃

𝐶𝐶
 

 
It must be noted that heteroelement-specific averages and standard deviations (N, S, P, E, N/C, Cl/C, H/N, O/N, H/S, H/P, O/S, O/P, N/S, 
P/S, H/E, O/E, N/E) are calculated for formulas containing at least one heteroelement. For example, N/C is calculated as the average of 
N/C ratios for all formulas containing at least 1 nitrogen (CHON, CHONS, CHONP, etc.), excluding formulas without nitrogen (CHO, 
CHOS, etc.). See the example described below for phosphorus. 
 
The presence of a heteroelement is also critical for the computations of DBE and AIMOD. These metrics are not computed by the 
FTMS_Metrics code but are loaded from the “_Final.xlsx”. Thus, the presence of heteroelement is accounted for in these computations 
as described earlier for the FTMS_RefinementFormulas.  
 
To use the FTMS_Metrics code, keep the TestData_FTICRMS folder as your Current Folder: 
 
Slide 120: FTMS_Metrics('Sample 1_Final.xlsx') 
 
A new Excel file is created labeled “_Metrics.xlsx” (here, “Sample 1_Final_Metrics.xlsx”) that will contain the formula list that was used in 
the code (everything from “Sample 1_Final.xlsx” is copied) with all metrics listed to the right (Slides 121 and 122). Here, because the 
maximum value of P atoms allowed is 1, any formulas containing P will only have 1 phosphorus atom. As such, the average number of 
P in the formulas including P is 1 (and the standard deviation is 0). 
 
We recognize that other metrics exist (Merder et al., 2020) and the FTMS_Metrics code is not fully inclusive. Future versions of the code 
will aim to expand the list of metrics. Users are welcome to share feedback with the corresponding author if they have a request for any 
additional metrics to be coded for future versions. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_CompoundClass 
 
Molecular formulas, depending on their composition, can be categorized into different molecular categories referred to as “compound 
classes”. These groups are exclusive (i.e., compound classes do not overlap, see Slide 123) and therefore this is a crude approach to 
classify observed molecular formulas based on assumed structure and biopolymeric source. This approach of separating the vK space 
into succinct regions has been incredibly useful in studying NOM biogeochemistry (Antony et al., 2017; He et al., 2019; He et al., 2018; 
Hockaday et al., 2009; Ikeya et al., 2015; Kim et al., 2003a; Koch et al., 2005; Kujawinski and Behn, 2006; Ohno et al., 2010; Ohno et al., 
2014; Ohno et al., 2016, 2018; Santl-Temkiv et al., 2013; Schmidt et al., 2009; Sleighter et al., 2015; Sleighter et al., 2014b). However, 
the compound class assignments to molecules are not unambiguous, which is an issue that has been discussed in detail by Sleighter 
and Hatcher (2008). Fundamentally, the reason for this is the high number of structural isomers that are possible for molecular formulas 
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(Hertkorn et al., 2007; Wieland et al., 1996). Additionally, the stoichiometric boundaries used to define the different compound classes 
are highly variable among studies. We have provided a summary of several different compound class categorizations found in the 
literature in the “FTMS_CompoundClasses.pdf” document (Slide 124) found in the Supplementary Files folder of TEnvR. In a nutshell, 
the compound class categorization approach can be incredibly useful for a particular dataset and project, but it may also be detrimental 
to the study and create artificial trends. Thus, we advise that the employment of compound classes is done carefully and possibly in 
conjunction with a validation using another analytical technique. For example, findings using compound classes have been correlated 
with observations by fragmentation mass spectrometry (Stenson et al., 2003), NMR (Hertkorn et al., 2006; Hertkorn et al., 2013; Kim et 
al., 2003b; Kim et al., 2004), or UV-VIS and fluorescence spectroscopies (Goranov et al., 2022b; Stubbins et al., 2014), but in other 
cases, lack of such correlations has been also observed (Wagner et al., 2017; Wozniak et al., 2020).  
 
Based on the different categorizations of compound classes in the literature (summarized in “FTMS_CompoundClasses.pdf”, Slide 124), 
we have developed a categorization that is inclusive of most, as shown in the table below. Users are welcome to further edit the code 
and adjust the stoichiometric boundaries per their needs. These are also visualized on Slide 123. 

 
Compound Class Stoichiometric Boundaries 

E-containing E > 0 
Condensed Aromatic Compounds (ConAC) AIMOD ≥ 0.67 & C ≥ 15 

Small Condensed Aromatics (SCA) AIMOD ≥ 0.67 & C < 15 
Lignin AIMOD < 0.67 & H/C < 1.5 & O/C < 0.67 & O/C > 0.1 
Tannin H/C < 1.5 & O/C ≥ 0.67 & AIMOD < 0.67 

Sulfonic Acid (SA) H/C ≥ 2 & O/C < 0.67 & S > 0 
Amino Sugars (AS) H/C ≥ 1.5 & O/C ≥ 0.55 & N > 0 

Sugar H/C ≥ 1.5 & O/C ≥ 0.67 
Protein H/C ≥ 1.5 & O/C < 0.55 & N > 0 

Fatty Acid (FA) H/C ≥ 2 & O/C < 0.67 & N = 0 
Lipid (includes saturated aliphatics) H/C < 2 & H/C ≥ 1.5 & O/C < 0.67 & N = 0 

Unsaturates H/C < 1.5 & AIMOD > 0 & AIMOD < 0.67 & O/C < 0.1 
Extra Formulas that do not fit in any of the boundaries above 

 
To use the FTMS_CompoundClass code, keep the TestData_FTICRMS folder as your Current Folder: 
 
Slide 125: FTMS_CompoundClass('Sample 1_Final.xlsx') 
 
The code first produces two figures. The first figure has three panels (Slide 126). The panel on the top left shows the van Krevelen (vK) 
diagram (Kim et al., 2003a; Van Krevelen, 1950) of the sample (a scatterplot of H/C vs O/C). The bottom left plot shows the H/C vs. 
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Molecular Weight plot of the sample, which is also incredibly useful in interpreting ultrahigh resolution mass spectrometry data (Gonsior 
et al., 2018; Powers et al., 2019; Valle et al., 2020). The right plot shows a 3D vK diagram with relative magnitude (TSS-normalized 
(Thompson et al., 2021) and in log10-units), allowing for visualization of the spectral distribution of the ionized molecules. The figure panels 
of MATLAB are interactive and the user is able to zoom in/out, copy a sub-panel, change the view angle of a sub-plot, and click on an 
individual point to see its x, y, and z values. Please see the following website for instructions of the interactive capabilities of MATLAB: 
https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.html. We show an example of how to rotate a 
3D plot (Slide 127). The second figure shows vK diagrams of formulas categorized in two different ways (Slide 128). On the left panel, 
formulas are plotted with different markers and colors depending on their formula type (CHO, CHON, CHOS, CHOP, etc.). On the right 
panel, formulas are plotted with different markers and colors depending on their compound class as described in the table above (ConAC, 
SCA, Lignin, Tannin, etc.). These figures are also saved in your Current Folder as “vK_all_Sample 1_Final.png” and “vK_groups_Sample 
1_Final.png” (Slide 125). The code also exports a new Excel file named labeled “_CompoundClass.xlsx” (here, “Sample 
1_Final_CompoundClass.xlsx”) (Slide 125).  
 
The first sheet (named “Sheet1”) of the Excel file contains the formula list that was used in the code (here, “Sample 1_Final.xlsx”) (Slide 
129). Two more columns are added: Relative Magnitude (column T, labeled RelMagn) and Compound Class category (column U, labeled 
Class). To the right, there are numerous statistics calculated: 1) number of formulas and total spectral magnitude; 2) statistics for different 
formula types (CHO, CHON, CHOS, CHOP, etc.) including number of formulas and number- and magnitude-based percentages; and 3) 
statistics for different compound classes (ConAC, SCA, Lignin, Tannin, etc.) including number of formulas and number- and magnitude-
based percentages.  
 
This new file (here, “Sample 1_Final_CompoundClass.xlsx”) also has a new sheet for each different formula type (CHO, CHON, CHOS, 
CHOP, etc.) and compound class (ConAC, SCA, Lignin, Tannin, etc.). The FTMS_CompoundClass also has the FTMS_Metrics code 
incorporated, and the latter is employed on all sheets. Using the FTMS_CompoundClass code on is a convenient way for researchers 
to quickly extract formulas of interest (for example, CHO as shown on Slide 130) and individually plot them or look into their metrics.  
 
The FTMS_CompoundClass code provides two incredibly useful figures and a wealth of information about the molecular formulas that 
were loaded. This code is our first immediate approach to evaluate molecular formulas following data processing, as this code will 
immediately allow for data visualization and may allow for observation of immediate trends.  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_Automation 
 
While the codes listed above can be individually applied on samples, this is inconvenient for datasets containing a large number of 
samples. Thus, these codes are incorporated into an automation routine. The FTMS_Automation script is capable of automatically 
refining peaks, assigning formulas, refining formulas (using FTMS_Process), as well as performing FTMS_Metrics and 

https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.html
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FTMS_CompoundClass on large datasets containing numerous samples. This code is controlled by the user in a similar way as the 
EEM_Process_Generic and EEM_Process_Aqualog are executed – section by section.  
 
Prior to using the FTMS_Automation code, please delete all files that were created from the examples above (Slide 131). When 
FTMS_Automation is applied, only the raw sample data (samples + blank file) must be located in the Current Folder (i.e., Current Folder 
should be as shown on Slide 89).  
 
Prior to running FTMS_Automation, it is important to note that the time required to process numerous samples can vary significantly with 
computer power. It is crucial to set the power settings on your computer or laptop so that the computer and screen never go to sleep and 
that the screen saver is disabled, to ensure continuous processing. If the computer goes to sleep, MATLAB will stop running (but will 
resume once woken). 
 
Slide 132: edit FTMS_Automation 
 
The FTMS_Automation code consists of several different sections for automating different FTMS codes. The first section (%% Section 
1: Automation for FTMS_Process) is for automated peak refinement, formula assignment, and formula refinement using FTMS_Process 
(Slide 132). Click on the section and then click Run Section. A dialog window will pop up to request the name of the blank file; please 
input the full filename of the blank (Blank PPL.txt), including the extension, with no apostrophes as shown to the right. 
 
 
 
Blank PPL.txt 
 
 
 
 
The code will then perform FTMS_Process on all 20 samples of the provided dataset and use the specified blank file. Once the code is 
finished, the current folder will be populated with the 6 files from FTMS_Process for each sample (therefore, 120 new files will be created) 
(Slide 133). The code outputs messages when each sub-code of FTMS_Process is employed (peak refinement using 
FTMS_RefinementPeaks, formula assignment, formula refinement using FTMS_RefinementFormulas) and also lists the time it took 
for each sub-code to run. Once the automated processing is done, the code will output a completion message in the Command Window: 
Automated processing with FTMS_Process – Complete! Again, the time required to run this step will vary by computer, and it is important 
to make sure that your computer and screen do not go to sleep while processing codes. 
 
While we do not show an example of this in the tutorial slides, users can perform the same automation routine to process the example 
data obtained in positive-mode ESI. To do this, set TEnvR\TestData_FTICRMS\PositiveMode as your Current Folder (Slide 90). In 
FTMS_ConfigurationAssignment (Slide 91), change the Ionization_Mode variable (line 56) to positive, and allow for assignment of 
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sodium and potassium (change K_max and Na_max variables on line 70 to 1). Employ Section 1 of the FTMS_Automation code as 
described above and shown on Slide 132. The blank for this dataset is labeled “Blank_pos.txt”.  
 
Once all samples are assigned, we can assess them using the previously described FTMS_CompoundClass and FTMS_Metrics codes 
in an automated fashion.  
 
The next part of the FTMS_Automation code is to apply FTMS_CompoundClass on all samples. Scroll down to the next section (%% 
Section 2 Automation for data exploration using FTMS_CompoundClass). Click on the section and then click Run Section (Slide 134). 
The code will only load Excel files ending with “_Final.xlsx”; thus the other files of this folder will not obstruct the execution of the code. 
Once the automated processing of the 20 samples is finished, 40 figures (2 figures from Slides 126 and 128 x 20 samples) will be 
produced (Slide 135) that can be then easily opened (externally via Explorer) and clicked through to observe the molecular composition 
of the 20 samples. An Excel file (“_CompoundClass.xlsx”) described previously will be output for each sample (Slide 134). Finally, the 
code will output an Excel file named “FTMS CompoundClass Master Report.xlsx” (Slide 134) that will contain a summary of all Compound 
Class statistics for each sample (Slide 136). For this step of the tutorial, expect this code section to take anywhere from 20-60 min to 
complete. 
 
The next part of the FTMS_Automation code is to apply FTMS_Metrics on all samples. Scroll down to the next section (%% Section 3: 
Automation for data exploration using FTMS_Metrics). Click on the section and then click Run Section (Slide 137). The code will only 
load Excel files ending with “_Final.xlsx”; thus the other files of this folder will not obstruct the execution of the code. Once the automated 
processing of the 20 samples is finished, an Excel file named “FTMS Compound Class Master Report.xlsx” will be output (Slide 137) that 
will contain a summary of all metrics for each sample (Slide 138). Sheet “Sheet1” contains number-based averages, sheet “STDEV” 
contains the number-based standard deviations, and sheet “Metrics Weighed” contains magnitude-weighted averages.  
 
The last section of the code (%% Section 4: Automation for generic function (FTMS_Function)) is designed to provide a building block for 
automation for any other FTMS function that is to be employed on numerous processed (“_Final.xlsx”) samples. This code piece can be 
used to employ FTMS_Metrics, FTMS_CompoundClass, FTMS_Figures (code described below), FTMS_Peptides (code described 
below), etc. We will not show an example of this section. If users want to run this section, they can follow the instructions on Slide 139. 
 
The FTMS_Automation code utilizes external functions for alphanumeric sorting of filenames (natsortfiles and natsort) developed by 
Stephen Cobeldick (https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort). These codes and their 
license are found in TEnvR\Supplementary files\Internal codes. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
 
 
 

https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort
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• FTMS_Figures 
 
To further explore the molecular composition of a studied sample, FT-ICR-MS or Orbitrap molecular formulas can be visualized in various 
ways using FTMS_Figures. To use it, keep the TestData_FTICRMS folder as your Current Folder: 
 
Slide 140: FTMS_Figures('Sample 1_Final.xlsx') 
 
The code produces four figures with numerous panels containing many different types of figures:  

→ The first figure (Slide 141) contains 24 histograms of nearly all parameters that were used to calculate averages by 
FTMS_Metrics. This figure is saved in the Current Folder as “Fig_Histograms_filename.png” (Slide 140).  

→ The second figure (Slide 142) contains 8 different 3D vK diagrams. The third dimension is based on magnitude, molecular 
weight, N/C, S/C, P/C, E/C, DBE, and NOSC. Such plots have been found very useful in interpreting the molecular composition 
of NOM (Sleighter and Hatcher, 2007; Wu et al., 2004). The figure panels of MATLAB are interactive and the user is able to 
zoom in/out, copy a sub-panel, change the view angle of a sub-plot, and click on an individual point to see its x, y, and z values. 
Please see the following website for instructions of the interactive capabilities of MATLAB: 
https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.html. This figure is saved in the 
Current Folder as “Fig_3DvKs_filename.png” (Slide 140).  

→ The third figure (Slide 143) contains 8 plots evaluating different KMD homologous series (CH2, H2, COO, CH2O, O2, H2O, NH3, 
and HCl). KMD series analysis is a well-accepted approach for evaluating molecular composition (Dittmar and Koch, 2006; 
Hughey et al., 2001; Ikeya et al., 2015, 2020; Kendrick, 1963; Wu et al., 2004). This figure is saved in the Current Folder as 
“Fig_KMDplots_filename.png” (Slide 140). 

→ The fourth and last figure (Slide 144) contains 10 plots of various parameters (H/C, O/C, N/C, S/C, P/C, NOSC, DBE, DBE/C, 
AIMOD, C-normalized Ring) relative to the number of carbon atoms. The formulas are color-coded based on relative magnitude 
(TSS-normalized (Thompson et al., 2021) and in log10-units). Evaluating molecular parameters relative to number of carbons 
is another useful approach to evaluate the molecular composition of NOM (Cho et al., 2017; Hsu et al., 2011). This figure is 
saved in the Current Folder as “Fig_Cnumberplots_filename.png" (Slide 140). 

 
We recognize that the FTMS_Figures code is not fully inclusive to all possible figures that can be plotted using ultrahigh resolution mass 
spectrometry data. Furthermore, the produced figures are not of publication-grade quality. The sole purpose of the FTMS_Figures code, 
as well as to any of the other figure codes of TEnvR, is to provide a more detailed exploration of the sample that is being evaluated and 
to give the researcher ideas of how to further plot their data. Here, the FTMS_Figures code can be used to provide building blocks (e.g., 
a histogram plot) for creating codes that produce publication-grade figures. We have used such customized codes to produce high quality 
figures in our recent publications (Goranov et al., 2020, 2022b). 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 

https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.html
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• FTMS_Figure_MD 
 
Another useful approach for assessing the molecular composition is based on mass defects. To use this code, keep the 
TestData_FTICRMS folder as your Current Folder: 
 
Slide 145: FTMS_Figures_MD ('Sample 1_Final.xlsx') 
 
The FTMS_Figures_MD code plots the molecular formulas on a vK diagram as well as an H/C vs. Molecular Weight plot (Slide 145). 
Formulas are coded based on their mass defect: 0-0.1 in pink, 0.1-0.2 in blue, 0.2-0.3 in red, 0.3-0.4 in green, 0.4-0.7 in cyan, and 0.95-
1 in black. The black lines indicate modified aromaticity index cutoffs (Koch and Dittmar, 2006, 2016). 
 
• FTMS_Compare 
 
Once each individual formula list is evaluated using FTMS_CompoundClass and FTMS_Figures, more advanced data analysis 
approaches can be undertaken. A critical technique for evaluating two or more samples altogether is the Presence/Absence approach 
described in detail by Sleighter et al. (2012). This technique compares two formula lists and identifies common formulas (formulas that 
are “Present” in both samples being evaluated). Formulas that are unique to only one of the samples are also identified (formulas that 
are “Absent” from both samples being evaluated). Formula comparisons are done based on the computed molecular weight (“ExactMass”) 
of each formula. Molecular weights are rounded to the user-defined precision in the FTMS_ConfigurationToolbox, line 45, variable 
“Precision” (Slide 93). For the instruments we have experience with, we use a precision of 5 decimals. The Presence/Absence approach 
is a powerful technique for evaluating changes across environmental gradients (e.g., salinity transects, depth profiles) or during 
environmental processing (e.g., photochemical/microbial degradation) and has been used extensively in environmental research 
(Goranov et al., 2020, 2022b; Patel et al., 2021; Powers et al., 2019; Stubbins et al., 2010; Ward and Cory, 2016; Ward et al., 2014; Yuan 
et al., 2019).  
 
However, it must be noted that the Presence/Absence approach is prone to biases due to the common use of ESI sources in FT-ICR-MS 
work. Formulas that are absent in one sample may have vanished due to an actual change that occurred to the sample (e.g., 
photochemical degradation), but they also may have vanished artificially due to an ionization bias (Patriarca et al., 2020). This is often 
observed in photochemical studies: compound classes that are present in a control sample but are no longer present in a photo-irradiated 
sample may have vanished because of their photo-degradation. However, they may still be present but be outcompeted due to preferential 
ionization of photochemically produced molecules. And vice versa, compound classes that are absent in a control sample but become 
present in a photo-irradiated sample may be truly photo-produced, but they also may have been suppressed in the control sample and 
become more ionizable in the photo-irradiated sample, as seen previously by Goranov et al. (2020). Thus, the employment of the 
Presence/Absence approach must be employed with clear hypotheses and expectations to avoid incorrect interpretations (D'Andrilli et 
al., 2020). Furthermore, we recommend that the use of Presence/Absence analysis of FT-ICR-MS data is paired with supplementary 
analyses that will validate the mass spectrometric findings and eliminate the possibility of an ESI bias. Previously, we have validated 
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findings from the Presence/Absence approach using absorbance, fluorescence, NMR, and compound-specific measurements (Goranov 
et al., 2020, 2022b; Wozniak et al., 2020).  
 
To use the FTMS_Compare code, keep the TestData_FTICRMS folder as your Current Folder: 
 
Slide 146: FTMS_Compare('Sample 1_Final.xlsx', 'Sample 2_Final.xlsx') 
 
The code produces three figures that pop up as maximized windows. On the first figure (Slide 147), the two whole samples are plotted 
and stacked on top of each other using vK (top left) and H/C vs molecular weight (bottom left) plots. Unique formulas to each sample are 
also plotted on vK (top right) and H/C vs molecular weight (bottom right) plots. Useful statistics (number of total, unique, and common 
formulas) are shown in the legends of each figure panel.  
 
The second figure (Slide 148) plots only the common formulas on 3D vK diagrams colored according to the spectral magnitudes (TSS-
normalized (Thompson et al., 2021) and in log10-units) of the first and second sample (here, “Sample 1_Final.xlsx” and “Sample 
2_Final.xlsx”) on the left and middle panels, respectively. The color bars are normalized to the same range to enable an easier comparison 
between the two samples. Percent change is calculated using the relative magnitudes of each formula (i) from the two samples as shown 
below: 
 

%Changei =
Rel. Magnitude (Sample 2)i −  Rel. Magnitude (Sample 1)i

Rel. Magnitude (Sample 1)i
× 100 

 
The third panel on the right has the common formulas color-coded using the calculated % Change. This plot should be used cautiously 
and interpreted very carefully. Peak magnitudes in ESI mass spectrometry mainly correspond to molecular ionizability rather than quantity. 
Thus, an increase or decrease of the magnitude of a group of formulas may not necessarily correspond to formulas increasing or 
decreasing in quantities. We generally use this plot to validate trends from plots of unique formulas (top right of the first figure, Slide 147). 
If a group of formulas vanished from Sample 1 and another group of formulas became present in Sample 2, we expect to see a negative 
and positive change, respectively, in the same regions amongst the common formulas (Slide 148). Please note that the figure panels are 
interactive and any of the 3D plots can be rotated in the three dimensions by the user (as shown on Slide 127).  
 
The third figure (Slide 149) shows a Venn diagram on the left panel with statistics for the three pools of formulas – unique for sample 1, 
common for both samples, and unique for sample 2. The diagram lists number of formulas, as well as number- and magnitude-based 
percentages. The number-based percentages (num%) are based on the total number of formulas in the dataset, which are the formulas 
of the three pools (unique for sample 1 + common for both samples + unique for sample 2). Therefore, the total number of formulas 
(8099) is equal to the number of formulas of both samples (6465 + 6252), but here the common formulas among the two samples are 
duplicated and therefore 4618 must be subtracted, giving the total number of formulas has 6465 + 6252 - 4618 = 8099. The 8099 total 
formulas correspond to 1847 unique formulas to Sample 1, 4618 common formulas to both samples, and 1634 unique formulas to Sample 
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2. Magnitude-based percentages are on a per-sample basis. For example, the number of unique formulas in Sample 1 (1847) relative to 
the formulas in the three pools (1847+4618+1634) is 23%. The unique formulas in Sample 1 correspond to 14% of its spectral magnitude. 
The number of common formulas in Sample 1 (4618) relative to the formulas in the three pools (1847+4618+1634) is 57%. The common 
formulas in Sample 1 correspond to 86% of its spectral magnitude.  
 
Venn diagram statistics are incredibly useful in interpreting trends across environmental gradients (Sleighter and Hatcher, 2008). The 
figure on the right panel is a scatterplot that evaluates the relative magnitude of common formulas in the two samples. The goodness-of-
fit (R2) of the linear fit (as a black dotted line) is listed in the title, and a one-to-one line is also plotted (in red) for easier slope comparison. 
Generally, a higher R2 value closer to 1 indicates little change to the spectral distribution of common formulas. If two different samples 
are being compared, the R2 can be used to deduce the similarity in magnitude distribution of their common formulas (assuming both 
samples were of equal ionizability). If the same sample being analyzed twice is being compared (as either an experimental or instrumental 
duplicate), this plot can serve as an evaluation of reproducibility (Sleighter et al., 2012).  
 
The code also produces an Excel file (named “Comparison_filename1_filename2.xlsx”, here “Comparison_Sample 1_Final_Sample 
2_Final.xlsx”) where the three different pools of formulas (unique for sample 1, common for both samples, unique for sample 2) are 
separated in different sheets (Unique1, Unique2, Common114, Common214). An example is shown for the unique formulas for sample 1 
on Slide 150. A new column with Relative Magnitude is added for each formula list (column T, label RelMagn). The two samples used in 
the code (here, “Sample 1_Final.xlsx” and “Sample 2_Final.xlsx”) have their formula lists copied in this file also (in sheets “Data1” and 
“Data2”, respectively). The default Excel sheet “Sheet1” contains the numeric statistics from the analysis (statistics found on the Venn 
diagram as well as slope parameters from the linear fit, Slide 151). The FTMS_Compare code also has the FTMS_Metrics code 
incorporated and the latter is employed on all sheets, providing a convenient way to evaluate the bulk averages of the molecular formulas 
that are unique or common to the two samples (Slide 150).  
 
In addition to the Excel file, the three figures are exported as .png files. All exported files are labeled with the two sample names to create 
a paper trail (Slide 150). We recognize that the employment of TEnvR on computers with screens of different sizes and resolutions may 
change the appearance of these figures. If that is the case, we recommend users to use the code provided behind the figures and use it 
as a backbone for figures suitable for their systems. In future versions of TEnvR, we will advance these codes to be more universally 
applicable. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
 
 
 

 
14 While molecular formulas in Common1 and Common2 are identical, their relative magnitudes, signal-to-noise (S/N), and estimated C-numbers (Estim #C) differ 
between the two samples.  
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• FTMS_Compare3 
 
This code is designed for comparing three samples using the presence/absence approach described above. This code is an extension 
of FTMS_Compare. Formula comparisons are done based on the computed molecular weight (“ExactMass”) of each formula. Molecular 
weights are rounded to the user-defined precision in the FTMS_ConfigurationToolbox, line 45, variable: Precision (Slide 93). For the 
instruments we have experience with, we use a precision of 5 decimals. This code also produces publication-grade figures that we have 
used previously (Goranov et al., 2022a; Goranov et al., 2020).  
 
To use the FTMS_Compare3 code, keep the TestData_FTICRMS folder as your Current Folder: 
 
Slide 152: FTMS_Compare3('Sample 1_Final.xlsx', 'Sample 2_Final.xlsx','Sample 3_Final.xlsx') 
 
The code first compares the three formula lists and identifies common formulas that are present in all three samples. Common formulas 
are plotted for each sample on the first figure that pops up as a maximized window (Slide 153), which is color-coded based on the spectral 
magnitude for each sample (TSS-normalized (Thompson et al., 2021) and in log10-units). The black circle serves as a visual reference 
for easier comparisons. Formulas that are unique to one or two samples are separated as “Unique” and plotted on a second maximized 
figure (Slide 154). The modified aromaticity index (AIMOD) range above 0.67 is boxed with black lines and formulas are color-coded based 
on their carbon content. Figures are exported in Tagged Image Format (.tif) format (publication-grade) (named 
“Compare3_Common_filename1_filename2_filename3.tif” and “Compare3_Unique_C_filename1_filename2_filename3.tif”). 
 
The code also produces an Excel file (“Comparison3_filename1_filename2_filename3.xlsx”, here “Comparison3_Sample 
1_Final_Sample 2_Final_Sample 3_Final.xlsx”), where the three unique and three common pools of formulas are separated in different 
sheets (Unique1, Unique2, Unique3, Common115, Common215, Common315). An example is shown for the unique formulas for sample 1 
on Slide 155. A new column with Relative Magnitude is added for each formula list (column T, label RelMagn). The three samples used 
in the code (here, “Sample 1_Final.xlsx”, “Sample 2_Final.xlsx”, and “Sample 3_Final.xlsx”) have their formula lists copied in this file also 
(in sheets “Data1”, “Data2”, and “Data3”, respectively). The FTMS_Compare3 code also has the FTMS_Metrics code incorporated and 
the latter is employed on all sheets providing a convenient way to evaluate the bulk averages of the molecular formulas that are unique 
or common to the three samples (Slide 155).  
 
The FTMS_Compare3 code has a capability to change the color-coding of the Unique formulas. Formulas are by default color-coded 
based on their carbon content (note that the file name for the TIF file generated above includes _C in the file name, Slide 152), but this 
can be changed to their N/C ratio. To edit the way samples are color coded, open the code by typing edit FTMS_Compare3 in your 
Command Window (Slide 156). Change the Z_scale variable (line 13) from 'carbon' to 'nitrogen' to enable color-coding based on N/C 
ratio. Click Save. Run the code.  

 
15 While molecular formulas in Common1, Common2 and Common3 are identical, their magnitude, signal-to-noise (S/N) and estimated C-numbers (Estim #C) differ 
between the three samples.  
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Slide 156: FTMS_Compare3('Sample 1_Final.xlsx', 'Sample 2_Final.xlsx','Sample 3_Final.xlsx') 
 
The first figure (“Compare3_Common_filename1_filename2_filename3.tif”) and the Excel file (“Comparison3_ 
filename1_filename2_filename3.xlsx”) will be overwritten, but a new figure will be saved (named 
“Compare3_Unique_N_filename1_filename2_filename3.tif”), using N in the file name rather than C. The new figure is shown on Slide 
157. We recognize that the employment of TEnvR on computers with screens of different sizes and resolutions may change the 
appearance of these figures. If that is the case, we recommend users to take the code provided behind the figures and use it as a 
backbone for figures suitable for their systems. In future versions of TEnvR, we will advance these codes to be more universally applicable.  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_Compare4 
 
This code is designed for comparing four samples using the presence/absence approach described above. This code is an extension of 
FTMS_Compare and FTMS_Compare3. Formula comparisons are done based on the computed molecular weight (“ExactMass”) of 
each formula. Molecular weights are rounded to the user-defined precision in the FTMS_ConfigurationToolbox, line 45, variable: 
Precision (Slide 93). For the instruments we have experience with, we use a precision of 5 decimals. This code also produces publication-
grade figures that we have used previously (Goranov et al., 2020).  
 
To use the FTMS_Compare4 code, keep the TestData_FTICRMS folder as your Current Folder: 
 
Slide 158: FTMS_Compare4('Sample 1_Final.xlsx', 'Sample 2_Final.xlsx','Sample 3_Final.xlsx', 'Sample 4_Final.xlsx') 
 
The code first compares the four formula lists and identifies common formulas that are present in all four samples. Common formulas are 
plotted for each sample on the first figure that pops up as a maximized window (Slide 159). Formulas are color-coded based on the 
spectral magnitude for each sample (TSS-normalized (Thompson et al., 2021) and in log10-units). The black circle serves as a visual 
reference for easier comparisons. Formulas that are unique to one, two, or three samples are separated as “Unique” and plotted on a 
second maximized figure (Slide 160). The modified aromaticity index (AIMOD) range above 0.67 is boxed with black lines and formulas 
are color-color coded based on their carbon content. The Unique formulas are also plotted with no color-coding on a third maximized 
figure (Slide 161). Figures are exported in Tagged Image Format (.tif) format (publication-grade) (named 
“Compare4_Common_filename1_filename2_filename3_filename4.tif”, 
“Compare4_Unique_C_filename1_filename2_filename3_filename4.tif”, and 
“Compare4_UniqueSimple_filename1_filename2_filename3_filename4.tif”, respectively) 
 
The code also produces an Excel file (“Comparison4_filename1_filename2_filename3_filename4.xlsx”, here “Comparison4_Sample 
1_Final_Sample 2_Final_Sample 3_Final_Sample 4_Final.xlsx”) where the four unique and four common pools of formulas are separated 



S82 
 

in different sheets (Unique1, Unique2, Unique3, Unique4, Common116, Common216, Common316, Common416). An example is shown 
for the unique formulas for sample 1 on Slide 162. A new column with Relative Magnitude is added for each formula list (column T, label 
RelMagn). The four samples used in the code (here, “Sample 1_Final.xlsx”, “Sample 2_Final.xlsx”, “Sample 3_Final.xlsx”, and “Sample 
4_Final.xlsx”) have their formula lists copied in this file as well (in sheets “Data1”, “Data2”, “Data3”, and “Data4”, respectively). The 
FTMS_Compare4 code also has the FTMS_Metrics code incorporated and the latter is employed on all sheets providing a convenient 
way to evaluate the bulk averages of the molecular formulas that are unique or common to the four samples (Slide 162). 
  
As described above for FTMS_Compare3, the FTMS_Compare4 code has a capability to change the color-coding of the Unique 
formulas. Formulas are by default color-coded based on their carbon content, but this can be changed to their N/C ratio. To edit the way 
samples are color coded, open the code by typing edit FTMS_Compare4 in your Command Window (Slide 163). Change the Z_scale 
variable (line 14) from ‘carbon’ to ‘nitrogen’ to enable color-coding based on N/C ratio. Click Save. Run the code.  
 
Slide 163: FTMS_Compare4('Sample 1_Final.xlsx', 'Sample 2_Final.xlsx','Sample 3_Final.xlsx', 'Sample 4_Final.xlsx') 
 
The first (“Compare4_Common_filename1_filename2_filename3_filename4.tif”) and third 
(“Compare4_UniqueSimple_filename1_filename2_filename3_filename4.tif”) figures, as well as the Excel file 
(“Comparison4_filename1_filename2_filename3_filename4.xlsx”) will be overwritten. The produced figure (Slide 164) with the nitrogen 
color-coding is saved as “Compare4_Unique_N_filename1_filename2_filename3_filename4.tif”. Again, the color-coding is indicated in 
the figure filename (“_C” or “_N”). We recognize that the employment of TEnvR on computers with screens of different sizes and 
resolutions may change the appearance of these figures. If that is the case, we recommend users to use the code provided behind the 
figures and use it as a backbone for figures suitable for their systems. In future versions of TEnvR, we will advance these codes to be 
more universally applicable. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_Peptides 
 
Molecular formulas can represent peptides and such species are commonly observed in various matrices. They are particularly easy to 
detect in positive ionization mode but can also be found in negative. The FTMS_CompoundsClass code described earlier classifies 
formulas as proteinaceous if they are within certain H/C and O/C ranges and if they have at least one nitrogen present. The 
FTMS_Peptides code can further classify formulas by determining if any of the molecular formulas in a given list are oligopeptides. 
Oligopeptides are defined as a series of linearly bound amino acids. To use the FTMS_Peptides, keep TestData_FTICRMS as your 
current folder: 
 

 
16 While molecular formulas in Common1, Common2, Common 3 and Common 4 are identical, their magnitude, signal-to-noise (S/N) and estimated C-numbers 
(Estim #C) differ between the four samples.  



S83 
 

Slide 165: FTMS_Peptides('Sample 2_Final.xlsx',2,5) 
 
The second (2) and third (5) arguments are the minimum and maximum length of oligopeptide sequences (i.e., number of amino acids in 
a linear peptide). Fundamentally, the code takes this range (here, 2-5) and develops a list of possible combinations of amino acid 
monomers to result in dimers to pentamers. This is done using the combn function of the Toolbox for Dimensionality Reduction developed 
by J. van der Geest and Laurens van der Maaten. More information can be found on the following website: https://github.com/UMD-
ISL/Matlab-Toolbox-for-Dimensionality-Reduction). The number oligopeptides, i.e., number of possible combinations of amino acids 
(denoted as 𝐶𝐶′), is combinatorically calculated based on the number of amino acids monomers (denoted as n) and the requested 
oligopeptide length (denoted as k): 
 

𝐶𝐶𝑘𝑘′ (𝑛𝑛) = �
𝑛𝑛 + 𝑘𝑘 − 1

𝑘𝑘
� =

(𝑛𝑛 + 𝑘𝑘 − 1)!
𝑘𝑘! (𝑛𝑛 + 𝑘𝑘 − 1 − 𝑘𝑘)!

=
(𝑛𝑛 + 𝑘𝑘 − 1)!
𝑘𝑘! (𝑛𝑛 − 1)!

 

 
For example, the number of possible oligopeptide sequences containing 5 amino acids, which can be any of the 20 possible amino acid 
monomers, is 42504.  

𝐶𝐶5′(20) = �
20 + 5 − 1

5
� = �

24
5
� =

24!
5! (24 − 5)!

=
24 · 23 · 22 · 21 · 20 · 19!

5 · 4 · 3 · 2 · 1 · 19!
= 42504 

 
The FTMS_Peptides code determines these combinations for oligopeptides of different lengths. Thus, the total number of combinations 
for oligopeptides of lengths “min” to “max” is calculated as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑚𝑚𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝐶𝐶𝑖𝑖′(20)
𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖=𝑚𝑚𝑚𝑚𝑚𝑚

 

 
For the range given as an example here (2-5), the number of possible oligopeptide sequences containing 2-5 amino acids is 53109: 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (2 − 5) = �𝐶𝐶𝑖𝑖′(20)
5

𝑖𝑖=2

= 𝐶𝐶2′(20) + 𝐶𝐶3′(20) + 𝐶𝐶4′(20) + 𝐶𝐶5′(20) = �
21
2
� + �

22
3
� + �

23
4
� + �

24
5
�

=
21!

2! (21 − 2)!
+

22!
3! (22 − 3)!

+
23!

4! (23 − 4)!
+

24!
5! (24 − 5)!

= 210 + 1540 + 8855 + 42504 = 53109 

 
This range can be further expanded, however, at a certain point the number of possible combinations becomes so big that the processing 
power of the computer will not be enough. In our experience, using a range larger than 2-5 or 2-6 on regular computers is not possible. 
If the user attempts to use a higher range (e.g., 2-7 or higher), and the computer is not powerful enough, an error message will be 
displayed and MATLAB and/or computer may freeze. The computer has frozen if the clock stops – you will likely need to do a hard reboot 

https://github.com/UMD-ISL/Matlab-Toolbox-for-Dimensionality-Reduction
https://github.com/UMD-ISL/Matlab-Toolbox-for-Dimensionality-Reduction
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on the computer. We tested this code on a computer with 8 GB installed RAM and the largest range we could use was 2-5. On a separate 
computer with 64 GB installed RAM, the largest range we could use was 2-6. We could not employ larger ranges (e.g., 2-7) on the 
computers we tested TEnvR on. We have previously used this code on a supercomputer, and we have successfully used a range of 2-
10 (Goranov et al., 2022b).  
 
The code then calculates the ExactMass of each of these oligopeptides and tries to match each formula’s ExactMass to any of the 
ExactMasses of the possible oligopeptides. The matching is done by finding a mass difference that satisfies the user-defined mass 
accuracy in the FTMS_ConfigurationToolbox file (line 44, variable MassAccuracy, Slide 93). The code produces a new file named 
“_Peptides.xlsx” (here, “Sample 2_Peptides.xlsx”) containing the original formula list (here, found in “Sample 2_Final.xlsx”) with three 
additional columns (T, U, V) (Slide 166). If no oligopeptide sequences were matched to the ExactMass of a molecule, column T (labeled 
“Options”) will be populated with a zero, column U (labeled “Sequence”) will be empty, and column V (labeled “Error (ppm)”) will be 
populated with 1000. If the ExactMass of a formula is indeed matched with a possible oligopeptide combination, the combination is going 
to be listed in column U (labeled “Sequence”). The number of matches, which may be 1 or more, will be listed in column T (labeled 
“Options”). The mass difference (in ppm) will be listed in column V (labeled “Error (ppm)”) and its absolute value is going to be below the 
user-defined mass accuracy in the FTMS_ConfigurationToolbox file (line 44, variable MassAccuracy, Slide 93). 
 
It must be noted that this code is unable to identify other proteinaceous species, such as higher order peptides or oligopeptides with more 
complex structures and motifs (e.g., sulfide bridges). A higher degree of data processing of proteinaceous species can be achieved using 
other software/databases (Schwammle et al., 2021; Singh, 2021; Valikangas et al., 2018) and available code packages in MATLAB (e.g., 
Bioinformatics Toolbox).  
 
In the Supplementary Files folder of TEnvR, we provide a file (“FTMS_AminoAcids.xlsx”) containing a list of all possible amino acids 
containing their abbreviations and exact masses. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• FTMS_KMD 
 
Another common approach for evaluating molecular data is using Kendrick Mass Defect (KMD) series analysis (Dittmar and Koch, 2006; 
Hughey et al., 2001; Ikeya et al., 2015, 2020; Kendrick, 1963; Wu et al., 2004), as described above. To see an application of KMD analysis 
with a detailed explanation, see Figure 4 and corresponding discussion of Goranov et al. (2022b). KMD plots are incorporated in the 
FTMS_Figures code, but on those plots data could only be crudely evaluated. Here with FTMS_KMD, a more detailed assessment can 
be performed. This code is designed to evaluate formulas that align on KMD series defined by the user. Here, an example will be shown 
with the carboxyl (COO) series, i.e., formulas differing in their number of COOH groups.  
 
To use the FTMS_KMD, keep TestData_FTICRMS as your current folder: 
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Slide 167: FTMS_KMD('Sample 1_Final.xlsx','COO') 
 
The code uses the exact mass to calculate the Kendrick Mass (KM), Kendrick Nominal Mass (KNM), and Kendrick Mass Defect (KMD) 
for the user-defined series (here, 'COO'). The table below lists all possible series that are incorporated in the code and what chemical 
processes they generally correspond to. Users are welcome to modify the KMD codes and incorporate additional KMD series that fit their 
needs. 
 

Function 
argument 

Corresponding functional 
group/building block Series factor (S) Application17 

'CH2' Methyl S =
14.0000000
14.0156500

 
Addition/removal of CH2 ≡ Addition/Removal of CH2 building 

blocks; Molecular synthesis/degradation, Reduction or 
elongation of alkyl chains 

'H2' Dihydrogen S =
2.0000000
2.0156500

 Addition/removal of H2 ≡ Hydrogenation/dehydrogenation, 
Saturation/unsaturation of π-bonds (usually C=C) 

'O' Oxygen S =
16.0000000
15.9949146

 Addition/removal of O ≡ Reduction/Oxidation 
Formation/removal of hydroxyl groups, S=O, N=O, etc. 

'CO' Keto S =
28.0000000
27.9949146

 
Addition/removal of CO ≡ Reduction/Oxidation, 

Formation/Removal of keto groups (aldehydes and ketones) 
as well as carboxylic acid derivatives 

'COO' Carboxyl S =
44.0000000
43.9898292

 Addition/removal of COO ≡ Reduction/Oxidation, 
Formation/Removal of carboxyl groups  

'CH2O' Methoxy S =
30.0000000
30.0105646

 Addition/removal of CH2O ≡ Methoxylation/Demethoxylation, 
Formation/Removal of methoxy groups  

'H2O' Water S =
18.0000000
18.0105646

 Addition/removal of H2O ≡ Hydration/Condensation, 
Addition/Removal of water from π-bonds (usually C=C) 

'NH3' Ammonia S =
17.0000000
17.0265490

 Addition/removal of NH3 ≡ Amination/Deamination, 
Addition/Removal of NH3 from π-bonds (usually C=C) 

'NH' Amide S =
15.0000000
15.0108990

 Explore amide homologous series 

'SO2' Sulfonyl group S =
64.0000000
63.9618999

 Explore sulfone homologous series 

'SO3' Sulfonate S =
80.0000000
79.9568145

 Explore sulfonic acid homologous series 

 
17 The symbol ≡ means “is equivalent to”. 
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'HE' Hydrogen chloride/bromide, 
etc. S (E = 𝐶𝐶𝐶𝐶35 ) =

36.0000000
35.9766777

 
Addition/removal of HE. In cases when E = halogen ≡ 

Halogenation/Dehalogenation, Addition/Removal of HE from 
π-bonds (usually C=C) 

 
Once the user defines the series using the second argument of the function (here, 'COO'), the code determines the corresponding series 
factor (S) and calculates KM, KNM, and KMD as shown below.  
 

KM = Molecular Weight × S 
 

KNM = integer of KM 
 

KMD = KM − KNM 
 
The KMD values are rounded to the number of decimals defined in the FTMS_ConfigurationToolbox (line 45, variable: Precision, Slide 
93). For the instruments we have experience with, we use a precision of 5 decimals. Formulas with the same KMD value are identified 
by the code. Then, these formulas are validated by confirming that their molecular weights differ with the round mass of the functional 
group (e.g., for formulas on a COO KMD series, formulas must have KNM difference of 44).  
 
Once KMD series are identified, the first formula on each series (i.e., the one with the lowest KNM) is assumed to be the starting point 
for the series. In areas of metal complexation research, such formulas are referred to as “apo” formulas. Formulas that are metal-free are 
referred to as being in their “apo form”, while formulas complexed with metals are characterized as being in their “metal form” (Boiteau et 
al., 2016). This terminology has been used in the FTMS_KMD code. Formulas that are not first on the KMD series are labeled as 
Sequential. Formulas that have unique KMD values cannot establish KMD series (a minimum of 2 points are required for a KMD series 
in this code). Such formulas are labeled as Unique. 
 
The code produces two publication-grade figures (Slide 167). The first one is a scatter plot of KMD vs KM (saved as 
“KMD_COO_filename1.png”) and is known as a KMD plot. Unique (i.e., not on KMD series), Apo, and Sequential formulas are color-
coded and statistics (number of formulas + number-based percentages) are shown in the legend. The user can use the interactive 
capabilities of the figure panel and zoom into individual KMD series (example shown on Slide 127). The code produces a second figure, 
a vK diagram, with the same groups of formulas and the same color-code (Slide 167). The vK diagram figure is saved as 
“KMDvK_COO_filename.png”. The two figures are exported in .png format and the sample name and KMD series used (here, COO) are 
retained in the file name to create a paper trail. Additionally, the code will export an Excel file with the Unique, Apo, and Sequential 
formulas is designated sheets (Slide 168). The original data is also copied in Sheet1.  
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• FTMS_KMD_Ox 
 
This code has been specifically designed to evaluate oxidation. We have recently employed this approach to study the oxidative 
transformation of molecules during microbial incubations (Goranov et al., 2022b). This code is an extension of FTMS_KMD and involves 
simultaneous KMD analyses using O, CO, and COO series. Apo formulas are assumed to be substrates, while formulas with increased 
numbers of O, CO, and/or COO groups are considered to be products of oxidation reactions (such as those from hydroxyl radicals, see 
Waggoner et al. (2015); Waggoner et al. (2017), Waggoner and Hatcher (2017)). The mathematics behind the FTMS_KMD and 
FTMS_KMD_Ox codes are identical with the following difference: Some formulas may be categorized as oxidation products using more 
than one type of KMD series (i.e., one formula may be categorized as an oxidation product using two or three of the O, CO, and COO 
series). This creates redundant formulas categorized as “Oxidation Products” and the code simply removes these formula duplicates.  
 
Formulas part of the same series are identified by their identical KMD values as described above. KMD values are rounded to the number 
of decimals defined in the FTMS_ConfigurationToolbox (line 45, variable: Precision, Slide 93). For the instruments we have experience 
with, we use a precision of 5 decimals. Formulas with the same KMD value are validated to be in the same series by confirming that 
formulas differ in molecular weight equivalent to the round mass of the functional group (e.g., for formulas on a COO KMD series, formulas 
must have KNM difference of 44).   
 
To use the FTMS_KMD_Ox, keep TestData_FTICRMS as your current folder: 
 
Slide 169: FTMS_KMD_Ox('Sample 1_Final.xlsx') 
 
The code creates a vK diagram (Slide 169) showing the three different categories: formulas that are unique (“Not on KMD series”), apo 
formulas (“Substrates”), and sequential formulas on the oxidation series (“Oxygenation products”). Formulas are color-coded and statistics 
(number of formulas + number-based percentages) are shown in the legend. The user can use the interactive capabilities of the figure 
panel and zoom into individual KMD series (example shown on Slide 127). This figure is of publication-grade and is saved as 
“KMDvK_Oxidation_filename.png”. Please note that KMD plots are not exported by this code, because it is not possible to create a 
composite KMD plot of the three different series (O, CO, and KMD) used in the oxidation assessment. The code will export an Excel file 
with the formulas of Unique, Substrates, and Ox products in designated sheets (Slide 170). The original data is also copied in Sheet1. 
 
The use of this approach involves several important caveats that are to be considered. It is assumed that the first formula (i.e., the apo 
formula) of any of the O, CO, or COO series is fundamentally a control compound that was then oxidized. It is also assumed that the 
oxidation is not complete, i.e., both the starting compounds (the apo formulas) and the sequential oxidation products were detected by 
the ESI-FT-ICR-MS analysis. It is known that the varying degrees of oxygenation can affect molecular ionizability (Patriarca et al., 2020), 
and therefore the true control molecules may not be detected and thus, oxidation products may be misinterpreted as control compounds.  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
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• FTMS_KMD2 
 
This code has been designed to compare two samples using KMD analysis. This has been incredibly useful in studying environmental 
processes (Goranov et al., 2022b; Khatami et al., 2019; Liu et al., 2011; Waggoner and Hatcher, 2017; Waggoner et al., 2017). 
Fundamentally, the FTMS_KMD2 code involves the same mathematics as the FTMS_Compare code for performing Presence/Absence 
analysis among two formula lists.  
 
To use the FTMS_KMD2, keep TestData_FTICRMS as your current folder. Here, an example will be shown with carboxyl (COO) series. 
 
Slide 171: FTMS_KMD2('Sample 1_Final.xlsx','Sample 2_Final.xlsx','COO') 
 
The code first compares two formula lists and identifies common and unique formulas. Formula comparisons are done based on the 
computed molecular weight (“ExactMass”) of each formula. Molecular weights are rounded to the user-defined precision in the 
FTMS_ConfigurationToolbox, line 45, variable: Precision (Slide 93). For the instruments we have experience with, we use a precision 
of 5 decimals. The code then computes the KM, KNM, and KMD for all common and unique formulas using the user-defined series (here, 
'COO'). This is described in detail above for the FTMS_KMD code. KMD values are also rounded to the number of decimals defined in 
the FTMS_ConfigurationToolbox. The three different formula groups (unique for sample 1, unique for sample 2, and common to the 
two samples) are plotted on a KMD plot. Formulas are color-coded and Venn diagram statistics (number of formulas + number-based 
percentages) are shown in the legend. The user can use the interactive capabilities of the figure panel and zoom into individual KMD 
series (example shown on Slide 127). This figure is of publication-grade and is saved as 
“Compare_KMD_COO_filename1_filename2.png”.  
 
To evaluate the figure in more detail, type set(gcf,'WindowState','maximize') in the Command Window, which will maximize the figure to 
your screen size (Slide 172).  
 
• FTMS_AlignmentFormulas 
 
While FT-ICR-MS provides an extreme resolution to the sample composition, the produced data is particularly multivariate, and identifying 
trends among many formula lists each in the form of Excel files or another format is sometimes inefficient. The 
FTMS_AlignmentFormulas code is designed to load multiple spectra and align the peak lists into a matrix that displays which formula 
is present among the samples of the dataset. The alignment algorithm is described in detail and provided by Mantini et al. (2007). The 
resultant alignment matrix is useful in tracing how individual molecular formulas change in magnitude across a dataset and for performing 
multivariate statistical analyses as shown later.  
 
To use the FTMS_AlignmentFormulas keep TestData_FTICRMS as your current folder. This code will load all Excel files in the folder 
that end with “_Final.xlsx”. Thus, any other files except sample files ending with “_Final.xlsx” must be deleted. If you are following this 
tutorial, three interfering files ending with “_Final.xlsx” have been created by the comparison codes FTMS_Compare, FTMS_Compare3, 
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and FTMS_Compare4. Please delete the following files: “Comparison_Sample 1_Final_Sample 2_Final.xlsx”, “Comparison3_Sample 
1_Final_Sample 2_Final_Sample 3_Final.xlsx”, “Comparison4_Sample 1_Final_Sample 2_Final_Sample 3_Final_Sample 4_Final.xlsx”, 
“KMD_Oxidation_Sample 1_Final.xlsx”, and “KMD_COO_Sample 1_Final.xlsx” (Slide 173). 
 
Slide 174: FTMS_AlignmentFormulas 
 
The code produces an Excel sheet named “FTMS Alignment Matrix.xlsx” containing 5 sheets: 

→ Sheet1 (Slide 175) – Contains the exact masses of formulas of the whole dataset. Absolute magnitudes corresponding to the 
formulas’ peaks are shown for each sample where applicable. If a formula is not present in a certain sample, the corresponding 
magnitude value is set to zero. The matrix in this sheet is known as the “alignment matrix”. 

→ Formulas (Slide 176) – This sheet contains all information from “Sheet1” as well as molecular formula information on the right 
of the alignment matrix.  

→ Trimmed (Slide 177) – This sheet contains a trimmed formula list. Formulas can be trimmed based on two criteria: Mass range 
and commonality. The mass range trimming algorithm removes any formulas outside of a user-defined range. The range is 
defined using the MZ_low and MZ_high variables on lines 54 and 55, respectively, of the FTMS_ConfigurationToolbox code 
(Slide 93). It is often beneficial to trim the data to a specific m/z range (e.g., 300-800), especially if there are significant tuning 
differences among samples and detection of ions below m/z MZ_low and MZ_high is less reproducible. For the FT-ICR-MS 
spectrometers we have experience with, we usually trim the data to m/z 300-800, especially if we plan on performing 
multivariate statistics. To disable filtering feature, simply put numbers outside of the range you will be working with. For example, 
with the provided dataset, using MZ_low = 0 and MZ_high = 2000 will be sufficient to disable this trimming feature. However, 
for this tutorial, we will trim the data to m/z 300-800. Alternatively, the commonality trimming algorithm removes any formulas 
that are not common to a certain number of samples. Sometimes, we require that formulas are present in more than one 
sample, and therefore, formulas unique to only one sample of the whole dataset are trimmed. The user can control this feature 
by the MinSamples variable on line 59 of the FTMS_ConfigurationToolbox code. This variable defines what is the minimum 
number of samples where a formula must be found in order to be included in the trimmed dataset. As an example here, we 
require that a formula is present in a minimum of 1 to be included in the trimmed dataset, and we sometimes change this 
threshold to 2 or 3.  

→ Normalized (with magnitude, Slide 178) – The first option for normalizing data is based on relative magnitude, and this sheet 
contains all information from the Trimmed sheet, however, peak magnitudes here are normalized to the total spectral magnitude 
for each sample (TSS-normalized (Thompson et al., 2021)). We recommend using total spectral magnitude normalization when 
all samples were acquired using similar tuning and the data is of high reproducibility. We achieve this by validating our tuning 
using in-lab surrogate standards or IHSS standards (e.g., SRFA) following the recommendations by Hawkes et al. (2020).  

→ Normalized (with presence-absence, Slide 179) – Instead of normalizing the data to total spectral magnitude (i.e., TSS-
normalized) (Thompson et al., 2021), the second option is to normalize the data based on presence-absence. With the 
presence-absence normalization approach, magnitude values higher than zero are transformed to the value of 1 (“presence”) 
and magnitude values equal to zero remain with the value of 0 (“absence”). This type of data transformation normalizes out 
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differences in magnitudes among different peaks and accounts for variable ionizability of different molecular classes in the 
different samples of the dataset. All values are then further normalized to the number of formulas in each sample. This type of 
data transformation accounts for differences in instrumental sensitivity and detectability of different molecular classes 
(Kujawinski et al., 2009). To enable the presence-absence normalization, change the variable PresenceAbsence on line 60 of 
the FTMS_ConfigurationToolbox (Slide 93) from false to true. We generally do not employ this normalization approach and 
use TSS-normalization, because using the spectral magnitude data is beneficial in revealing which molecular classes are most 
significant in driving the differences among samples, especially when we employ multivariate statistics (Sleighter et al., 2010). 
However, the presence-absence normalization is certainly useful for challenging datasets of unequally ionizing samples 
(accounting for variability in detectability/ionizability); for datasets comprised of samples analyzed on multiple instruments 
(accounting for variability in tuning); or for datasets comprised of samples analyzed on the same instrument across a large time 
frame (accounting for variability in tuning/instrumental drifts).  

→ Normalized Common (Slide 180) – This sheet contains formulas that are only found in all samples within the dataset. The data 
is normalized using the approach used to produce the data in the “Normalized” sheet. In the example of Slide 180, we have 
used TSS-normalization (Thompson et al., 2021). 

 
Please do not delete the file “FTMS Alignment Matrix.xlsx” and do not change the sheet names “Normalized” and “Normalized Common” 
– these matrices will be directly used in several multivariate statistical routines (e.g., principal component analysis) as shown later in this 
tutorial.  
 
The FTMS_AlignmentFormulas code utilizes external functions for alphanumeric sorting of filenames (natsortfiles and natsort) 
developed by Stephen Cobeldick (https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort). These 
codes are found in TEnvR\Internal codes. Their licenses are found in TEnvR\Supplementary files. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
  

https://www.mathworks.com/matlabcentral/fileexchange/47434-natural-order-filename-sort
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Section 7. Nuclear Magnetic Resonance (NMR) Spectroscopy 
 
• NMR_Automation 
 
NMR spectroscopy is another tool that is highly utilized by various environmental research groups; however, we have not developed a 
significant number of scripts for processing NMR data. This is because NMR spectrometers typically come associated with software 
capable of a variety of data treatment and processing steps. Thus, we have found it easier to use the instrument software for data 
treatment (calibration, phasing, baseline-correction, integration, etc.) and data mining (integration, multiplet analysis, etc.). While 
automation of these processing steps is certainly possible, we have found that often, data treatment needs to be manually tuned and 
inspected for each sample. If users would like to explore possible computational routines for processing NMR data, there are various 
toolbox software packages that are already available (Gunther et al., 2000; Ludwig and Gunther, 2011). The NMR_Automation code is 
designed to organize one-dimensional NMR data into alignment matrix. The matrix format allows for preparation of publication-grade 
figures as well as multivariate statistical analysis. 
 
In our experience, we have primarily used the TopSpin software associated with Bruker spectrometers to process and evaluate one- and 
two-dimensional data NMR data. We had found it necessary to create codes for processing 1D NMR data when it is necessary to export 
1D NMR spectra and prepare publication-grade figures or evaluate the data using statistical analysis in MATLAB. The NMR_Automation 
code includes several routines allowing for automated reformatting of 1D NMR data into an Excel file as well as its pre-treatment prior to 
multivariate statistical analysis. To show an example of this code, we have provided 7 spectra acquired in COSMIC (ODU) on a 400 MHz 
(9.4 Tesla) Bruker BioSpin AVANCE II spectrometer fitted with a 4 mm solid-state HCN magic angle spinning (MAS) probe. Analysis was 
done using the 13C MultiPulse Cross-Polarization MAS technique by Johnson and Schmidt-Rohr (2014), and these spectra have been 
previously published and interpreted by Bostick et al. (2018) and Wozniak et al. (2020). These spectra are located in 
TEnvR\TestData_NMR (Slide 181).  Please note that symbols such as . , / ? * [  ] should not be used in file names as they can cause 
errors. 
 
Slide 182: NMR_Automation 
 
The code creates several new files and exports an Excel spreadsheet (named “NMR Alignment Matrix.xlsx”) described below. Open the 
code by typing edit NMR_Automation in the Command Window (Slide 183). The NMR_Automation code involves several stages:  

→ %% Stage 1: Reformat files from .txt files from TopSpin into 2D arrays. 1D NMR spectra are exported by the Bruker TopSpin 
software as .txt files. Older versions of the software export 1D NMR data in a different format18 than more recent versions19. 
The data format from a recent TopSpin version is shown on Slide 184, and the data format from an older TopSpin version is 
shown on Slide 185. To inform the code of the type of data format you will be using, change the variable topspin_new on line 
47 (Slide 183) to true for files exported by recent versions and false for files exported from older versions. Please keep the .txt 

 
18 Older TopSpin versions export 1D spectra using the convbin2asc command. 
19 Newer TopSpin versions export 1D spectra using the totxt command. 
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files as they are and do not delete any of the text in them – the code will extract the needed numerical information and ignore 
the text data. We recognize that this code is currently exclusive to files acquired on Bruker spectrometers and future versions 
of TEnvR will have the option to import files from Varian spectrometers as well. The reformatting portion of the 
NMR_Automation code will export the reformatted spectra into text files labeled as “_ref.txt” (Slide 182), with chemical shift 
values in column 1 and intensity values in column 2 (Slide 186).  

→ %% Stage 2: Interpolation. Even though the user defines the number of data points (the size of the free induction decay) prior 
to analysis, the resultant spectral files after post-processing often have a slight difference in the number of data points. For 
example, the seven files provided here in TestData_NMR have a slight variation in the number of data points: Sample 1 
(1048131), Sample 2 (1048536), Sample 3 (1048206), Sample 4 (1048207), Sample 5 (1047675), Sample 6 (1048207), and 
Sample 7 (1047193). Prior to multivariate statistical analysis, all spectra must be of the same number of data points. Thus, 
spectra are interpolated using the interp1 function to produce spectra of equal size (to learn more about this function, type help 
interp1 in the Command Window). Interpolation can be disabled by setting the Interpolation variable on line 50 to false (Slide 
183). Currently, interpolation is enabled using true. Interpolated spectra are exported as “_interp.txt” files (Slide 182). 

→ %% Stage 3: Denoising. Spectra of NOM can often be noisy due to the very low concentration of NOM. Spectral noise becomes 
an issue when NMR data is to be used quantitatively and when it is evaluated using multivariate statistical analyses, such as 
PCA (Halouska and Powers, 2006). In our experience, we have successfully acquired spectra on samples have a carbon 
content of 1 mg/L and below (Whitty et al., 2021) but at the expense of very high number of scans (> 20,000). In cases when 
we were unable to use such a high number of scans, we have unfortunately obtained noisy spectra that needed to be further 
denoised. This can be done using post-acquisition processing in TopSpin. Commonly, we apply zero filling that increases the 
data size and generally improves the spectral quality. Exponential multiplication or other window functions can be also used to 
enhance the signal (Goranov et al., 2020, 2022b) but that is at the expense of spectral resolution. Zero filling and exponential 
multiplication, if performed correctly with optimized parameters, are useful approaches that have shown to not affect multivariate 
statistical analyses such as PCA (Halouska and Powers, 2006). If none of these approaches work for denoising the spectrum, 
the NMR_Automation code contains a denoising algorithm proposed by Halouska and Powers (2006). Reformatted spectra 
are loaded, and the code will identify noise resonances in their baseline. The standard deviation of these resonances is taken, 
and it is multiplied by a factor of 5. Resonances in the whole spectrum below this “5 x standard deviation” threshold are set to 
zero and later eliminated. In our experience, we have rarely had to use this approach as we have managed to denoise spectra 
using the other approaches (zero filling, exponential multiplication) described above. However, this denoising approach has 
been shown beneficial prior to multivariate statistical analyses such as PCA (Halouska and Powers, 2006) and users are 
welcome to test it on their own data. The denoising algorithm can be enabled by setting the Denoise variable on line 53 to true 
(Slide 183). Currently, denoising is disabled using false. Denoised spectra are exported as “_denoised.txt” files. 

→ %% Stage 4: Binning. It is common for NMR spectra to contain a very high number data points. A typical approach to reduce 
the spectral size is binning: data is grouped together by averaging it into a number of bins defined by the user using the binsize 
variable on line 57 (Slide 183). The main purpose of binning is to average out small deviations in the signal that may interfere 
with subsequent statistical analyses (Halouska and Powers, 2006). A secondary benefit of binning is that files become easier 
to handle and can be plotted/evaluated in Excel. In our experience, Excel is generally unable to work with the large unbinned 
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files, and the software often crashes. We commonly use binning as a pre-processing procedure prior multivariate statistical 
analysis such as PCA (Sleighter et al., 2015; Tadini et al., 2022; Wozniak et al., 2015). Commonly, we bin liquid-state proton 
NMR data every 5-20 data points and solid-state carbon NMR data every 100-200 points. The binsize depends on the size of 
the free-induction decay and post-processing procedures such as zero filling. Thus, the binsize parameter needs to be tuned 
for each different dataset. Users are welcome to alter this parameter using the binsize variable on line 57 (Slide 183) and see 
how it alters the provided example spectra. If performed correctly with an optimized binsize parameter, binning is beneficial for 
improving multivariate statistical analysis results (Halouska and Powers, 2006) without reduction of spectral resolution 
(Sleighter et al., 2015). Binning can be disabled by setting the Binning variable on line 56 to false (Slide 183). Currently, binning 
is enabled using true. Binned spectra are exported as “_bin.txt” files (Slide 182) with the bin size retained into the filename 
prior bin (e.g., “Sample 1_ref_interp_200bin.txt”). 

→ %% Stage 5: Alignment & Normalization. Once the above pre-treatment procedures are performed, all NMR spectra are loaded 
and aligned into a matrix. Each NMR spectrum is then normalized to total spectral intensity to create a matrix of normalized 
data. The normalized matrix is further treated to set any negative intensity or NaN values to zero if such had not been removed 
using the denoising algorithm. Chemical shift values that have the same intensity value for all samples are removed from the 
dataset to avoid creating covariance values with missing values if multivariate statistical analyses such as PCA are employed. 

→ %% Stage 6: Export. Unnormalized data and Normalized data are exported into an Excel file named “NMR Alignment 
Matrix.xlsx”. The unnormalized data is placed in “Sheet1” (Slide 187). The Normalized data is written on a new sheet named 
“Normalized” (Slide 188). Data from this file can be further used for manual plotting in Excel or multivariate statistics as 
described below. Please do not delete the “NMR Alignment Matrix.xlsx” file and do not rename the sheet name “Normalized”, 
as it will be directly used in several multivariate statistical routines as shown later in this tutorial. 

 
It must be noted that users must exercise caution and consider the specifics of their particular dataset, sample matrices, NMR probe, and 
nucleus choice in order to perform quality control of the obtained processed NMR spectra. The processing routine described are likely 
not universal and should not be applied to all datasets without performing appropriate quality control of the obtained results. Thus, the 
employed parameters in NMR_Automation (e.g., binsize, line 57, Slide 183) may need to be adjusted depending on the application. 

Before proceeding, type close all, clear, and then clc in the Command Window. 
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Section 8. Multivariate Statistics 
 
Multivariate data from UV-VIS, fluorescence, NMR, or FT-ICR-MS analyses is often difficult to interpret and explore on its own. Thus, 
multivariate statistical routines are usually employed to explore such datasets. Here, we present four routines for statistical analysis of 
multivariate data: hierarchical cluster analysis (HCA), principal component analysis (PCA), a code for developing correlation matrices 
with Pearson, Kendall, or Spearman correlations, and a code for Spearman correlation among FT-ICR-MS formulas and external 
parameters.  
 
• Stats_HCA 
 
Hierarchical cluster analysis (HCA) is a relatively simple but powerful approach for identifying samples that are similar or dissimilar to 
each other in a dataset. HCA results are displayed as a hierarchical tree also known as a dendrogram. Samples similar to each other fall 
on the same tree branch (are grouped together in a cluster), while samples dissimilar to each other are on different branches (are 
separated away from each other on different clusters). HCA can be used for evaluating datasets acquired using various analytical 
techniques (Gonsior et al., 2018; Xue et al., 2011), and it is a common approach for exploring multivariate data such as FT-ICR-MS 
formula assignments (Dvorski et al., 2016; Hur et al., 2010; Kujawinski et al., 2009; Liu et al., 2011; Sleighter et al., 2010; Xiao et al., 
2020). Often HCA is employed in tandem with PCA, as they provide supplementary information and HCA can be used to validate PCA 
results. HCA is superior to PCA because it considers 100% of the variance of the dataset, while the first few components of PCA rarely 
explain over 70% of the dataset variance. However, a significant downside of HCA is that it loses variable information, and HCA is unable 
to explain which parameters of the dataset make the samples to be similar/different to each other (i.e., “drive” the sample clustering).  
 
The mathematics behind HCA are complex and are described in detail elsewhere (Murtagh and Contreras, 2012, 2017; Vijaya and Bateja, 
2017). Briefly, independent variables are first quantitatively compared among each other. A measure of similarity among variables is 
computed using a distance matrix calculation (using the MATLAB function pdist). We typically use Euclidean distances, but other types 
of distance metrics (SEuclidean, City Block, Jaccard, etc.) can also be used as described later. Then, to determine the similarity and 
dissimilarity among samples, samples are compared to each other using the computed pair-wise distances among their variables. This 
is done using a linkage criterion that determines how the samples are compared and linked together on branches in a hierarchical tree 
(using the MATLAB function linkage). We typically use the unweighted pair group method with arithmetic mean (UPGMA) as a linkage 
criterion, but other types of linkages (centroid, median, etc.) can also be used as described later. 
 
HCA is a two-way technique, i.e., it requires an input of one dimension of independent variables and a second dimension of dependent 
variables that are associated with the independent variables for each sample. For UV-VIS data, wavelength values are the independent 
variables and their associated absorbance values (for each different sample) are the dependent variables (Slide 189). In the case when 
FT-ICR-MS formulas are used, the molecular weights of the formulas (their ExactMass-es) are the independent variables and their 
associated spectral magnitude values are the dependent variables (Slide 189). For NMR data, chemical shift values are the independent 
variables and their associated intensity values (for each different sample) are the dependent variables (Slide 189). Data of higher 
dimensionality (e.g., 3D fluorescence EEM spectra) cannot be directly evaluated using HCA or PCA. The two dimensions of independent 
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variables in EEMs (excitation and emission wavelengths) or 2D NMR (two chemical shift dimensions) must be folded into one single 
dimension of independent variables (Slide 189). This has been explained and shown earlier for EEM data using EEM_Fold (Slides 80 – 
83), but can be analogously performed on 2D NMR data (Hedenstrom et al., 2009). A code for folding 2D NMR data will be developed 
and provided in a future version of TEnvR. 
 
HCA requires the import of a matrix that has the independent variables (molecular weight, chemical shift, wavelengths, etc.) for all samples 
aligned. The UVVIS_Automation, EEM_Fold, FTMS_AlignmentFormulas, and NMR_Automation codes produce such alignment 
matrices in their outputted files (saved in a sheet named “Normalized”). It is critical that data is normalized to account for concentration 
(in UV-VIS, EEM, or NMR data) or ionization (in ESI-FT-ICR-MS data) differences among samples. It is also required that no independent 
variable has the same dependent variable for all samples. For example with UV-VIS data, if all samples have absorbance at 600 nm of 0 
AU, then the wavelength of 600 must be removed from a dataset. All codes (UVVIS_Automation, EEM_Fold, 
FTMS_AlignmentFormulas, and NMR_Automation) include an algorithm that removes such variables. 
 
The Stats_HCA code takes a matrix of normalized data and outputs a dendrogram figure. The Stats_HCA code is versatile and can be 
applied on five different types of data as explained below. Please note that the larger the number of samples and number of variables, 
the longer it will take for the code to run.  
 
Please note that the Stats_HCA code will only work on versions of MATLAB that are 2021a and newer (older versions contain a different 
version of the readtable function, which is does not work for this code).  
 

→ Stats_HCA on UV-VIS spectra 
 
To employ HCA on UV-VIS spectra, the different absorbance wavelengths are used as independent variables and the normalized20 
absorbance values are uses as dependent variables. To run this code, set TestData_UVVIS as your Current Folder. You must have the 
file “UVVIS_MasterReport.xlsx” in there.  
 
Slide 190: Stats_HCA('UVVIS_MasterReport.xlsx','UVVIS') 
 
The code outputs a dendrogram figure showing the differences and similarities among samples. The figure is saved as a .png file, and 
the filename of the matrix and type of data are retained into the figure file name (here, figure is named 
“HCA_UVVIS_MasterReport_UVVIS.png”). It can be seen that Samples 6 and 17 are very similar to each other. Samples 1 and 19 are 
also very similar to each other, but of less similarity that samples 6 and 17 (there is a difference in the distance, i.e., the length of the 
branch). From this figure, it appears that Sample 16 is most different from the whole dataset. Please note that these conclusions are only 
based on UV-VIS analysis, having an analytical window only covering light-absorbing molecules. Thus, this must be considered when 
interpreting similarities and differences among samples.  

 
20 Normalization is done based on total spectral intensity. Only absorbance values up to 450 nm are used (Helms et al., 2008).  
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Before proceeding, type close all, clear, and then clc in the Command Window. 
 

→ Stats_HCA on EEM spectra 
 
To employ HCA on EEM spectra, the EEM spectra must have been folded from 3D into 2D format using the EEM_Fold code. The new 
excitation-emission wavelength variables (e.g., EX300EM400, EX300EM401, …) are used as independent variables and the normalized21 
intensity values are used as dependent variables. To run the Stats_HCA code, set TEnvR\TestData_EEM\TestData_Generic_Processed 
as your Current Folder. You must have the file “EEM_AlignmentMatrix.xlsx” in there.  
 
Slide 191: Stats_HCA('EEM_AlignmentMatrix.xlsx','EEM') 
 
The produced dendrogram is saved as “HCA_EEM_AlignmentMatrix_EEM.png”. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 

→ Stats_HCA on FT-ICR-MS formulas 

To employ HCA on FT-ICR-MS molecular data, the exact masses of molecular formulas are used as independent variables and the 
normalized22 magnitude values are uses as dependent variables. To run this code, set TEnvR\TestData_FTICRMS as your Current 
Folder. You must have the file “FTMS Alignment Matrix.xlsx” in there.  
 
Slide 192: Stats_HCA('FTMS Alignment Matrix.xlsx','FTICRMS') 
 
The produced dendrogram is saved as “HCA_FTMS Alignment Matrix_FTICRMS.png”. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 

→ Stats_HCA on NMR spectra 
 
To employ HCA on NMR spectra, the different chemical shifts are used as independent variables and the normalized21 intensity values 
are used as dependent variables. To run this code, set TEnvR\TestData_NMR as your Current Folder. You must have the file “NMR 
Alignment Matrix.xlsx” in there.  
 
Slide 193: Stats_HCA('NMR Alignment Matrix.xlsx','NMR') 

 
21 Normalization is done based on total spectral intensity. 
22 Normalization is done based on total spectral magnitude (TSS, Thompson et al., 2021). 
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The produced dendrogram is saved as “HCA_NMR Alignment Matrix_NMR.png”. 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 

→ Stats_HCA on mixed variables 
 
HCA can be employed on datasets of lower dimensionality, such as sets of diverse variables from different analytical techniques. For 
example, a dataset of variables can be created by combining dissolved organic carbon, pH, salinity, select UV-VIS/EEM/FTMS metrics, 
NMR integrals, etc. Here, we will show an example of how to use the Stats_HCA code on mixed variables using the list of UV-VIS metrics 
that was generated earlier by the UVVIS_Automation code. 
 
First, open the “UVVIS_MasterReport.xlsx” file located in TEnvR\TestData_UVVIS. Right-click on the sheet “Metrics” and select “Move 
or Copy…”. In the popped up window, change “To Book” to “(new book)” and select “Create a copy” (Slide 194). The whole sheet will be 
opened into a new Excel file. Evaluate the data and make sure it is valid. Here, the matrix contains dilution factors in column B (not real 
measurements) and E4:E6 measurements with negative values (invalid). Thus, these variables need to be removed – delete columns B 
and K as shown on Slide 195. Save the file into your TEnvR\TestData_FTICRMS folder by clicking Ctrl + S on your keyboard or File → 
Save As. Save the file as “ExternalVariables.xlsx” (Slide 195). 
 
Please note that the format of the matrix here is different. While in the previous files (“UVVIS_MasterReport.xlsx”, 
“EEM_AlignmentMatrix.xlsx”, “FTMS Alignment Matrix.xlsx”, “NMR Alignment Matrix.xlsx”), sample names were as column labels and 
independent variables were as row labels. Here (in “ExternalVariables.xlsx”) the data is transposed: sample names are as row labels and 
independent variables are as column labels. This is a common source of error in using the Stats_HCA code, and we urge users to be 
careful with their data format. The different data format is accounted for in the second argument of the function (i.e., 'UVVIS', 'EEM', 
'NMR', 'FTICRMS', 'Variables').  
 
Then, set TEnvR\TestData_FTICRMS as your Current Folder. 
 
Slide 196: Stats_HCA('ExternalVariables.xlsx','Variables') 
 
The produced dendrogram is saved as “HCA_ExternalVariables_Variables.png”. 
 
The Stats_HCA code can be modified to alter the type of distance metric and type of linkage criterion.  
 
Slide 197: edit Stats_HCA 
 
To modify the type of distance metric used, edit the value of the Type_Distance variable (line 9, Slide 197) to any of the following options: 
'euclidean', 'squaredeuclidean', 'seuclidean', 'cityblock', 'minkowski', 'chebychev', 'mahalanobis', 'cosine', 'correlation', 'spearman', 
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'hamming', 'jaccard', or a customized function. A description of these types of distance can be found by typing help pdist in the Command 
Window or going to the pdist function listing on MathWorks (https://www.mathworks.com/help/stats/pdist.html?s_tid=srchtitle). We 
generally use Euclidian distances ('euclidean') in order to make the HCA results comparable with PCA analysis results.  
 
To modify the type of linkage criterion used, change the value of the Type_Tree variable (line 10, Slide 197) to any of the following 
options: 'single', 'complete', 'average', 'weighted', 'centroid', 'median' or 'ward'. A description of these types of distance can be found by 
typing help linkage in the Command Window or going to the linkage function listing on MathWorks 
(https://www.mathworks.com/help/stats/linkage.html?s_tid=doc_ta). We generally use the unweighted pair group method with arithmetic 
mean (UPGMA) linkage criterion corresponding to value 'average' for the Type_Tree variable (line 10, Slide 197). UPGMA is also known 
as the unweighted average distance method. 
 
Please note that it is up to the researcher to determine what type of distance metric and linkage criterion are most appropriate for the 
HCA evaluation of their data. Other types of clustering, such as K-means and C-means Clustering, can also be useful in exploring 
multivariate data such as formula lists from FT-ICR-MS or spectral data (Cuss and Gueguen, 2016; Zhang et al., 2020), and researchers 
are welcome to explore such and other statistical approaches that will better suit their datasets.  
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 
• Stats_PCA 
 
Principal component analysis (PCA) is another common technique for exploratory statistics employed in numerous areas of research 
(Gewers et al., 2021). Different from HCA, PCA evaluates inputted variables (known as observations) and determines which independent 
variables are most important for determining similarities or differences among samples. Thus, PCA is often viewed as a dimensionality 
reduction technique, as it also informs which variables are unimportant in explaining the variance of the dataset (i.e., which dimensions 
of the data are unnecessary). Commonly, PCA is employed on multivariate data such as formula lists from FT-ICR-MS (Antony et al., 
2018; Gurganus et al., 2015; Hur et al., 2010; Sleighter et al., 2015; Sleighter et al., 2014a; Sleighter et al., 2014b; Sleighter et al., 2010), 
as well as EEM (Boehme et al., 2004) or NMR spectra (Hedenstrom et al., 2009; Willoughby et al., 2016; Wozniak et al., 2015; Wozniak 
et al., 2013) or datasets of mixed variables (Wozniak et al., 2020; Xue et al., 2011).  
 
Statistical evaluation of multivariate data using PCA analysis is often considered modeling. This is because the dataset (data matrix) 
being evaluated often needs refinement for removal of outlier samples and removal/addition of variables, and later, the PCA model could 
be applied (extrapolated) to other datasets. Excluding sample outliers in order to refine the PCA model can reveal more distinctive trends 
in comparison to using the whole dataset (Wozniak et al., 2013). Analogously, the set of variables can be also modified to present trends 
among samples in a clearer way. For example, in a dataset of molecular data from global rivers, Wagner et al. (2015b) did not use all 
molecular formulas, but only formulas corresponding to condensed aromatic molecules. They extracted the data for this particular 
compound class and used those molecular formulas as variables in the PCA model, revealing trends among molecular data and 
watershed characteristics.  

https://www.mathworks.com/help/stats/pdist.html?s_tid=srchtitle
https://www.mathworks.com/help/stats/linkage.html?s_tid=doc_ta
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The mathematics behind PCA are complex and are described in detail elsewhere (Jolliffe and Cadima, 2016). Briefly, data must have 
been normalized on a per-sample basis. The codes of TEnvR do this by normalizing individual intensity values to total spectral intensity 
(UV-VIS, EEMs, NMR). For FT-ICR-MS data, peak magnitudes are normalized to total spectral magnitude (TSS-normalized) (Thompson 
et al., 2021) or using presence-absence normalization. Thus, the data loaded in the Stats_PCA code has already been normalized on a 
per-sample basis to account for differences in concentration (UV-VIS, EEMs, NMR) or ionizability (ESI-FT-ICR-MS) to make samples 
comparable to each other. Once data is loaded in the Stats_PCA code, data for each variable must also be normalized to make variables 
comparable to each other. The average is taken for values of each independent variable. The average is then subtracted from all values. 
This is known as mean-centering, i.e., the mean for each variable is shifted to zero. The normalization and mean-centering are critical to 
ensure that the resultant principal components capture only the variance of the dataset and are not influenced by the absolute quantity 
of the variables or differences among sample concentration/ionizability. Without these mathematical transformations, the first principal 
component may erroneously correspond to the direction of data mean instead of the direction of maximum variance. Mean-centered data 
is then used to compute a covariance matrix. Covariance is the measure of how much two variables vary together. Each variable of the 
dataset is correlated with all other variables, and the resultant covariance data is output into a matrix, hence, covariance matrix. 
Covariances values closer to ±1 indicate strong correlations, while values closer to zero indicate weak correlations. The covariance data 
is deconvoluted using one of the following algorithms: single-value decomposition (MATLAB function svd), eigenvalue decomposition 
(MATLAB function eig), or an alternating least squares low-rank matrix factorization (MATLAB function alsmf). In our experience, we have 
found that the overall PCA results from these three different algorithms do not differ significantly, even though the three different algorithms 
have their own benefits and downsides. For example, single-value decomposition is a more stable algorithm than the eigenvalue 
decomposition, but both are sensitive to missing values and errors in the covariance matrix. The alternating least squares low-rank matrix 
factorization approach, on the other hand, is insensitive to missing data and can fill in missing values using interpolation routines 
(Severson et al., 2017). We have exclusively used single-value decomposition routines in our previous research, because it is a faster 
and more stable routine, and because we pre-treat our alignment matrices to remove variables with missing values (either manually in 
Excel or automatically in MATLAB as described above). Thus, we have not found the need to use alternating least squares low-rank 
matrix factorization algorithms previously, and the Stats_PCA code is developed to employ single-value decomposition using the svd 
function. Researchers are welcome to further modify this script for incorporating different algorithms. Researchers are also welcome to 
also explore the MATLAB function pca, which is highly tunable and has versatile capabilities (to learn more about this function, type help 
pca in the Command Window). PCA exclusively uses Euclidian distances in its computations, and variables are evaluated using linear 
correlations. In cases when Euclidean distances and linear correlations are not appropriate, another technique must be used. Paliy and 
Shankar (2016) provide an excellent guide for choosing alternative approaches for exploratory statistics. For FT-ICR-MS formula lists 
particularly, data has been explored using PCA (Sleighter et al., 2014a; Sleighter et al., 2014b; Sleighter et al., 2010), principal coordinate 
analysis, PCoA (Hawkes et al., 2020), non-metric multidimensional scaling, NMDS (Kellerman et al., 2014; Kellerman et al., 2015), and 
2D correlation (Abdulla et al., 2013; Sleighter et al., 2014b). While comparisons of different statistical techniques exist (Gauch and 
Whittaker, 1972), limited information about the applicability of each technique is available for environmental data and especially FT-ICR-
MS molecular data. Codes for these additional approaches (PCoA, NMDS) will be developed for a future version of TEnvR. 
 
In parallel with HCA, PCA is also a two-way technique, i.e., it requires an import of a matrix that has one dimension of aligned independent 
variables (molecular weight, chemical shift, wavelengths, etc.) and one dimension of sample-dependent variables (Slide 189). The 
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UVVIS_Automation, EEM_Fold, FTMS_AlignmentFormulas, and NMR_Automation codes produce such alignment matrices in their 
outputted files (saved in a sheet named “Normalized”). It is critical that data is normalized to account for large concentration (in UV-VIS, 
EEM, or NMR data) or large ionization (in FT-ICR-MS data) differences among samples. It is also required that no independent variable 
has the same dependent variable for all samples. For example with UV-VIS data, if all samples have absorbance at 600 nm of 0 AU, then 
the wavelength of 600 nm must be removed from a dataset. All codes (UVVIS_Automation, EEM_Fold, FTMS_AlignmentFormulas, 
and NMR_Automation) include an algorithm that removes such variables. 
 
The Stats_PCA code takes a matrix of normalized data and deconvolutes it using single-value decomposition. To learn more about this 
approach, type help svd in the Command Window. The Stats_PCA code is versatile and can be applied on different types of data as 
explained below. Please note that the larger the number of samples and number of variables, the longer it will take for the code to run. 
 
Please also note that the Stats_HCA code will only work on versions of MATLAB that are 2021a and newer (older versions contain a 
different version of the readtable function, which is does not work for this code).  
 

→ Stats_PCA on UV-VIS spectra 
 
To employ PCA on UV-VIS spectra, the different absorbance wavelengths are used as independent variables and the normalized23 
absorbance values are uses as dependent variables. To run this code, set TestData_UVVIS as your Current Folder. You must have the 
file “UVVIS_MasterReport.xlsx” in there. The code will search for a sheet named “Normalized” and will load the data from there. 
 
Slide 198: Stats_PCA('UVVIS_MasterReport.xlsx','UVVIS') 
 
The code produces an Excel file named “PCA_Results (UVVIS).xlsx” that contains four sheets: “Sheet1” containing the original data 
matrix to create a paper trail (Slide 199), “Scores” (Slide 200), “Loadings” (Slide 201), and “Eigenvalues %” (Slide 202). The number of 
principal components (PCs) is equal to the number of inputted independent variables. There is a score value for each sample and for 
each component. The percentage value in the principal component labels is the corresponding eigenvalue. Plotting the first principal 
component versus the second principal component (Slide 200) generally shows which samples are similar to each other and which ones 
are different. This is highly dependent on the type of data that was input. For example, samples that are similar based on UV-VIS data 
may be different based on NMR data, due to the two different analytical windows of the techniques.  
 
The loadings are used to determine which variables cause the samples to differ or be similar among each other (Slide 201). The 
eigenvalues describe how much variance of the dataset each component explains (Slide 202). The eigenvalues are generally used to 
determine which components describe the data best. A common way to visualize eigenvalues is using a Scree plot (Slide 202). While 
there are quantitative approaches that can be used to determine which components are statistically significant (Jackson, 1993), some 
approaches such as the Kaiser-Guttman rule have been shown to be problematic (Preacher and MacCallum, 2003). Furthermore, to our 

 
23 Normalization is done based on total spectral intensity. Only absorbance values up to 450 nm are used (Helms et al., 2008). 
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knowledge, it is unknown if any quantitative approach has been tested and is acceptable for biogeochemical research and at present 
there are no guidelines for multivariate statistical analyses of FT-ICR-MS data. Thus, we generally choose components manually and we 
typically consider components with more than 10% explained variance to be important. In our experience, we have found that in an ideal 
case with NOM samples, more that 50% of the summed variance is explained by the components we select. Commonly, only PC1 and 
PC2 contribute majorly to the explained variance of the dataset. Rarely, we find that PC3 is also important (Gurganus et al., 2015; 
Willoughby et al., 2016). Other components usually show redundant and/or unimportant trends in the data we have previously explored.  
 

→ Stats_PCA on EEM spectra 
 
To employ PCA on EEM spectra, the EEM spectra must have been folded from 3D into 2D format using the EEM_Fold code. The new 
excitation-emission wavelength variables (e.g., EX300EM400, EX300EM401, …) are used as independent variables and the normalized24 
intensity values are used as dependent variables. To run the Stats_PCA code, set TEnvR\TestData_EEM\TestData_Generic_Processed 
as your Current Folder. You must have the file “EEM_AlignmentMatrix.xlsx” in there. The code will search for a sheet named “Normalized” 
and will load the data from there. 
 
Slide 203: Stats_PCA('EEM_AlignmentMatrix.xlsx','EEM') 
 
The produced Excel file is named “PCA_Results (EEM).xlsx”. The loadings are of the same format as of the matrix that was inputted – in 
a 2D folded format. Here, the EEM_Unfold code is used to convert the folded loadings into the traditional 3D EEM format.  
 
Slide 204: EEM_Unfold('PCA_Results (EEM).xlsx',1) 
 
The first argument of the function is the filename of the PCA report ('PCA_Results (EEM).xlsx'), and the second argument is the principal 
component number (1) that is to be unfolded. The code exports a new file in a .csv format named “PCA_Results 
(EEM)_comp1_unfold.csv” containing the data in a typical 3D EEM format (Slide 205). This data is then visualized using EEM_Visualize: 
 
Slide 206: EEM_Visualize('PCA_Results (EEM)_comp1_unfold.csv') 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
 

→ Stats_PCA on FT-ICR-MS formulas 
 
To employ PCA on FT-ICR-MS molecular data, the exact masses of molecular formulas are used as independent variables and the 
normalized25 magnitude values are uses as dependent variables. To run this code, set TEnvR\TestData_FTICRMS as your Current 

 
24 Normalization is done based on total spectral intensity. 
25 Normalization is done based on total spectral magnitude (TSS, Thompson et al., 2021). 
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Folder. You must have the “FTICRMS_AlignmentMatrix.xlsx” file in there. The code will search for a sheet named “Normalized” and will 
load the data from there.  
 
Slide 207: Stats_PCA('FTMS Alignment Matrix.xlsx','FTICRMS') 
 
The code produces an Excel file named “PCA_Results (FTICRMS).xlsx” with four sheets as described previously. When FT-ICR-MS 
formulas are used, an additional sheet “pvalues” is also produced (Slide 208). The code has a capability of computing p-values for each 
independent variable per each principal component. The p-values are calculated by performing Pearson correlation among sample scores 
(for each component) and the mean-centered dependent variables (Yamamoto et al., 2014). These p-values are useful in determining 
which formulas are significant in driving the changes among principal components. We generally use a p-value threshold of 0.05 
corresponding to confidence level (α) of 95%, but researchers are welcome to employ a more strict or liberal threshold.  
 
An important consideration in using p-values is the false discovery rate, i.e., the chance of a p-value determining a correlation to be 
significant while it is not, and thus, identifying “false-positive” p-values. The false discovery rate can be accounted for by performing a p-
value correction. There are numerous methods, including the ones by Bonferroni (Bonferroni, 1936; Dunn, 1961), Holm (Holm, 1979), 
Hochberg (Hochberg, 1988), Hommel (Hommel, 1988), Benjamini & Hochberg (Benjamini and Hochberg, 1995), Benjamini & Yekutieli 
(Benjamini and Yekutieli, 2001), and Šidák (Šidák, 1967). If a user wants to utilize the p-value correction, they must explore the different 
methods for their particular dataset to determine the best correction approach, which will likely vary depending on the instrument’s 
resolution and dataset size. An important aspect is to balance the reduction of false positives while also minimizing false negatives, 
depending on how conservative the approach is. Additional reading can be found in the following publications and citations within: Jafari 
and Ansari-Pour (2019) and Simas et al. (2014). 
 
If the user desires to perform a p-value adjustment, the user must enable this by changing the variable pvalue_adjustment in 
FTMS_ConfigurationToolbox (line 61, Slide 93) from false to true. The default setting for this variable is false. Once enabled, the user 
must specify the type of correction method by changing the variable p_adjust_method in FTMS_ConfigurationToolbox (line 62, Slide 
93) to 'bonferroni' for the Bonferroni method (Bonferroni, 1936; Dunn, 1961), 'holm' for the Holm method, (Holm, 1979), 'hochberg' for the 
Hochberg method (Hochberg, 1988), 'hommel' for the Hommel method (Hommel, 1988), 'BH' for the method by Benjamini & Hochberg 
(Benjamini and Hochberg, 1995), 'BY' for the method by Benjamini & Yekutieli (Benjamini and Yekutieli, 2001), and 'sidak' for the Šidák 
method (Šidák, 1967). The default setting is 'BH'. Adjusted p-values are labeled as q-values and are exported accordingly (Slide 209).  
 
The p-value adjustment is performed by an external function (pval_adjust) as part of the micompm toolbox (Fachada and Rosa, 2018). 
This function is found in TEnvR\Internal codes. Its license is found in TEnvR\Supplementary files. 
 
Please note that if Stats_PCA is employed on a matrix with more than 20 variables (typical case when molecular data is used), the code 
will only export parameters (scores, loadings, eigenvalues, and p-values when applicable) for the first 20 principal components and the 
other components (PC21, PC22, …) will not be exported. Users are welcome to modify the code to export a larger range of components 
if that is desired.  
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→ Stats_PCA on NMR spectra 
 
To employ PCA on NMR spectra, the different chemical shifts are used as independent variables and the normalized26 intensity values 
are uses as dependent variables. To run this code, set TEnvR\TestData_NMR as your Current Folder. You must have the file “NMR 
Alignment Matrix.xlsx” in there. The code will search for a sheet named “Normalized” and will load the data from there. 
 
Slide 210: Stats_PCA('NMR Alignment Matrix.xlsx','NMR') 
 
The code produces an Excel file named “PCA_Results (NMR).xlsx” with four sheets as described previously. Please note that here only 
seven samples were used for the example of the code. In our experience, a minimum of 8 samples and 10 variables is generally required 
to obtain a PCA model, however, model robustness may be of question with such limited matrix size.  
 

→ Stats_PCA on mixed variables 
 
PCA can be employed on datasets of lower dimensionality, such as sets of diverse variables from different analytical techniques. For 
example, a dataset of variables can be created by combining dissolved organic carbon, pH, salinity, select UV-VIS/EEM/FTMS metrics, 
NMR integrals, etc. An example is a recent study by Wozniak et al. (2020) where FTMS metrics, CompoundClass statistics, NMR 
integrals, and benzenepolycarboxylic acids27 molecular marker measurements were used in a PCA investigation to study the 
heterogeneity of pyrogenic dissolved organic matter. Here, we will show an example of how to use the Stats_PCA code on mixed 
variables using the list of UV-VIS metrics that was generated earlier by the UVVIS_Automation code.  
 
Here, we will use the “ExternalVariables.xlsx” matrix that is located in the TEnvR\TestData_FTICRMS folder (Slide 211) that was 
generated as described above in the HCA section. Please note that the format of the matrix here is different. While in the previous files 
(“UVVIS_MasterReport.xlsx”, “EEM_AlignmentMatrix.xlsx”, “FTMS Alignment Matrix.xlsx”, “NMR Alignment Matrix.xlsx”) sample names 
were as column labels and independent variables were as row labels, here (in “ExternalVariables.xlsx”) the data is transposed: sample 
names are as row labels and independent variables are as column labels. This is a common source of error in using the Stats_PCA code 
and we urge users to be careful with their data format. The different data format is accounted for in the second argument of the function 
(i.e., 'UVVIS', 'EEM', 'NMR', 'FTICRMS', 'Variables'). 
 
Slide 211: Stats_PCA('ExternalVariables','Variables') 
 
The code produces an Excel file named “PCA_Results (Variables).xlsx” with sheets “Sheet1”, “Scores”, “Loadings”, “Eigenvalues %”, and 
“pvalues”.  

 
26 Normalization is done based on total spectral intensity. 
27 The benzenepolycarboxylic acid (BPCA) molecular marker method is a technique for quantifying condensed aromatic compounds (ConAC) in environmental 
matrices (Glaser et al., 1998; Chang et al., 2018). 
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If the user desires to include a p-value adjustment, the user must enable this by changing the variable pvalue_adjustment in 
FTMS_ConfigurationToolbox (line 61, Slide 93) from false to true. The default setting for this variable is false. Once enabled, the user 
must specify the type of correction method by changing the variable p_adjust_method in FTMS_ConfigurationToolbox (line 62, Slide 
93) to 'bonferroni' for the Bonferroni method (Bonferroni, 1936; Dunn, 1961), 'holm' for the Holm method, (Holm, 1979), 'hochberg' for the 
Hochberg method (Hochberg, 1988), 'hommel' for the Hommel method (Hommel, 1988), 'BH' for the method by Benjamini & Hochberg 
(Benjamini and Hochberg, 1995), 'BY' for the method by Benjamini & Yekutieli (Benjamini and Yekutieli, 2001), and 'sidak' for the Šidák 
method (Šidák, 1967). The default setting is 'BH'. Adjusted p-values are labeled as q-values and are exported accordingly (Slide 212).  
 
The p-value adjustment is performed by an external function (pval_adjust) as part of the micompm toolbox (Fachada and Rosa, 2018). 
This function is found in TEnvR\Internal codes. Its license is found in TEnvR\Supplementary files. 
 
Please note that if Stats_PCA is employed on a matrix with more than 20 variables, the code will only export parameters (scores, loadings, 
eigenvalues, and p-values when applicable) for the first 20 principal components and the other components (PC21, PC22, …) will not be 
exported. Users are welcome to modify the code to export a larger range of components if that is desired.  
 
• Stats_CorrMatrix 
 
This code is specifically used for generating a correlation matrix, an approach where each variable is correlated with each variable. Three 
types of correlations are possible: Pearson, Kendall, and Spearman. The user must determine which type is most appropriate for their 
data. We provide some generic guidelines below.  
 
Pearson correlation is appropriate for continuous or interval variables. An interval variable is one that has a meaningful difference (i.e., 
interval) among each two data points. The Pearson correlation also requires variables that are normally distributed (i.e., having a Gaussian 
“bell-shaped” distribution). Such distribution is also referred to as parametric distribution, and thus, the Pearson correlation is often 
classified as a parametric statistical test. A significant limitation of the Pearson correlation is that it is sensitive to outliers and does not 
perform well with small sample sets. A major difference between Pearson correlations and Kendall/Spearman correlations is that Pearson 
assesses how linearly related are the variables being tested (i.e., changing at a constant rate = slope), while Kendall/Spearman 
correlations assess monotonic relationships among the variables being tested. Monotonic relationships measure the likelihood of two 
variables moving in the same direction, but not necessarily at a constant rate. Thus, a linear relationship is not a requirement for Kendall 
and Spearman correlations, and thus, they may assess data of any shape (exponential, polynomial, etc.).  
 
Kendall correlation is often used when the data does not fit the requirements for Pearson correlations: Kendall correlations can be used 
on non-continuous data, non-interval data, non-normally distributed (non-parametric) data, and non-linearly related data.  
Spearman correlation is similar to the Kendall correlation in terms of requirements: it can be used on non-continuous data, non-normally 
distributed (non-parametric) data, and non-linearly related data. Kendall is sometimes preferred over Spearman, because Kendall is 
simpler to compute and has less associated errors. In statistical terms, Kendall has smaller gross error sensitivity (i.e., is more robust) as 
well as smaller asymptotic variance (i.e., is more efficient) (Croux and Dehon, 2010). However, a major benefit of the Spearman correlation 
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is that its correlation coefficient (Spearman’s Rho, ρ) has a similar meaning to the coefficient of determination R2 (i.e., explained variance). 
By contrast, the Kendall's correlation coefficient (Kendall’s Tau, τ) is more of a test statistic for nonlinear correlations. In the environmental 
sciences, it appears that Pearson and Spearman are most commonly used types of correlation.  
 
To show the application of this code, we will use the “ExternalVariables.xlsx” matrix located in the TEnvR\TestData_FTICRMS folder. 
This matrix was generated as described above in the HCA section. Please set your Current Folder to be TEnvR\TestData_FTICRMS.  
 
Slide 213: Stats_CorrMatrix('ExternalVariables.xlsx','Pearson') 
 
The code will produce a file named “CorrMatrix_Pearson.xlsx” containing the original data in “Sheet1” to promote a paper-trail (Slide 
214), the Pearson correlation coefficients in the second sheet (named “Coeffs”, Slide 215), the squared Pearson correlation coefficients 
in the second sheet (named “Coeffs2”, Slide 216), and the p-values for each correlation in the fourth sheet (named “pvalues”, Slide 217).  
 
If the user desires to include a p-value adjustment, the user must enable this by changing the variable pvalue_adjustment in 
FTMS_ConfigurationToolbox (line 61, Slide 93) from false to true. The default setting for this variable is false. Once enabled, the user 
must specify the type of correction method by changing the variable p_adjust_method in FTMS_ConfigurationToolbox (line 62, Slide 
93) to 'bonferroni' for the Bonferroni method (Bonferroni, 1936; Dunn, 1961), 'holm' for the Holm method, (Holm, 1979), 'hochberg' for the 
Hochberg method (Hochberg, 1988), 'hommel' for the Hommel method (Hommel, 1988), 'BH' for the method by Benjamini & Hochberg 
(Benjamini and Hochberg, 1995), 'BY' for the method by Benjamini & Yekutieli (Benjamini and Yekutieli, 2001), and 'sidak' for the Šidák 
method (Šidák, 1967). The default setting is 'BH'. Adjusted p-values are labeled as q-values and are exported accordingly (Slide 218).  
 
The p-value adjustment is performed by an external function (pval_adjust) as part of the micompm toolbox (Fachada and Rosa, 2018). 
This function is found in TEnvR\Internal codes. Its license is found in TEnvR\Supplementary files. 
 
By changing the second function argument of Stats_CorrMatrix from 'Pearson' to 'Kendall' or 'Spearman', you can change the type of 
correlation analysis you want to perform on the data. The produced Excel files are named “CorrMatrix_Kendall.xlsx” and 
“CorrMatrix_Spearman.xlsx”, respectively.  
 
Slide 219: Stats_CorrMatrix('ExternalVariables.xlsx','Kendall') 
 
Slide 220: Stats_CorrMatrix('ExternalVariables.xlsx','Spearman') 
 
Before proceeding, type close all, clear, and then clc in the Command Window. 
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• FTMS_SpearmanCorrelation 
 
Spearman correlations are incredibly useful in mathematically coupling FT-ICR-MS and other (external) parameters such as UV-VIS 
(Berg et al., 2019) or fluorescence/PARAFAC metrics (Stubbins et al., 2014). It correlates the normalized28 magnitude values of molecular 
formulas common among all samples with values of the external parameters. The correlation is done for each formula and for each 
external parameter.  
 
The FTMS_SpearmanCorelation code requires two different inputs: aligned and magnitude-normalized molecular formulas as well as 
external parameters. The formulas are loaded from the “FTMS Alignment Matrix.xlsx” file. The code will search for a sheet named 
“Normalized Common” and will load the data from there. The code also requires a sheet of external parameters. Here, we will use the 
“ExternalVariables.xlsx” file with UV-VIS metrics and correlate them with the common formulas among the 20 example FT-ICR-MS 
samples. To run this code, set TestData_FTICRMS as your Current Folder. Please note that the code will not run properly if any of the 
variables are labeled with symbols such as . , / ? * [ ].  
 
Slide 221: FTMS_SpearmanCorrelation('FTMS Alignment Matrix.xlsx','ExternalVariables.xlsx') 
 
The code will output a van Krevelen diagram for each metric (here, 15 metrics ≡ 15 figures), which are saved as 
“vK_Spearman_MetricName.png” (e.g., “vK_Spearman_Abs-230 (dec).png”, “vK_Spearman_Slope(275-295).png”, etc.). Formulas 
significantly positively correlated (p < 0.05) with the metrics are colored in red, negatively correlated (p < 0.05) in blue, and formulas that 
are not significantly correlated are colored in gray (p ≥ 0.05). Corresponding Venn diagram statistics (number of formulas + number-
based percentages) are shown in the legend. It should be noted that the legend can be moved around on the plot, simply by clicking on 
it and then moving it to the desired location.  
 
The code also outputs an Excel file (“FTMS_SpearmanResults.xlsx”) containing all original molecular formula data (from “FTMS Alignment 
Matrix.xlsx”) in “Sheet1” (Slide 222), all original external variables data (from “ExternalVariables.xlsx”) in sheet “ExternalVar” (Slide 223), 
and the molecular formula correlations for each external variable in other sheets named with the external variable name (example shown 
for Abs-230 (dec) on Slide 224). Molecular formula information is listed along with Spearman’s rank correlation coefficient ρ (Greek letter 
rho) (labeled r-value in column N), the t-statistic (labeled as t-value in column O), and the p-value in column P.  
 
The p-value threshold of 0.05, corresponding to confidence level (α) of 95% can be modified by changing the variable CL_alpha in 
FTMS_ConfigurationToolbox (line 58, Slide 93) to a more strict (e.g., α = 98%) or liberal threshold (e.g., α = 90%). If the user desires 
to include a p-value adjustment, the user must enable this by changing the variable pvalue_adjustment in FTMS_ConfigurationToolbox 
(line 61, Slide 93) from false to true. The default setting for this variable is false. Once enabled, the user must specify the type of correction 
method by changing the variable p_adjust_method in FTMS_ConfigurationToolbox (line 62, Slide 93) to 'bonferroni' for the Bonferroni 
method (Bonferroni, 1936; Dunn, 1961), 'holm' for the Holm method, (Holm, 1979), 'hochberg' for the Hochberg method (Hochberg, 1988), 

 
28 Normalization is done based on total spectral magnitude (TSS, Thompson et al., 2021). 
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'hommel' for the Hommel method (Hommel, 1988), 'BH' for the method by Benjamini & Hochberg (Benjamini and Hochberg, 1995), 'BY' 
for the method by Benjamini & Yekutieli (Benjamini and Yekutieli, 2001), and 'sidak' for the Šidák method (Šidák, 1967). The default 
setting is 'BH'. Adjusted p-values are labeled as q-values and are exported alongside p-values in the Excel file 
(“FTMS_SpearmanResults.xlsx”). They are shown in column Q (Slide 225). 
 
The p-value adjustment is performed by an external function (pval_adjust) as part of the micompm toolbox (Fachada and Rosa, 2018). 
This function is found in TEnvR\Internal codes. Its license is found in TEnvR\Supplementary files. 
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Section 9. Troubleshooting (Common Errors) 
 
In this section, we describe the most common errors we have experienced while using TEnvR. If users experience an error that is not 
listed below, we first recommend checking for formatting issues. The codes of TEnvR require specific format of the files that are to be 
loaded. We provide examples in this tutorial and describe the formats in detail above. For persisting issues, users are welcome to 
communicate with the corresponding authors via email, ResearchGate, or the website of TEnvR.  
 

Error Message Solution 
Error (when attempting to open MATLAB): License Manager Error -9 

 

 

There is an issue with the MATLAB license. Reactivation of 
the MATLAB license with the activation client generally fixes 
this issue. Activation agent is found in C:\Program 
Files\MATLAB\R2021a\bin\win64\activatematlab.exe  
 
Please follow the instructions on the following link: 
https://www.mathworks.com/matlabcentral/answers/99067-
why-do-i-receive-license-manager-error-9 
 

  

https://www.mathworks.com/matlabcentral/answers/99067-why-do-i-receive-license-manager-error-9
https://www.mathworks.com/matlabcentral/answers/99067-why-do-i-receive-license-manager-error-9
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Error: Out of memory. 
 

  

The computer cannot handle the size of the dataset. Please 
run the code on a more powerful computer or a 
supercomputer.  

Error: Invoke Error, Dispatch Exception  
 

 

Type clear all in the Command Window.  
 
If error persists, restart MATLAB.  
 
If error persists, close MATLAB. Open task manager 
(Ctrl+Shift+Esc), go to the tab Details and close any 
processes related to Excel.  

Error: Excel Worksheet could not be activated. 
 

 

Type clear all in the Command Window.  
 
Open task manager (Ctrl+Shift+Esc), go to the tab Details 
and close any processes related to Excel. 
 
If error persists, restart MATLAB. If error persists, restart 
your computer. 

Error: PNG library failed: Could not open file. 
 

Filename is too long. Reduce filename.  
 

Error: 'refline' requires Statistics and Machine Learning Toolbox. 
 

 

One of the functions requires an additional toolbox. Please 
click on the required toolbox (the red underlined toolbox 
statement in the command window is clickable). You will be 
redirected to MathWorks where you will be asked to install 
the missing toolbox. See Slide 2 for required toolboxes for 
TEnvR).  



S110 
 

Error: Invalid sheet name 'E4/E6'. Sheet names cannot exceed 31 
characters and cannot contain any of these characters: ': / ? * [  ] ' 
 

 
 

You used an illegal character (here, a slash /). Remove the 
character from the label.  

Error using readtable (line 197) 
Invalid parameter name: VariableNamingRule. 
 
Error in Stats_PCA (line 70) 
    T=readtable(InputFilename,'ReadVariableNames',true, 
'ReadRowNames',true,'VariableNamingRule','preserve', 
'Sheet','Normalized'); 

You are using an old MATLAB version, which does not 
contain the most up-to-date version of the readtable 
function. Please update your MATLAB to the most recent 
version (after R2021a). 
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