Supplement

A high efficiency SERS platform based on 3D porous PPDA@Au

NPs as substrate for detection of pesticide on vegetables

Zhiyou Zeng¹, Xiaoyu Yang¹, Yongguo Cao, Sanshan Pu, Yinyu Zhou, Rongli Gu,

Yiqian Zhang, Caijun Wu*, Xiaojun Luo*, Yi He*

^{*} Corresponding author.

¹Zhiyou Zeng and Xiaoyu Yang contributed equally to this work.

E-mail address: heyi04191@163.com; wcj452947@163.com; xajunluo@hotmail.com.

1. The Raman spectrum of TB

Figure S1. The Raman spectrum of TB.

2. The storage stability of the proposed PPDA@Au NPs SERS platform.

Figure S2. The storage stability of the proposed PPDA@Au NPs SERS platform. Table S1. Comparison with literature for 2 4-D study by SERS and other methods.

. There she comparison with including for 2, 1 D study by shirts and other includes	
---	--

Detection method	Real sample	recovery	Reference
High-performance	Water samples	95.58%-115%	1
liquid chromatography			
SERS	Tea	103.3%-111.1%	2
Spectrophotometric	Mineral water	96%-113%	3
electrochemical	toothpaste	98.8%-107%	4
impedance			
spectroscopy			

Reference

40. N. Orooji, A. Takdastan, R.J. Yengejeh, S. Jorfi, A.H. Davami, A quick and inexpensive method to determine 2, 4-dichlorophenoxyacetic acid residues in water samples by HPLC, *Desalin. Water Treat.* 2021, **217**, 329-338.

41. M. M. Hassan, T. Jiao, W. Ahmad, X. Yi, M. Zareef, S. Ali, H. Li, Q. Chen, Cellulose paper-based SERS sensor for sensitive detection of 2, 4-D residue levels in tea coupled uninformative variable elimination-partial least squares, *Spectromchim. Acta Part A Mol. Biomol. Spectrosc.* 2021, **248**, 119198.

42. Z.A. Kormosh, E.S. Zhurba, I.P. Antal, A.Z. Kormosh, Y.R. Bazel, Spectrophotometric determination of 2, 4-dichlorophenoxyacetic acid using extraction with astrafloxin, *J. Anal. Chem.* 2020, **75**, 909-912.

43. F. Liu, Q. Xu, W. Huang, Z. Zhang, G. Xiang, C. Zhang, C. Liang, H. Lian, J. Peng, Green systhesis of porous graphene and its application for sensitive detection of hydrogen peroxide and 2,4-dichlorophenoxyacetic acid, *Electrochim. Acta* 2019, **295**, 615-623.