Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

2

1

3 Efficient separation of Aristolochic acid I from Caulis aristolochiae

4 manshuriensis (Guan-mu-tong) with copper mediated magnetic molecularly

5 imprinted polymer

6 Yu Cao, Haizhu Shi, Zhuo Lan, Kunlin He, Qian Chen, Chungu Zhang, Shun Feng*, Lianhai Shan*

7

- 8 Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life
- 9 Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

10

- 11 *Corresponding Author
- 12 Orcid.org/0000-0003-1602-0244; Phone: +86 028 87634296;
- 13 E-mail: fengshunxd@hotmail.com
- 14 E-mail: mas3330@swjtu.edu.cn

16 1 EXPERIMENTAL SECTION

17 1.1 Preparation of Fe₃O₄ nanoparticles

18 Fe₃O₄ nanoparticles are synthesized by an improved chemical co-precipitation method. In brief, 1.53 19 g FeCl₃·6H₂O and 0.75 g FeCl₂·4H₂O were added in a 100 mL three-mouth flask containing 50 mL 20 water under a nitrogen atmosphere and vigorous stirring. After being heated to 80 C, 5 mL of 21 ammonia solution was added rapidly with a syringe. After 30 min of mechanical stirring, those formed 22 black precipitates were collected with an external magnet, followed by washing with ethanol and 23 ultra-pure water 3 times. The product was dried in a vacuum freezer for 12 h.

24 1.2 Determination of Cu(II) in obtained AAI by ICP-MS

An aliquot of 2 mg AAI obtained in Section 3.5 was dissolved in 10 mL superior pure nitric acid.
And then the solution was heated to 120°C until almost dried. And then deionized water was added
to a final volume of 25 mL, and analyzed by IPC-MS (Thermo Scientific iCAP TQs ICP-MS, US).

28 1.3 The stability of NPs in pH 2 solution

To further investigate the stability of NPs, an amount of 10 mg Fe_3O_4 or Cu-mMIP was immersed in 0.01 mol L⁻¹ HCl solution (pH 2) under shaking. After certain intervals, the color of the solution was recorded by a camera, the particle size was measured by a zeta potential meter (UK, Malvern Nano-Zen 3600), and the magnetic respond of NPs were tested.

34 Figure captions

- 35 Fig. S1 Chemical structures of AAI, enalapril, norfloxacin, lappaconitine, 3,5-dinitrobenzoic acid,
- 36 benzoic acid,4-nitrobenzoic acid, 4-hydroxybenzoic acid and 4-aminobenzoic acid.
- 37 Fig. S2 Optimized preparation conditions for metal ion (a); UV-Vis spectra of AAI with different
- 38 functional monomers (b); ratio between AAI and TEOS (c); solvent (d); and pH (e)
- 39 Fig. S3 FT-IR spectra of Fe₃O₄, mNIP, mMIP, Cu-mMIP, Cu-mMIP-AAI and AAI.
- 40 Fig. S4 Pseudo-first-order (a) and pseudo-second-order (b) kinetic models of Cu-mMIP, mMIP and41 mNIP.
- 42 Fig. S5 Scatchard curves of Cu-mMIP (a); mMIP(b); mNIP(c).
- 43 Fig. S6 Fe₃O₄ or Cu-mMIP solution (a), particle size of Fe₃O₄ (b) and Cu-mMIP (c) recorded after
- 44 being immersed in pH 2 solution 0 h, 12 h, and 24 h
- 45 Fig. S7 Typical chromatograms of the solutions before/after being treated with Cu-mMIP at 1st (a),
- 46 2^{nd} (b), 3^{rd} (c), 4^{th} (d), 5^{th} (e), and 6^{th} (f) cycle, respectively.
- 47 Fig. S8Typical chromatograms of AAI standard (a) and Guan-mu-tong extract (b).

48 Table captions

- 49 Table S1 Kinetic constants for the Cu-mMIP, mMIP and mNIP
- 50

53

Figure S1

Figure S2

Figure S3

Figure S4

Figure S7

Sorbents	Pseudo-first-order			Pseudo-second-order	
	R ²	K ₁	Qe	R ²	K ₂
		(mL h ⁻¹)	(mg g ⁻¹)		$(g (mg h^{-1}))$
Cu-mMIP	0.905	0.186	136.96	0.999	0.007
mMIP	0.932	0.140	72.95	0.999	0.013
mNIP	0.742	0.135	44.65	0.995	0.018