Supporting Information

for

1,8-Naphthalimide based chemosensor for intracellular and in biofluid detection of Pd²⁺ ions: Microscopic and anticounterfeiting studies

Sanjeev Kumar^a, Neha Sharma^b, Satwinder Singh Marok^c, Satwinderjeet Kaur^b and Prabhpreet Singh^a*

^aDepartment of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (pb.)-India

^bDepartment of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143001 (pb.)-India

°Apotex Inc.,150 Signet Drive, Toronto, ON, M9L1T9 Canada

E-mail: prabhpreet.chem@gndu.ac.in; M: +91 8427101534.

Synthesis of compound 1

1,8-Naphthalic anhydride (20.2 mmol, 4.0 g) was dissolved in a 4M KOH solution (24 mL) and to this solution bromine (29.3 mmol, 1.55 mL) was slowly added. The mixture was stirred for 12 h at 65° C. After this time interval, the reaction mixture was cooled to room temperature and sulfuric acid (10 mL) was slowly added. The resulting solution was allowed to reflux for 1 h. The precipitates of 4-bromo-1,8-naphthalic anhydride were collected through filtration, washed with H₂O and methanol. The precipitates were dried (95% yield) and further used without purification. In the next step, 4-bromo-1,8-naphthalic anhydride (4.0 g, 14.0 mmol) and cyclohexylamine (1.72 g, 17.0 mmol) mixture was refluxed in ethanol (110 mL) for 12 h. The reaction mixture was cooled to room temperature and precipitates were collected by filtration, washed with ethanol and dried under vacuum to obtained compound **2**; Yield 57%; $R_f = 0.63$ chloroform: hexane (1:1); ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 8.62 (dd, *J* = 7 Hz, 1H), 8.53 (dd, *J* = 8.5 Hz, 1H), 8.38 (d, *J* = 7.5 Hz, 1H), 8.02 (d, *J* = 8 Hz, 1H), 7.85-7.82 (m, 1H), 5.04-4.97 (m, 1H), 1.91-1.88 (m, 2H), 1.75-1.72 (m, 4H), 1.49-1.28 (m, 4H) ppm.

Synthesis of NPG

To a solution of pentaethylene glycol (0.06 mL, 1.39 mol) in CH_3CN (25 mL), NaH (0.06 g, 1.39 mol) was added and the reaction mixture was stirred for 30 min at 70 °C under stream of N₂. Subsequently, compound **1** (0.5 g, 2.79 mol) was added to the above solution and reaction mixture was stirred for another 10 h at 70 °C. After completion of the reaction (tlc), the solvent was evaporated and water was added. The crude residue was extracted with CH_2Cl_2 (3x20 mL),

combined organic layers were dried over Na₂SO₄ and solvent was rotary evaporated. The crude residue was column chromatographed on silica (60–120 mesh) using CHCl₃–CH₃OH (90: 10, v/v) mixture as an eluent solution to obtained **NPG** as viscous liquid, Yield 35%, R_f = 0.18 (ethyl acetate); IR spectrum (ATR): v_{max} [cm⁻] = 3473.9, 2922.2, 2862.6, 2109.7, 1908.4, 1654.9, 1587.8, 1513.3, 1453.7, 1349.3, 1267.3, 1110.7, 939.3, 842.4, 752.9, 663.5, 521.8 and 454.7 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 8.48-8.56 (m, 3H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 8 Hz, 1H), 5.01 (t, *J* = 12 Hz, 1H), 4.45 (s, 2H), 4.04 (s, 2H), 3.80 (s, 2H), 3.67 (d, *J* = 30.5 Hz, 12H) 3.87 (s, 2H), 1.90-1.72 (m, 6H), 1.48-1.31 (m, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 164.94, 164.38, 159.69, 133.20, 131.37, 129.39, 128.42, 125.88, 123.35, 122.99, 115.77, 106.09, 76.81, 72.64, 70.99, 70.57, 70.55, 70.50, 70.19, 69.42, 68.37, 61.65, 53.55, 29.67, 29.15, 26.60, 25.50. HR-MS: *m/z* found 515.228 (M⁺+H); calcd 515.603 (M⁺+H) for [C₂₈H₃₇NO₈].

Live cell imaging and MTT assay

For MTT assay, MG-63 (Human osteosarcoma) cell line was procured from the National Centre for Cell Science (NCCS) Pune, India. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with an antibiotic-antimycotic solution and 10% fetal bovine serum (Biological Industries) by making a humidified atmosphere at 37°C under 95% air mixture and 5% CO₂. The 1×PBS (pH 7.4) and trypsinized were used for the washing of the cells at 37°C, followed by centrifugation at 1000 rpm for 5 min. The cytotoxic potential of NPG was determined by using an MTT assay. In this experiment, MG-63 cells were seeded in 96 well microplates at the concentration of 8x10³ cells/0.1 ml and incubated to allow cell attachment. After 15h, cells were treated with the different concentrations of the NPG using serial dilutions method. On the completion of total 40h, 20 µl of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added in each well and the ability of viable cells to reduce it into insoluble purple colored formazan was measured and the cells were further incubated for 3h. After this time, supernatant MTT solution was removed from each well and the intracellular MTT formazan was dissolved in 100 µl of dimethyl sulfoxide (DMSO). Finally, the decrease in absorbance was measured at 570 nm using a multi well plate reader (BioTek Synergy HT).

Cell viability = (Absorbance of treated sample/ Absorbance of untreated control) x 100

The growth inhibition percentage was expressed by using the following equation

% Growth inhibition = 100% viability.

Cells of two wells were treated with NPG (5 μ M prepared in media with 2% DMSO); cells of 4 wells were treated with NPG (5 μ M) for 30 minutes followed by addition of Pd²⁺ (2 wells each with 250 and 500 μ M concentrations) and 2 wells served as control. For the cell imaging experiment, the MG-63 cells were seeded in a 24-well plate at a density of 3×10^5 cells/well and coverslip was placed in each well. After 24h, cells get adhered and then treated with various concentrations of NPG. After 30 minutes, media was discarded and cells were washed thrice with 1xPBS and on the slides, anti-fading reagent (Floromount, Sigma) was poured over the centre and then glass coverslip was gently put on it. Finally, the images were captured at excitation of 360 nm under a fluorescent Microscope system (Nikon Corporation, Japan) using NIS Elements AR analysis software version 4.11.00.

Limit of Detection

The limit of detection for Pd^{2+} ion was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of **NPG** (5 µM) solution (in triplicates) was determined and the standard deviation of blank solution (in the absence of analyte) measurements was determined. The detection limit was then considered using the equation, detection limit = $3\sigma/m$, where σ the standard deviation of the blank solution (in the absence of analyte) measurements, and m is the slope between fluorescence intensity versus Pd^{2+} concentrations.

Preparation of TLC strips

TLC strips were prepared by dipping silica gel coated aluminium plate into the CH₃CN solution of **NPG**, followed by drying under vacuum at room temperature. The different concentrations of Pd²⁺ ions were prepared in DMSO solution and aliquot of 3 μ L of each solution was added on the TLC strips previously coated with **NPG** (30 μ M). For the control experiment, a drop of DMSO alone was also added on the TLC strip coated with **NPG**. These TLC strips were then visualized under 365 nm UV lamp.

Figure S1a. ¹H NMR data of NPG in CDCl₃.

Figure S1b. ¹³C NMR data of NPG in CDCl₃.

Figure S1c. ¹³C DEPT-135 NMR data of NPG in CDCl₃.

Figure S1d. ¹H-¹H cosy NMR data of NPG in CDCl₃.

Figure S1e. HRMS-mass spectral data of NPG. NG=NPG in the figure caption

Figure S1f. FTIR data of NPG.

Figure S1g: The absorbance-based aggregation study of NPG (5 μ M) in DMF and its aqueous binary mixtures at different volume fractions of water. Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S2. Fluorescence based aggregation study of NPG (5 μ M) in DMF and its aqueous binary mixtures at different volume fractions of water. Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S3. Fluorescence based aggregation study of NPG (5 μ M) in CH₃CN and its aqueous binary mixtures at different volume fractions of water. Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S4. Fluorescence based aggregation study of **NPG** (5 μ M) in THF and its aqueous binary mixtures at different volume fractions of water. Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S5. (a) Emission spectra and (b) bar graph of NPG upon addition of different metal ions in HEPES buffer-DMSO (1: 1 v/v, pH 7.2) solution, Ex = 360 nm; Slit widths: Ex = 5 nm and Em = 3 nm.

Figure S6. (a) Emission and (b) bar graph of NPG+Pd²⁺ complex recorded in DMSO: H₂O (1:1) solution at different pH values; Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S7. (a) Emission and (d) bar graph of NPG+Pd²⁺ complex recorded in DMSO: H_2O (1:1) solution on incremental addition of HCl; Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S8. Fluorescence based interference study of **NPG** (5 μ M) complex of Pd²⁺ with other metal ions in HEPES buffer–DMSO (1:1, pH 7.2), Ex = 360 nm; Slit widths: Ex = 5 nm and Em = 3 nm.

Figure S9. (a) Emission spectra and (b) bar graph of Fluorescence based amines (100 equiv.) study **NPG** (5 μ M) in 50% HEPES buffer: DMSO solution; Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm; (c) Emission spectra and (d) bar graph of fluorescence-based amines (100 equiv.) study **NPG**+Pd²⁺ complex (5 μ M) in 50% HEPES buffer: DMSO; Ex = 360 nm; Slit width: Ex = 5 nm and Em = 3 nm.

Figure S10. (a) The HOMO and LUMO; (b) energy optimized structure and (c) TD-DFT of **NPG** calculated with DFT using B3LYP/6-31G* basis sets.

Figure S11: The HOMO and LUMO of NPG-Pd²⁺ complex calculated with DFT using B3LYP/6-31G* basis sets. The Pd²⁺ ions were placed (a) near the naphthalimide ring; (b) near the terminal oxygen atoms of glycol chain.

Figure S12. SEM images of (a-c) **NPG** and (d-f) **NPG**+Pd²⁺ complex recorded in HEPES buffer–DMSO (1:1, v/v, pH 7.2) solution.

Figure S13. Cyclic voltametric (CV) data of **NPG** and **NPG**+Pd²⁺ complex recorded in HEPES buffer–DMSO (1:1, v/v, pH 7.2) solution.

Figure S14: (a-c) Fluorescence spectra and (d-f) fluorescence profile of **NPG** after incremental addition of Pd²⁺ ions recorded in HEPES buffer-DMSO (1:1, v/v, pH 7.3), containing 10% tablet solution, 10% urine solution and 10% human blood serum, respectively.

System	Method	<mark>Analyte</mark>	Type of Sensor	Solvent	λ _{max} (NIR)	Respons	Detectio	Applications	Reference
				system		e Time	n limits		
NPG	Fluorescence	Pd ²⁺	Chemosensor	DMSO-	<mark>450 nm (FI)</mark>	Immediat	<mark>72 nM</mark>	Live cell	Present
				HEPES (1,1)		e	<mark>(FI),</mark>	<u>imaging,</u> Ouantification	Report
				(1:1)		response		of Pd species in	
								drug samples,	
								anticounterfeiti	
								detection	
	* ** * * * *	D 10 D 12				20		T	
DNP	UV-V1S,	$\frac{Pd^{0}, Pd^{2+}}{TDD},$	Chemod	ACN-	In NIR Bogion	30	$\frac{190 \text{ nM}}{(\text{Pd}0) - 282}$	Live cell imaging	ChemistrySelect,
	Fluorescence		-osimeter	$\frac{\Pi \Gamma \Gamma \Gamma S}{(1 \cdot 1)}$	Azza /Azza	mmues	(Fu ^e), 205 nM	Solution, solid-	e202300693
					$\frac{1}{m} (Pd^0,$		(Pd^{2+}) ,	TLC based	
					$Pd^{2+}),$		0.240	detection of Pd	
					$\mathbf{A_{698nm}}/\mathbf{A_{560n}}$		$\frac{\& 349}{mM for}$	aqueous ACN	
					m (TPP)		TPP	(1:1)	
Acylhydrazone-	Fluore scence	Pd^{2+} ,	Chemosensor	DMF	No NIR	-	2.03 ×10	Formation of	Journal of
based fluorescent		$H_2PO_4^2$			$\frac{4/5 \text{ nm (FI)}}{4/5 \text{ nm (FI)}}$		° <mark>M</mark>	neterogeneous	Molecular Liquids 327
SCHSOL								C coupling	(2021) 114836
								with reused	
								for at least 5	
								times	

Table S1: Comparison of literature reports for the detection of Pd²⁺ ions have been added in the supporting information.

Rhodamine & Coumarin- rhodamine based (FRET) sensor	UV-Vis , Fluorescence	Pd ⁰ , Pd ²⁺	Chemosensor	ACN- H ₂ O (1:1)	<mark>No NIR</mark> 570 nm (UV), I ₅₉₉ /I ₄₇₀ (FI)	<mark>60 min</mark>	Using FI 82 nM (FPS) & 70 Nm (RPS)	Live cell imaging	<mark>Talanta 210</mark> (2020) 120634
Purine functionalized rhodamine B	UV-visible, Fluorescence	Pd ²⁺	Chemosensor	EtOH- Hepes (3:2)	<mark>No NIR</mark> 562 nm (UV), 584 nm (FI)	-	49.5 nM for Pd ²⁺	Test paper based Solid- state quantitative detection of Pd ²⁺	Inorganic Chemistry Communication s 102 (2019) 233–239
Allyl carbonate substituted coumarin derivative	UV-visible, Fluorescence	₽dº,	Chemod -osimeter	EtOH- PBS buffer (2 : 3)	No NIR 324 and 473 nm (UV), 560 nm (FI)	10 minutes	<mark>4.18 μΜ</mark> (FI)	Live cell imaging, studies in zebrafish	New J. Chem., 2019, 43, 548 551
Purine derivative based Schiff base PTAID	UV–vis and fluorescence	Pd ²⁺ , Cu ²⁺	Chemosensor	DMSO- HEPES (3:2)	<mark>No NIR</mark> 375 nm (UV-Vis), 501 nm (FI)	<mark>3 min</mark>	0.63 μM for Pd ²⁺ and 1.19 μM for Cu ²⁺	Solid- state detection of Pd ²⁺ , Cu ²⁺ on paper,	Inorganic Chemistry Communication s 116 (2020) 107915
Imidazolium ionic liquid functionalized salicylaldehyde bis-Schiff-base	UV–vis and fluorescence	Pd ²⁺ , Cu ²⁺	Chemod -osimeter	HAc- NaAc buffer for Pd ²⁺	$\begin{tabular}{l} \hline $No NIR$ \\ \hline A_{412nm}/A_{350} \\ $nm, 425 nm$ \\ (for Pd^{2+})$ \\ \hline and \\ \hline A_{412nm}/A_{350} \\ nm (for Cu^{2+})$ \\ \end{tabular}$	-	0.076 μM (Pd ²⁺), 0.080 μM (Cu ²⁺)	solid-state TLC-strips based detection of Pd ²⁺ , Determination of Pd ²⁺ in real water	Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 237 (2020) 118365
Functionalized 3-(2,3,3-trimethyl-	UV–vis and Fluorescence	Pd ²⁺	Chemod	DMSO- PBS	In NIR Dec. in 300-	<mark>30 min</mark>	0.52 μM (FI)	Pd ²⁺ in real water samples	<mark>Inorganic</mark> Chemistry

<mark>3H-inulinyl)</mark> propane Cy202			-osimeter	buffer solution (pH 7.40, 8:2, v/v)	500 nm & inc in 500- 700 nm (UV) 689 nm (FI)				Communication s 101 (2019) 135–141
Rhodamine derivative (YG)	Fluorescence	Pd ²⁺	Chemosensor	Ethanol- PBS (2:8)	<mark>No NIR</mark> 575 nm (FI)	-	<mark>0.39 μΜ</mark> (FI)	Live cell imaging_of Pd ²⁺ and ClO ⁻ using_L929 cells	Tetrahedron 75 (2019) 130570
Allyl carbonate (C1) & propargyl (C2) substituted coumarin-based probes	Fluorescence	Pd ⁰ , Pd ²⁺ N ₂ H ₄	Chemod -osimeter	CH₃CN- PBS (1:3)	No NIR 509 nm (C1), I _{524nm} /I _{412nm} (C2) and 37 Nm for N ₂ H ₄	<u>2–3 min</u>	33 nM (C1), 14 nM (C2) and 37 nM for N ₂ H ₄	-	Sensors and Actuators B 256 (2018) 1107– 1113