1 Label-free Dual-mode Sensing Platform Based on Target-regulated

2 CRISPR-Cas12a Activity for Ochratoxin A in Morinda officinal

35

36 Table S1 Comparison of the developed dual-mode sensing platform with others for

37 OTA detection

Methods	Linear range	LOD	ref
Colorimetry	2.52-302.85 ng/mL	2.019 ng/mL	[1]
Fluorescence	1 - 1000 ng/mL	0.63 ng/mL	[2]
Fluorescence	5–500 ng/mL	2.3 ng/mL	[3]
Fluorescence	0.015–100 ng/mL	5.4 ng/mL	[4]
Electrochemistry	0.01 -10.0 ng/mL	3 pg/mL	[5]
Electrochemistry	0.05–10 ng/mL	50 pg/mL	[6]
ECL	0.0202–2.02 ng/mL	4.84 ng/mL	[7]
ECL	1–100 ng/mL	0.89 ng/mL	[8]
Electrochemistry and ECL	1-5000 pg/mL	0.29 pg/mL	This work
		0.37 pg/mL	

38

39

40

41 [1] Y. He, F. Tian, J. Zhou, Q. Zhao, R. Fu, B. Jiao, Colorimetric aptasensor for ochratoxin A detection

42 based on enzyme-induced gold nanoparticle aggregation, Journal of Hazardous Materials, 388 (2020)

43 121758.

44 [2] B. Han, C. Fang, L. Sha, M. Jalalah, M.S. Al-Assiri, F.A. Harraz, Y. Cao, Cascade strand
45 displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A, Food
46 Chemistry, 338 (2021) 127827.

47 [3] Z. Guo, J. Tian, C. Cui, Y. Wang, H. Yang, M. Yuan, H. Yu, A label-free aptasensor for turn-on

48 fluorescent detection of ochratoxin a based on SYBR gold and single walled carbon nanohorns, Food

49 Control, 123 (2021) 107741.

50 [4] C. Wang, J. Qian, K. Wang, K. Wang, Q. Liu, X. Dong, C. Wang, X. Huang, Magnetic-fluorescent-

51 targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A,

52 Biosensors and Bioelectronics, 68 (2015) 783-790.

53 [5] Y. Wang, G. Ning, Y. Wu, S. Wu, B. Zeng, G. Liu, X. He, K. Wang, Facile combination of beta-

54 cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive 55 electrochemical assay of ochratoxin A, Biosensors and Bioelectronics, 124-125 (2019) 82-88.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

56 [6] Y. Hou, N. Long, B. Jia, X. Liao, M. Yang, L. Fu, L. Zhou, P. Sheng, W. Kong, Development of a

57 label-free electrochemical aptasensor for ultrasensitive detection of ochratoxin A, Food Control, 13558 (2022) 108833.

^{59 [7]} M. Wei, C. Wang, E. Xu, J. Chen, X. Xu, W. Wei, S. Liu, A simple and sensitive 60 electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking 61 endonuclease-powered DNA walking machine, Food Chemistry, 282 (2019) 141-146.

- 62 [8] M. Jia, B. Jia, X. Liao, L. Shi, Z. Zhang, M. Liu, L. Zhou, D. Li, W. Kong, A CdSe@CdS quantum
- 63 dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A, Chemosphere,
- 64 287 (2022) 131994.

65