Supporting Information

A rapid and highly sensitive ctDNA detection platform based on locked nucleic acids-assisted CHA circuits

Kaiyue Tan,^{a, b, c} Longsheng Chen,^{a, b, c} Donglin Cao,^d Wei Xiao,^d Qian Lv^{a, b, c} and Lili Zou^{a, b, c}

- ^aInstitute of Biological and Medical Engineering, Guangdong Academy of Sciences,
- Guangzhou 510632, P. R. China
- ^bGuangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China.
- ^cGuangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, PR China.
- ^dDepartment of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-ofcare Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China

*Corresponding author: Lili Zou, lilizou@mail.ustc.edu.cn.

Table of Contents

Table S1. The DNA sequences used to construct updated CHA system
Fig. S1 The updated CHA system triggered by target ctDNA
Fig. S2 Design of the fluorescent reporter in the CHA system
Fig. S3 Optimized hairpin structures of the CHA constructs
Fig. S4 Optimized hairpin concentrations of the updated CHA system
Fig. S5 Optimized reaction temperature of the updated CHA system
Fig. S6 Optimized reaction time of the updated CHA system
Fig. S7 Fluorescence response of CHA system in different LNA modificationsS10
Fig. S8 Fluorescence kinetics of LNA-modified and regular CHA system
Fig. S9 The comparison of updated CHA system relative to MB systemS12
Table S2. Comparison of analytical performances of different ctDNA biosensors
Fig. S10 Fluorescence response of H_1 alone, H_2 alone, and the intact CHA systemS14
Fig. S11 Fluorescence response of CHA system in different ratios of serumS15
Fig. S12 Comparison of commercial thermostatic nucleic acid amplification kitS16
References

Table S1 Sequences of the oligonucleotides for ctDNA-initiated catalytic hairpin assembly(CHA) system.

Name	Sequence(5'-3')
PIK3CA E542K	CTCAGTGA(3*) TTTTAGA(2*) GAGAGGAT(1*)
(Target ctDNA)	
DNA-H ₁	ATCCTCTC(1) TCTAAAA(2) TCACTGAG(3)
	CCATGTGTAGA(4*) CTCAGTGA(3*) TTTTAGA(2*)
	CCTTGTCA(5*) TAGAGCAC(6*)
H ₁	ATCCTCTC TCTAAAA TCACTGAG CCATGTGTAGA
	CTCAGTGA TTT <mark>TAG</mark> A CCTTGTCA TAGAGCAC
H _{1-S}	ATCCTCTC TCTAAAA TCACTGAG CCATGTGTAGA
	CTCAGTGA TTTTAGA CCTTGTCA TAGAGCAC
H _{1-R}	ATCCTCTC TCTAAAA TCACTGAG CCATGTGTAGA
	CTCAGTGA TTTTAGA CCTTGTCA TAGAGCAC
DNA-H ₂	TCACTGAG(3) TCTACACATGG(4) CTCAGTGA(3*)
	TTTTAGA(2*) CCATGTGTAGA(4*)
H ₂	TCACTGAG TCTACACATGG CTCAGTGA TTTTAGA
	CCATGTGTAGA
Reporter-F	FAM-CGA GTGCTCTA TGACAAGG TCTAAAA
(Rep-F)	
Regular Rep-F	FAM-CGA GTGCTCTA TGACAAGG TCTAAAA
Reporter-Q	CCTTGTCA TAGAGCAC TCG-BHQ-1
(Rep-Q)	
KRAS G12DM	ACT CTT GCC TAC GCC ATC AGC TCC AAC TAC CAC AAG
	TTT
EGFR L858R	CAG CAG TTT GGC CAG CCC AAA ATC TGT GAT CTT GAC
	ATG
BRAF V600E	GAT TTT GGT CTA GCT ACA GAG AAA TCT CGA TGG AGT
	GGG
1-Mut	CTC AGT GAT TTA AGA GAG AGG AT
2-Mut	CTC AGT GAT TTA AGA GTG AGG AT
3-Mut	CTC AGA GAT TTA AGA GTG AGG AT
Molecular Beacon	FAM-GCT AGC ATC CTC TCT CTA AAA TCA CTG AGG CTA
(H ₃)	GC-BHQ-1

Red letters denote locked nucleic acid bases.

Fig. S1 Proposed scheme of updated LNA-assisted catalyzed hairpin assembly (CHA) system triggered by target ctDNA. Two pairs of LNAs are respectively incorporated near the stemend of hairpin H_1 and H_2 (detailed site, see **Table S1**). Arrows of DNA strands denote 3'-termini. Gray circles denote base-pairing. The numbers of domains are complementary to the corresponding asterisks. Short gray dashes denote the junctions between domains.

The CHA reaction is consisted of the two hairpins (H₁ and H₂). The sequence 1-2-3 of hairpin H₁ is complementary to the sequence $1^*-2^*-3^*$ of target ctDNA. And the stem domain 3^* of hairpin H₁ is complementary to the toehold region 3 of hairpin H₂. Hairpin H₂ is encoded with a partially complementary sequence 3^*-4^*-3-2 to hairpin H₁. Target ctDNA firstly opens hairpin H₁ via a toehold-mediated strand displacement, leading to the formation of H₁-target hybrid. And the newly exposed sticky sequence 3^* of hairpin H₁ docks to the toehold 3 of hairpin H₂, and then opens hairpin H₂ via branch-migration, leading to the assembly of H₁-H₂ duplex DNA and the regeneration of target ctDNA for next CHA reaction. Thus, target ctDNA stimulates the efficient CHA reaction, leading to the successive hybridizations between hairpins H₁ and H₂, and continuously generating H₁-H₂ product.

Fig. S2 Design diagram of the fluorescent reporter in updated CHA system. The reporter is four LNA nucleotides-containing hybridized DNA duplex (detailed site, see **Table S1**) with a FAM-labeled strand Rep-F and a BHQ-1-labeled strand Rep-Q (FAM denoted as 6-carboxy fluorescein; BHQ-1 denoted as Black Hole Quencher-1), resulting in the fluorescence quenching via the fluorescence resonance energy transfer (FRET) mechanism. Hybridization of hairpin H₁ and hairpin H₂ exposes the domain 2^* of hairpin H₁, which docks to the toehold 2 of Rep-F and leads to the separation of Rep-Q via toehold-mediated strand displacement, thus generating high fluorescence readout.

Fig. S3 Optimized structures of the updated CHA constructs H_1 , H_2 and reporter by theoretical calculations.

Fig. S4 Optimized concentration of metastable LNA-incorporated hairpins in the updated CHA system. H₁ (50 nM, 100 nM), H₂ (200 nM, 400 nM), reporter (50 nM) and target ctDNA (5 nM). F and F₀ refer to the fluorescence intensity with and without target ctDNA, respectively. The reaction time is set as 40 min, and the reaction temperature is set as 37° C. Results are presented as means ± standard deviation (SD) (n=3).

Fig. S5 Optimized reaction temperature of metastable LNA-incorporated hairpin in the updated CHA system. H₁ (50 nM), H₂ (400 nM), reporter (50 nM) and target ctDNA (5 nM). F and F₀ refer to the fluorescence intensity with and without target ctDNA, respectively. The reaction time is set as 40 min. Results are presented as means \pm standard deviation (SD) (n=3).

Fig. S6 Fluorescence kinetics of the updated CHA system in the presence of target ctDNA (5 nM). The used concentrations of constituents are hairpin H₁ (50 nM), H₂ (400 nM) and reporter (50 nM). F and F₀ refer to the fluorescence intensity with and without target ctDNA, respectively. The reaction temperature is set as 37° C.

Fig. S7 Fluorescence response of the CHA system to target ctDNA introducing different LNAs number and location within hairpins. The component concentration is H_1 (50 nM), H_2 (400 nM) and reporter (50 nM). The reaction time is set as 40 min, and the reaction temperature is set as 37°C. F and F₀ refer to the fluorescence intensity with and without target ctDNA (5 nM), respectively. Results are presented as means ± standard deviation (SD) (n=3).

Fig. S8 Fluorescence kinetics of locked nucleic acid-modified CHA system (LNA-CHA) and regular CHA system (DNA-CHA) in MCF-7 cell lysate. The used concentrations of constituents are hairpin H_1 (50 nM), H_2 (400 nM) and reporter (50 nM). The reaction temperature is set as 37°C.

Fig. S9 (a) Illustration of updated CHA system and molecular beacon (MB) system for catalytic signal enhancement of target ctDNA. (b) Fluorescence amplification capability of CHA system is compared with MB system in the presence of target ctDNA (5 nM). F and F_0 refer to the fluorescence intensity with and without target ctDNA, respectively. H₁ (50 nM), H₂ (400 nM), reporter (50 nM), and H₃ (50 nM). The reaction time is set as 40 min, and the reaction temperature is set as 37°C. Results are presented as means ± standard deviation (SD) (n=3).

Method	Detection limit	Linear range	Enzyme	Convenience	Ref.
Surface- enhanced Raman scattering	0.3 fM	10-10 ⁶ fM	Required	Multiple steps 90 min	S1
Localized surface plasmon resonance	200 fM	50-3.2×10 ³ fM	Not required	Multiple steps >2 h	S2
Colorimetry	100 fM	500-5×10 ⁵ fM	Not required	Multiple steps 4 h	\$3
Electrochemistry	0.5 nM	0.5-50 nM	Not required	Multiple steps >2 h	S4
Electrochemistry	8.3 fM	10-5×10 ⁶ fM	Not required	Multiple steps >2 h	\$5
Electrochemistry	5 fM	0.2-20×10 ⁶ fM	Not required	Multiple steps 20 min	S 6
Fluorescence	0.22 fM	1-1×10 ⁵ fM	Required	One step 4 h	S7
Fluorescence	0.16 fM	0.2-2×10 ⁸ fM	Required	Multiple steps 120 min	S8
Fluorescence	3.3 pM	10-1×10 ³ pM	Not required	One step 40 min	This work

Table S2. Com	parison of analyt	tical performances	of different ctDNA	biosensors.

Fig. S10 (a) Schematic illustration and (b) fluorescence response of the updated CHA system that was subtracted by H₁ alone, or by H₂ alone, and the intact CHA system. H₁ (50 nM), H₂ (400 nM) and reporter (50 nM) in the presence of target ctDNA (5 nM). The reaction time is set as 40 min, and the reaction temperature is set as 37°C. F and F₀ refer to the fluorescence intensity with and without target ctDNA, respectively. Results are presented as means \pm standard deviation (SD) (n=3).

Fig. S11 Fluorescence response of the updated CHA system to target ctDNA in different ratios of fetal bovine serums: buffer, 5% serum, 10% serum, and 20% serum. H₁ (50 nM), H₂ (400 nM) and reporter (50 nM). The reaction time is set as 40 min, and the reaction temperature is set as 37° C. F and F₀ refer to the fluorescence intensity with and without target ctDNA (5 nM), respectively. Results are presented as means ± standard deviation (SD) (n=3).

Fig. S12 Clinical samples analysis of ctDNA through CHA method and commercial detection kit. Normalization is performed against healthy group. Results are presented as means \pm standard deviation (SD) (n=3).

References

- S1. Q. Zhou, J. Zheng, Z. Qing, M. Zheng, J. Yang, S. Yang, L. Ying and R. Yang, Anal. Chem., 2016, 88, 4759-4765.
- S2. A. H. Nguyen and S. J. Sim, Biosens. Bioelectron., 2015, 67, 443-449.
- S3. R. Li, L. Zou, Y. Luo, M. Zhang and L. Ling, Sci. Rep., 2017, 7, 44212.
- S4. Y. Huang, M. Tao, S. Luo, Y. Zhang, B. Situ, X. Ye, P. Chen, X. Jiang, Q. Wang and L. Zhang, Anal. Chim. Acta, 2020, 1107, 40-47.
- S5. S. Luo, Y. Zhang, G. Huang, B. Situ, X. Ye, M. Tao, Y. Huang, B. Li, X. Jiang, Q. Wang and L. Zheng, Sens. Actuators B Chem., 2021, **338**, 129857.
- S6. D. Chen, Y. Wu, S. Hoque, R. D. Tilley and J. J. Gooding, *Chem. Sci.*, 2021, **12**, 5196-5201.
- S7. W. Zhou, L. Wang, C. Liu, Q. Teng, Z. Wang and Z. Dai, *Chem. Sci.*, 2020, **11**, 3745-3751.
- S8. X. Cheng, Y. Bao, S. Liang, B. Li, Y. Liu, H. Wu, X. Ma, Y. Chu, Y. Shao, Q. Meng, G. Zhou, Q. Song and B. Zou, *Anal. Chem.*, 2021, 93, 9593-9601.