Supplementary Information

Electrochemically fabricated ZIF-67/[HOEMIM]BF⁴ coating for the solid-phase microextraction and detection of polycyclic aromatic hydrocarbons

Jingwen Lin, Xuening Gao, Linbo Gong, Xiaoqing Zhang, Tianning Li, Faqiong

Zhao*, Baizhao Zeng

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072,

P.R. China

* Corresponding authors. *Email addresses*: fqzhao@whu.edu.cn

Table of contents

Instruments and reagents

The ZIF-67/[HOEMIM]BF⁴ composite coatings were prepared by CHI 660B electrochemical workstation (Shanghai Chenhua Instrument Co., China) equipped with a three-electrode system: stainless steel wire (SSW) (1.5 cm \times 250 µm O.D.) as the working electrode, Pt wire $(2.5 \text{ cm} \times 0.1 \text{ cm} \cdot \text{O} \cdot \text{C})$ as the counter electrode, and Ag/AgCl as the reference electrode. A SP-7890 Plus gas chromatograph (Shandong Lunan Ruihong Chemical Instrument Co., China) equipped with a flame ionization detector (GC-FID) was employed for this work. An SE-54 capillary column (30 m \times 0.25 mm \times 0.25 µm O.D., Lanzhou Zhongke Antai Analysis Technology Co., China) was used for the chromatographic separation. Gas chromatography was programmed as follows: the temperatures of injection port and detector were both 280 °C, and the oven temperature program was set as follows: maintained at 30 °C for 4 min, then rose to 200 °C with a rate of 19 °C min⁻¹ and further to 240 °C with a rate of 4.5 °C min⁻¹ and kept it for 2 min. N₂ was used as the carrier gas at a column flow rate of 1 mL min⁻¹, and no-splitting mode was adopted. The air and hydrogen flow rates were set at 400 mL min⁻¹ and 40 mL min⁻¹, respectively. Commercial extraction fiber with polydimethylsiloxane/divinylbenzene (PDMS/DVB, film thickness: 100 µm) coating was purchased from Supelco, USA. A laboratory-made solid phase microextraction handle was used for the fixing of MOF-IL coated SSW. The surface morphology characterization of the coating was performed with a Sigma FESEM (Zeiss, Germany). In addition, a SETSYS-16 thermogravimetric analyzer (TGA Setaram, France) and a Nicolet iS10 Fourier transform infrared (FT-IR) spectrometer (Thermo Fisher, USA) were applied to study the composition of the ZIF-67/[HOEMIM]BF₄ and the thermal stability, respectively. A S10-3 constant temperature magnetic stirrer (Shanghai Sile Instrument Co., Shanghai, China) was used for HS-SPME.

Naphthalene (NAP), 1-methylnaphthalene (1-MN), biphenyl (BP), acenaphthene (ACE) and fluorene (FLR) were purchased from Aladdin Chemical Co., Ltd. (Shanghai, China). Biphenyl, cobalt acetate tetrahydrate $(Co(Ac)₂4H₂O)$, sodium chloride (NaCl), sodium hydroxide (NaOH), nitric acid (HNO3) and methanol were

purchased from Sinophasic Chemical Reagent Co., Ltd (Shanghai, China). 2-Methylimidazole (2-MI) was purchased from Sigma-Aldrich Trading Co., Ltd. (Shanghai, China). All ILs including 1-(2'-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HOEMIM]NTf₂), [1-\(2'-hydroxylethyl\)-3-methylimidazolium](https://www.chembk.com/en/chem/1-(2%E2%80%99-hydroxylethyl)-3-methylimidazolium%20hexafluorophosphate) hexafluorophosphate([HOEMIM]PF₆), 1-(2'-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([HOEMIM]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4), 1-aminopropyl-3-methylimidazolium tetrafluoroborate ([APMIM]BF4) were obtained from Lanzhou Institute of Chemical Physics (China). The structures and properties of PAHs and biphenyl were shown in Table S1. A standard solution of 1 mg mL⁻¹ for each PAH was prepared and stored in a refrigerator. The working standard solutions were obtained by diluting the standard stock solution with methanol. Water samples came from nature, East lake and factory. Ultrapure water (18.25 M Ω cm) was used throughout the experiments. All water samples were filtered through a 0.22 μm filter before detection.

Fig. S1. FT-IR spectra of different materials.

Fig. S2. Thermogravimetric curve of ZIF-67/[HOEMIM]BF4.

Fig. S3. SEM images of (A, B) ZIF-67/[HOEMIM]BF4, (C, D) ZIF-67/[HOEMIM]PF₆ and (E, F) ZIF-67/[HOEMIM]NT f_2 .

Fig. S4. Coating life span of ZIF-67/[HOEMIM]BF4. Common experimental conditions: extraction temperature: 70 °C; extraction time: 50 min; salt concentration: saturated NaCl solution; stirring speed: 800 rpm; desorption temperature: 260 °C; desorption time: 4 min; sample volume: 10 mL; concentration of PAHs: 100 μ g·L⁻¹. . Electrodeposition conditions: constant potential: -5 V; electrodeposition time: 50 min. $(n = 3)$

Fig. S5. Chromatograms of PAHs in three samples after HS-SPME. A. rain water; B. river water; C. factory water. red line: sample; yellow line: added 5 µg L⁻¹ standard solution; blue line: added 5 μ g·L⁻¹ standard solution. Peaks: 1: NAP; 2: 1-MN; 3: PB; 4: ACY; 5: FLR

PAHs	Structure	Boiling point (°C)	Kow
NAP		218 °C	3.30
$1-MN$		240-243°C	3.87
BP		255° C	4.05
ACY		277.5°C	3.92
FLR		295°C	4.18

Table S1. Chemical structure and physical-chemical properties of PAHs.

Table S2. Parameters of analytical performance

			LOD _s $(ng L^{-1})$		One fiber	Fiber to fiber
PAHs	Regression equation	Linear range $(\mu g L^{-1})$		R^2	$(RSD, n=5)$	$(RSD, n=5)$
					$(\%)$	$(\%)$
NAP	$Y = 2084.1X + 17954$	$0.1 - 500$	$3.8 - 5.2$	0.9962	6.0	5.7
$1-MN$	$Y = 3266.6X + 2678.4$	$0.1 - 100$	$3.8 - 5.2$	0.9934	3.4	7.1
PB	$Y = 7028.1X + 3828.0$	$0.01 - 100$	$0.27 - 0.28$	0.9995	7.4	7.7
ACY	$Y = 4649.8X + 9547.6$	$0.01 - 100$	$0.28 - 0.51$	0.9975	6.0	4.7
FLR	$Y = 5289.3X - 2488.1$	$0.5 - 100$	$0.26 - 0.27$	0.9958	8.0	10.7

material	Pretreatment	Thermal	Analytical	LOD	Linear range	Ref
	method	stability	method	$(ng L^{-1})$	$(\mu g L^{-1})$	
MWCNTs	SPE		GC-MS	$2.0 - 8.5$	$0.02 - 5$	$[1]$
SiO ₂	IT-SPME		GC-FID	220-470	1-4000	$[2]$
PTMS-	HS-SPME	300 °C	GC-FID	$5.1 - 37.2$	$0.01 - 100$	$[3]$
$SBA-15$						
$ZIF-8$	HS-SPME	460 °C	GC-FID	$10-54$	$0.05 - 50$	$[4]$
MOF/COF	HS-SPME		GC-FID	$20 - 70$	$0.2 - 50$	$[5]$
$ZIF-67/ILs$	HS-SPME	450 °C	GC-FID	$0.27 - 5.17$	$0.01 - 500$	This
						work

Table S3. Comparison with other reported methods for the determination of PAHs.

References

[1] J. Ma, R. Xiao, J. Li, J. Yu, Y. Zhang and L. Chen, Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry, J. Chromatogr. A, 2010, **1217**, 5462-5469. [2] F. Harati, A. Ghiasvand, K. Dalvand and P.R. Haddad, Fused-silica capillary internally modified with nanostructured octadecyl silica for dynamic in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from aqueous media, Microchem. J., 2020, **155**, 104672.

[3] M. Shamsipur, M.B. Gholivand, M. Shamizadeh and P. Hashemi, Preparation and Evaluation of a Novel Solid-Phase Microextraction Fiber Based on Functionalized Nanoporous Silica Coating for Extraction of Polycyclic Aromatic Hydrocarbons From Water Samples Followed by GC-MS Detection, Chromatographia, 2015, **78**, 795-803. [4] C. Lian, X. Feng, M. Tian, Y. Tian and Y. Zhang, Electrodeposition of zeolitic imidazolate framework coating on stainless steelwire for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples, Microchem. J., 2022, **175**, 107146.

[5] C. Yu, J. Zhang, X. Luo and J. Zhang, Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples, Microchem. J., 2023, **187**, 108388.