Supplemental Information

A Feasibility Study of Direct Analysis in Real Time-Mass Spectrometry for Screening Organic Gunshot Residues from Various Substrates

Supplemental Information

1. Shooter's Hand Samples Results

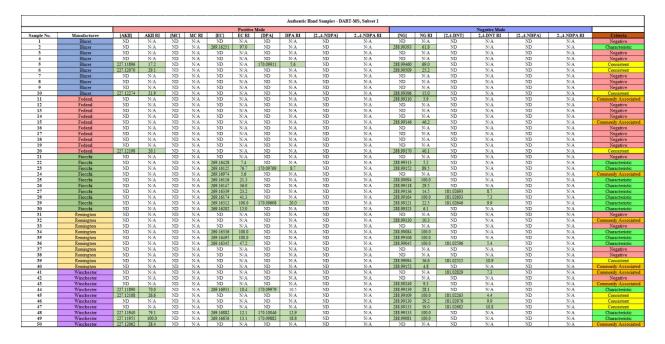

Tables S1 and **S2** provide detailed information on the results obtained from the DART-MS analysis of the shooter's hand samples per compound. These results were used to determine whether a sample was classified as characteristic of OGSR (colored green in the table's criteria column, at least two *Category I* compounds present), consistent with OGSR (yellow, at least one *Category I* and one *Category II*), commonly associated with OGSR (orange, at least one *Category I* or *Category II*), commonly associated with OGSR (red, no compounds detected). For information regarding compound-specific classification criteria (i.e., *Category I or II*), please refer to **Table 4** within the main text. Samples with compounds listed as not detected (ND) had either the compounds outside of the mass range or below the relative intensity limit, and these results are presented in white background cells in **Tables S1 and S2**. In **Tables S1 and S2**, the results for detected compounds that met the mass range criteria (\pm 0.005 Da) and the minimum relative intensity criteria (>3%) are presented in cells colored in green. The results for each detected compound include the exact mass and the relative intensity percent (RI).

Table S1 illustrates that out of the 50 samples examined, 15 had residues characteristic of OGSR, 8 consistent with OGSR, and 8 commonly associated with OGSR, for a total of 31 of the samples having at least one OGSR compound (62%). The remaining 19 samples were negative for OGSR screening. Fiocchi and Winchester provided the most positive results from the ammunition tested in this set.

Table S2 presents the results for the second set, consisting of Winchester ammunition of various calibers. In this set, the samples were only monitored in positive mode due to uncontrolled circumstances of malfunctioning of the negative mode at that time, therefore affecting the capability of reporting results *characteristic of OGSR*. However, there was an increase in the positive results, with 15 out of 30 samples classified as consistent with OGSR, and 12 additional samples commonly associated with OGSR, for a total of 27 samples with at least one OGSR

compound (90%). In this second set, samples exposed to ammunition with higher caliber produced higher positive rates.

Table S1. Results from the first 50 shooter's hand samples analyzed by DART-MS (set 1). The table lists the sample number, respective manufacturer, and compounds analyzed in positive and negative modes.

Table S2. Results from the second set of 30 shooter's hand samples analyzed by DART-MS. This table follows the same layout as **Table S1**. In this study, it is important to note that the samples were only monitored in positive mode.

Authentic Hand Samples - DART-MS, Subset 2												
Positive Mode												
	Manufactu	[AKII]	AKII RI	[MC]	MC RI	[EC]	EC RI	[DPA]	DPA RI	[2-,4-NDPA]	2-,4-NDPA RI	Criteria
	Winchester	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Negative
	Winchester	ND	N/A	ND	N/A	269.16540	8.8	ND	N/A	ND	N/A	Commonly Ass
	Winchester	227.12048	22.9	ND	N/A	269.16820	3.8	170.09800	4.5	ND	N/A	Consisten
	Winchester	227.12265	6.7	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Commonly Ass
	Winchester	227.11998	11.5	ND	N/A	ND	N/A	170.09680	3.3	ND	N/A	Commonly Ass
	Winchester	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Negative
	Winchester	227.11993	9.3	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Commonly Ass
	Winchester	227.12053	3.4	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Commonly Ass
	Winchester	227.12042	3.7	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Commonly Ass
	Winchester	227.11855	17.1	ND	N/A	ND	N/A	170.09590	4.6	ND	N/A	Commonly Ass
	Winchester	ND	N/A	ND	N/A	269.16610	4.0	170.09660	3.6	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	269.16670	7.5	170.09650	10.5	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	ND	N/A	170.09640	5.6	ND	N/A	Commonly Ass
	Winchester	ND	N/A	ND	N/A	269.16680	8.2	170.09620	15.9	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	ND	N/A	170.09620	5.8	ND	N/A	Commonly Ass
	Winchester	ND	N/A	ND	N/A	269.16600	13.7	170.09700	18.2	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	269.16600	9.9	170.09630	15.3	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	Negative
	Winchester	227.11986	16.5	ND	N/A	269.16550	17.0	170.09610	31.2	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	269.16540		170.09610	3.2	ND	N/A	Consister
	Winchester	227.12125	11.4	ND	N/A	269.16530	6.5	170.09700	17.7	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	269.16580	17.3	170.09630	27.1	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	269.16700	5.7	170.09660	19.8	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	269.16570	3.6	170.09600	19.3	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	ND	N/A	170.09550	3.9	ND	N/A	Commonly Ass
	Winchester	ND	N/A	ND	N/A	269.16590	3.7	170.09620	12.9	ND	N/A	Consister
	Winchester	ND	N/A	ND	N/A	ND	N/A	170.09590	7.6	ND	N/A	Commonly As
	Winchester	ND	N/A	ND	N/A	ND	N/A	170.09610	11.9	ND	N/A	Commonly Ass
	Winchester	ND	N/A	ND	N/A	269.16730	3.3	170.09670	17.0	ND	N/A	Consisten
	Winchester	ND	N/A	ND	N/A	269,16590	7.7	170.09680	11.5	ND	N/A	Consister

Tables S3 and S4 provide detailed information on the results obtained from the LC-MS/MS analysis of the shooter's hand samples. These results were used to determine whether a sample was considered positive or negative for OGSR using the same categories described above for DART-MS, except that the "commonly associated with OGSR" result is not applicable for a confirmatory method. The method's LODs are listed for each compound at the bottom of the table. Compounds listed as ND produced a predicted concentration result below the method's LOD and are presented in cells with white background. Compounds colored on a green background list the estimated concentration in ppb. Here, it becomes evident that some of the compounds detected by LC-MS/MS were present in the hand samples at concentrations below the DART-MS method's LOD, providing a better understanding of the screening results presented in Tables S1 and S2. Notably, one disadvantage of the LC-MS/MS configuration used in this study is that it only detects the compounds in positive mode, therefore, NG and 2,4-DNT were only monitored by DART-MS. In the first set, only 27 of the 50 samples monitored by LC-MS/MS were positive for OGSR (54%), which is somehow atypical of positive rates observed in previous studies with larger population datasets. Table S4 shows that when evaluating a second dataset with other ammunition types, the positive rates drastically increased to 97%, all of which were classified as characteristic of OGSR. These results corroborate the findings of the DART-MS screening and indicate that the success rates on hand residues are dependent on the ammunition used in the shooting event. Importantly, all the DART-MS presumptive "positive" results were further corroborated by LC-MS/MS confirmatory method, indicating the utility of DART-MS for screening purposes.

Authentic Hand Samples- LC-MS/MS, Subset 1									
ample No.	Manufacturer	[AKII]	[MC]	[EC]	[DPA]	[2-NDPA]	[4-NDPA]	Criteria	
1	Blazer	ND	ND	ND	ND	ND	ND	Negative	
2	Blazer	ND	ND	62.8	5.6	ND	ND	Consistent	
3	Blazer	ND	ND	ND	3.9	ND	ND	Negative	
4	Blazer	ND	ND	ND	ND	ND	ND	Negative	
5	Blazer	8.8	ND	ND	22.9	ND	ND	Consistent	
6	Blazer	7.4	ND	ND	20.6	ND	ND	Consistent	
7	Blazer	ND	ND	ND	ND	ND	ND	Negative	
8	Blazer	ND	ND	ND	3.9	ND	ND	Negative	
9	Blazer	ND	ND	ND	ND	ND	ND	Negative	
10	Blazer	5.8	ND	ND	12.6	ND	ND	Consistent	
11	Federal	ND	ND	ND	7.4	ND	ND	Negative	
12	Federal	ND	ND	ND	ND	ND	ND	Negative	
13	Federal	ND	ND	ND	5.5	ND	ND	Negative	
14	Federal	ND	ND	ND	ND	ND	ND	Negative	
15	Federal	1.1	ND	ND	9.2	ND	ND	Consistent	
16	Federal	ND	ND	ND	ND	ND	ND	Negative	
17	Federal	ND	ND	ND	ND	ND	ND	Negative	
18	Federal	ND	ND	ND	ND	ND	ND	Negative	
19	Federal	ND	ND	ND	ND	ND	ND	Negative	
20	Federal	4.3	ND	ND	16.6	ND	ND	Consistent	
21	Fiocchi	ND	ND	ND	4.2	ND	ND	Negative	
22	Fiocchi	ND	ND	10.5	12.9	ND	ND	Consistent	
23	Fiocchi	ND	ND	128	139	4.8	7.4	Characteristic	
24	Fiocchi	ND	ND	ND	5.0	ND	ND	Negative	
25	Fiocchi	ND	ND	65.4	53.6	ND	4.5	Characteristic	
26	Fiocchi	ND	ND	54.2	51.2	ND	3.9	Characteristic	
27	Fiocchi	ND	ND	40.3	32.0	ND	3.4	Characteristic	
28	Fiocchi	ND	ND	70.6	75.4	ND	4.2	Characteristic	
29	Fiocchi	ND	ND	361	426	9.4	10.6	Characteristic	
30	Fiocchi	ND	ND	31.6	33.8	ND	3.7	Characteristic	
31	Remington	ND	ND	ND	4.9	ND	ND	Negative	
32	Remington	ND	ND	20.1	19.1	ND	ND	Consistent	
33	Remington	ND	ND	21.9	20.7	ND	ND	Consistent	
34	Remington	ND	ND	272	7.7	ND	ND	Consistent	
35	Remington	ND	ND	355	7.2	ND	ND	Consistent	
36	Remington	ND	ND	208.9	4.4	ND	ND	Consistent	
37	Remington	ND	ND	3.1	ND	ND	1.9	Negative	
38	Remington	ND	ND	ND	ND	ND	1.9	Negative	
39	Remington	ND	ND	10.0	3.9	ND	ND	Consistent	
40	Remington	ND	ND	3.7	ND	ND	ND	Negative	
41	Winchester	ND	ND	ND	ND	ND	ND	Negative	
42	Winchester	ND	ND	ND	ND	ND	ND	Negative	
43	Winchester	102	ND	18.3	269	5.9	7.3	Characteristic	
44	Winchester	12.2	ND	3.1	29.1	ND	3.1	Characteristic	
45	Winchester	ND	ND	ND	3.6	ND	ND	Negative	
46	Winchester	ND	ND	5.9	6.6	ND	ND	Characteristic	
47	Winchester	86.5	ND	14.3	226	5.0	6.1	Characteristic	
48	Winchester	2.6	ND	ND	13.4	ND	ND	Consistent	
49	Winchester	114	ND	20.1	319	5.5	7.8	Characteristic	
50	Winchester	32.6	ND	4.1	78.4	ND	3.7	Characteristic	
LOD (ppb)		0.3	0.3	1.0	3.4	2.7	3.0		

 Table S3. Results from the first 50 shooter's hand samples analyzed by LC-MS/MS for set 1.

Table S4. Results from the second set of 30 shooter's hand samples. This table follows the samelayout as **Table S3.**

Authentic Hand Samples- LC-MS/MS, Subset 2										
ample No.	Manufacturer	[AKII]	[MC]	[EC]	[DPA]	[2-NDPA]	[4-NDPA]	Criteria		
1	Winchester 9mm	ND	ND	4.5	ND	ND	ND	Negative		
2	Winchester 9mm	16.5	ND	38.4	36.6	5.6	ND	Characteristic		
3	Winchester 9mm	101	ND	14.5	91.5	5.3	ND	Characteristic		
4	Winchester 9mm	40.1	ND	5.9	32.5	3.5	ND	Characteristic		
5	Winchester 9mm	248	ND	27.3	255	12.1	6.4	Characteristic		
6	Winchester 9mm	58.2	ND	9.6	44.0	4.3	ND	Characteristic		
7	Winchester 9mm	118	ND	16.2	91.8	6.7	ND	Characteristic		
8	Winchester 9mm	42.4	ND	1.8	35.5	3.3	ND	Characteristic		
9	Winchester 9mm	76.1	ND	6.0	47.2	4.6	ND	Characteristic		
10	Winchester 9mm	330	ND	38.9	315	17.5	9.8	Characteristic		
11	Winchester .40	ND	ND	35.5	107	10.5	11.6	Characteristic		
12	Winchester .40	ND	ND	29.0	181	19.4	21.1	Characteristic		
13	Winchester .40	ND	ND	28.2	191	20.2	25.1	Characteristic		
14	Winchester .40	ND	ND	18.9	149	12.6	12.9	Characteristic		
15	Winchester .40	ND	ND	38.5	238	25.0	31.8	Characteristic		
16	Winchester .40	1.3	ND	79.4	564	44.1	48.0	Characteristic		
17	Winchester .40	ND	ND	49.1	279	25.0	33.0	Characteristic		
18	Winchester .40	ND	ND	41.8	257	22.4	22.8	Characteristic		
19	Winchester .40	110	ND	140	905	71.7	76.3	Characteristic		
20	Winchester .40	1.7	ND	68.7	527	35.2	31.0	Characteristic		
21	Winchester .40 Defense	79.1	ND	76.1	770	79.6	75.0	Characteristic		
22	Winchester .40 Defense	ND	ND	49.3	447	41.1	43.6	Characteristic		
23	Winchester .40 Defense	ND	ND	24.4	268	23.8	22.3	Characteristic		
24	Winchester .40 Defense	ND	ND	19.6	316	37.8	33.4	Characteristic		
25	Winchester .40 Defense	ND	ND	28.1	324	35.2	41.1	Characteristic		
26	Winchester .40 Defense	ND	ND	22.0	357	43.4	40.1	Characteristic		
27	Winchester .40 Defense	ND	ND	34.4	653	66.7	58.4	Characteristic		
28	Winchester .40 Defense	ND	ND	18.9	279	33.0	38.1	Characteristic		
29	Winchester .40 Defense	3.0	ND	59.1	970	86.2	65.0	Characteristic		
30	Winchester .40 Defense	ND	ND	42.4	265	31.7	34.5	Characteristic		
LOD (ppb)		0.3	0.3	1.0	3.4	2.7	3.0			