Method development for Forensic Oil Identification by Direct Analysis in Real Time-Time of Flight Mass Spectrometry

Krishnaja Tikkisetty^a, Taylor Filewood^a, Jeffrey Yan^a, Honoria Kwok^a, Pamela Brunswick^a, Robert Cody^b, Dayue Shang^{a*}

^aScience and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada.

^b JEOL USA Inc., Peabody, Massachusetts, United States.

*Email: <u>dayue.shang@ec.gc.ca;</u>

Supplementary Data:

Tables:

Table S1: Background information for Round Robin 2017-2020 tests

Round Robin Year	Oil Description					
2017	Oil slick spill in the Norwegian Sea. Some of					
	the oil was ignited. Spill sample A was					
	artificially weathered to replicate the					
	weathering of the spilled oil and then heating					
	to over 250 °C. Spill sample B is the ignited					
	spilled oil. Sources A, B and C were three					
	potential suspected sources.					
2018	An oil spill was detected in a bay of the sea					
	after a rainy day, which was later traced back					
	to a storm drain water pipe. Three source oil					
	samples were taken from three gas stations					
	that were further upstream from the pipe. The					
	spill sample was taken from the still storm					
	drainpipe water.					
2019	Two spill samples were collected from a spill					
	that occurred in a lagoon off the coast of the					
	Mediterranean Sea. Each spill sample was					
	taken from a different location of the lagoon.					
	One source sample was taken from a ship that					
	was in the vicinity at the time of the spill. The					
	other two source oils were collected from a					
	lubricating-oil producing factory in the					
	surroundings.					

2020	A thick slick of oil emulsions was spotted in a		
	port in the winter. The following summer,		
	films of oil were found in the same location.		
	One spill oil sample was taken from the		
	winter spill and the other spill sample was collected from the summer oil films. Source oils were taken from nearby land-based, re-		
	fuelling pipelines. One theory is that a leak		
	occurred during re-fueling. Another		
	possibility is that the pipes or connected oil		
	tanks were over filled.		

Table S2: Experimental information for Round Robin oil GC/FID and GC/MS

Method	Description			
GC/FID	An Agilent 6890JN gas chromatograph that			
	was equipped with a flame-ionization detector			
	as well as an Agilent 7683 autosampler. The			
	apparatus was operated using by Agilent			
	OpenLab CDS software rev. C.01.07.SR2.			
	Analysis was performed on a Restek Rtx-5			
	fused silica column (30 m x 0.32 mm d x			
	0.25 um film thickness) with helium carrier			
	gas at 1.8mL/min. The inlet temperature was			
	set to 250°C with 25:1 split injection. The			
	oven temperature started at 45°C with a 2 min			
	hold time. Afterwards, the temperature			
	increased by 8°C per minute until the			
	temperature reached 325°C, with a total run			
	time of 61.25 min. Performance quality			
	control wasw confirmed by the analysis of			
	Supelco ASTM D2887 calibration mix			
	(HCID locator). GC/FID chromatographic			
	profiles were visually assessed. Spreadsheet			
	diagnostics were also used in analysis.			
GC/MS/MS Analysis	Analysis of targeted compounds was			
	performed on an Agilent 7890B GC. A			
	Agilent 7683 autosampler and 7010 triple			
	quad mass spectrometer completed the			
	apparatus. Pseudo Multiple Reaction ion			
	Monitoring was used for analysis. A Restek			
	Rtx-5MS fused silica column (30m x 0.25			
	mm id x 0.25 um film thickness) with helium			
	gas (1.0 mL/min) used for analyte separation.			
	The oven temperature started at 42°C with a 2			
	min hold time. Afterwards, the temperature			

	increased by 5.5°C per minute until the		
	temperature reached 330°C at a hold time of		
	16 minutes, with a total run time of 70.364		
	min. Confirmation of instrument performance was achieved via analysis of QC samples of		
	Sintef oil at 0.1 mg/mL in DCM analyzed in		
	each analytical sequence.		

Sample Name	Sample Type
Spill A	RR2017 Spill
Spill B	RR2017 Spill
Source A	RR2017 Source
Source B	RR2017 Source
Source C	RR2017 Source
Spill	RR2018 Spill
Source A	RR2018 Source
Source B	RR2018 Source
Source C	RR2018 Source
Spill 1	RR2019 Spill
Spill 2	RR2019 Spill
Source 1	RR2019 Source
Source 2	RR2019 Source
Source 3	RR2019 Source
Spill 1	RR2020 Spill
Spill 2	RR2020 Spill
Source A	RR2020 Source
Source B	RR2020 Source
Source C	RR2020 Source
Spill 1	RR2021 Spill
Spill 2	RR2021 Spill
Source A	RR2021 Source
Source B	RR2021 Source
Source C	RR2021 Source

Table S3: File Names for Round Robin Oils

Table S4: Model Information

Model	Number	Number	Mass	Number of	Varianc	DAPC	DAPC
Description	of	of	Range	Principal	e	LOOC	External
	spectra	Features	_	Components	covered	V	Validation
	in the			Used	(%)	scores	Score (%)
	training					(%)	
	set						
RR2017	18	920	81.06986-	8	96.47	100	83.33

			799.66675				
RR2018	18	166	95.08488-	11	96.64	94.74	100
			840.64246				
RR2019	18	1178	71.08664-	8	97.81	100	100
			981.13654				
RR2020	18	1022	81.0695-	10	95.34	100	100
			787.63696				
RR2021	18	159	135.11737	5	87.80	100	100
			-				
			635.38574				

Table S5: Results versus Actual

Spill Sample	DART/TOFMS	Prediction	Prediction	Classical
	Prediction	Agreement	Average	Analysis
			Confidence (%)	Classification
RR2017 Spill A	В	8/8	99.10	В
RR2017 Spill B	В	8/8	98.98	В
RR2018 Spill	C	8/8	100.00	C
RR2019 Spill 1	2	8/8	94.67	2
RR2019 Spill 2	2/1	4/8	100.00	1
RR2020 Spill 1	В	8/8	100.00	В
RR2020 Spill 2	В	8/8	98.88	В
RR2021 Spill 1	В	5/8	100.00	В
RR2021 Spill 2	В	8/8	100.00	В

Figure S1: GC/FID chromatography for Round Robin 2017 samples

Figure S2: Round Robin 2017 GC/MS Comparison of Diagnostic ratios (normative) of Spill A compared with Spill B and Source oils

Figure S3: Round Robin 2017 GC/MS Comparison of a diagnostic and normative ratios of Spill B compared with Spill A and Source B

Heat Map

Figure S4: Round Robin 2017 Heatmap

Figure S5: Round Robin 2017 Spill A PCA

Figure S6: Round Robin 2017 Spill B PCA

Figure S7: Round Robin 2017 Spill A DAPC

Figure S8: Round Robin 2017 Spill B DAPC

Figure S9: GC/FID chromatography for Round Robin 2018 samples

Figure S10: GC/MS comparison of Diagnostic ratios of Spill compared with Source A

Figure S11: GC/MS comparison of Diagnostic ratios of Spill compared with Source B

Figure S12: GC/MS comparison of Diagnostic ratios of Spill compared with Source C

Heat Map

Figure S13: Round Robin 2018 Heatmap

Figure S14: Round Robin 2018 Spill PCA

Figure S15: Round Robin 2018 Spill DAPC

Figure S16: GC/FID chromatography for Round Robin 2019 samples

Figure S17: Round Robin 2019 GC/MS Comparison of Diagnostic ratios of Spill 1 compared with Source 1

Figure S18: Round Robin 2019 GC/MS Comparison of Diagnostic ratios of Spill 1 compared with Source 2

Figure S19: Round Robin 2019 GC/MS Comparison of Diagnostic ratios of Spill 1 compared with Source 3

Figure S20: Round Robin 2019 GC/MS Comparison of Diagnostic ratios of Spill 2 compared with Source 1

Figure S21: Round Robin 2019 GC/MS Comparison of Diagnostic ratios of Spill 2 compared with Source 2

Figure S22: Round Robin 2019 GC/MS Comparison of Diagnostic ratios of Spill 2 compared with Source 3

Figure S23: Round Robin 2019 Heatmap

Figure S24: Round Robin 2019 Spill 1 PCA

Figure S25: Round Robin 2019 Spill 2 PCA

Figure S26: Round Robin 2019 Spill 1 DAPC

Figure S27: Round Robin 2019 Spill 2 DAPC

Figure S28: GC/FID chromatography for Round Robin 2020

Figure S29: Round Robin 2020 GC/MS Comparison of Diagnostic ratios of Spill 1 with Source A

Figure S30: Round Robin 2020 GC/MS Comparison of Diagnostic ratios of Spill 1 with Source B

Figure S31: Round Robin 2020 GC/MS Comparison of Diagnostic ratios of Spill 1 with Source C

Figure S32: Round Robin 2020 GC/MS Comparison of Diagnostic ratios of Spill 2 with Source A

Figure S33: Round Robin 2020 GC/MS Comparison of Diagnostic ratios of Spill 2 with Source B

Figure S34: Round Robin 2020 GC/MS Comparison of Diagnostic ratios of Spill 2 with Source C

Heat Map

Figure S35: Round Robin 2020 Heatmap

Figure S36: Round Robin 2020 Spill 1 PCA

Figure S37: Round Robin 2020 Spill 2 PCA

Figure S38: Round Robin 2020 Spill 1 DAPC

Figure S39: Round Robin 2020 Spill 2 DAPC

Figure S40: GC/FID chromatography for Round Robin 2021 samples

Figure S41: Round Robin 2021 GC/MS Comparison of Diagnostic ratios of Spill 1 compared with Source A

Figure S42: Round Robin 2021 GC/MS Comparison of Diagnostic ratios of Spill 1 compared with Source B

Figure S43: Round Robin 2021 GC/MS Comparison of Diagnostic ratios of Spill 1 compared with Source C

Figure S44: Round Robin 2021 GC/MS Comparison of Diagnostic ratios of Spill 2 compared with Source A

Figure S45: Round Robin 2021 GC/MS Comparison of Diagnostic ratios of Spill 2 compared with Source B

Figure S46: Round Robin 2021 GC/MS Comparison of Diagnostic ratios of Spill 2 compared with Source C

Figure S47: Round Robin 2021 Spill 1 PCA

Figure S48: Round Robin 2021 Spill 2 PCA

Figure S49: Round Robin 2021 Spill 1 DAPC

Figure S50: Round Robin 2021 Spill 2 DAPC