Supporting Information for

Ultrasensitive Detection of Crystal Violet Using a Molybdenum Sulfide-Silver Nanostructure-based Sensing Platform: Roles of the Adsorbing Semiconductor on SERS Signal Enhancement

Minh Khanh Pham,^{a,1} Dao Thi Nguyet Nga^{a,1}, Quan Doan Mai^a, Van Manh Tien^a,

Nguyen Quang Hoa^b, Vu Dinh Lam^c, Ha Anh Nguyen^{a,*}, Anh-Tuan Le^{a,d,**}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam

^bFaculty of Physics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam

^cInstitute of Materials Science (IMS) and Graduate University of Science and Technology

(GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000,

Vietnam

^dFaculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116,

Vietnam

Corresponding authors:

*<u>anh.nguyenha@phenikaa-uni.edu.vn</u> (H.A.Nguyen)

**<u>tuan.leanh@phenikaa-uni.edu.vn</u> (A.T.Le)

¹M.K. Pham and D.T.N. Nga contributed equally to this work

Calculation of limit of detection (LOD)

The standard curve of linear detecting range was given as:

$$Y = A + B \times Log(X) \tag{1}$$

where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X).

The LOD is calculated using the following equation ¹:

$$LOD = 10^{\left[(Y_{blank} + 3SD) / Y_{blank} - A \right] / B}$$
⁽²⁾

where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively.

SD is calculated via the well-known formula:

$$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$
(3)

where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times.

Calculation of relative standard deviation (RSD)

The RSD value of repeatability and reproducibility is calculated via the well-known formula:

$$RSD = \frac{SD \times 100}{x_{average}}$$
(4)

where SD is the standard deviation that calculates using equation 4 and $x_{average}$ is the average value of SERS signal obtained from each measurement.

Calculation of enhancement factor (EF)

The EF value is calculated according to the well-established equation, which was employed in several published studies ^{2, 3}:

$$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}}$$
⁽⁵⁾

where I_{SERS} and I_{Raman} are Raman signal intensity of the analyte with and without SERS from the substrate, respectively; and N_{bulk} is the number of analyte molecules that are probed on the Raman spectrum, while $N_{surface}$ is the number of analyte molecules probed using SERS.

N_{bulk} can be calculated following:

$$N_{bulk} = \frac{A_{laser} \times h \times \rho}{M} \times N_A$$
(6)

where A_{laser} , h, ρ and m are the laser spot area, the focal length, the density of the solid analyte and its molecular weight, respectively; and N_A is the Avogadro number.

N_{surface} can be expressed as:

$$N_{surface} = \frac{C \times V}{A_{substrate}} \times N_A \times A_{laser}$$
⁽⁷⁾

where C, V, $A_{substrate}$ are the concentration, the volume drop-casted of the analyte, and the area of the substrate, respectively; N_A is the Avogadro number; and A_{laser} is the laser spot area.

Thus, EF can be calculated as:

$$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}} = \frac{I_{SERS}}{I_{Raman}} \times \frac{h \times \rho \times A_{substrate}}{M \times C \times V}$$
(8)

In our case, I_{SERS} and I_{Raman} is Raman signal intensity with and without SERS substrate of Crystal Violet (736 cm⁻¹), $h = 2 \ \mu m = 2 \times 10^{-4} \ cm$, $\rho = 1.19 \ g/cm^3$, $M = 408 \ g/mol$, A_{substrate} = $4\pi \ mm^2$, $C = 10^{-7} mol/L$, $V = 5 \ \mu L = 5 \times 10^{-6} \ L$.

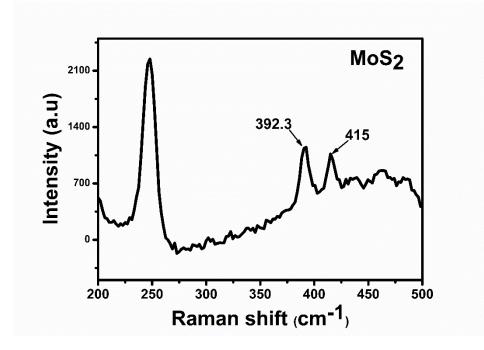


Figure S1: Raman spectrum of MoS₂ nanosheets.

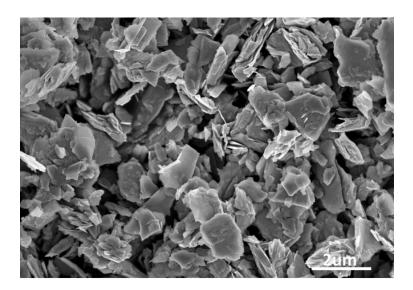


Figure S2: SEM image of MoS₂

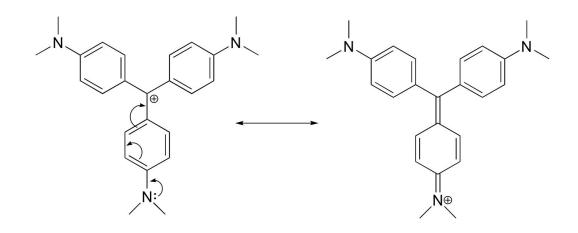


Figure S3: Molecular structure of CV and its delocalization of electrons.

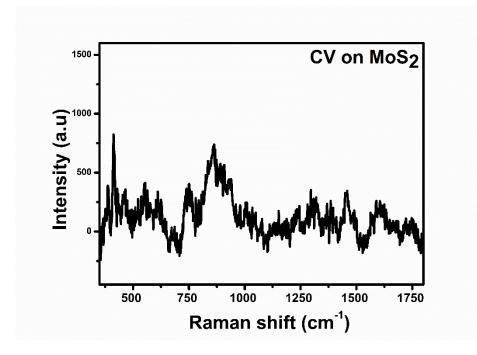


Figure S4: SERS spectrum for $CV(10^{-5} M)$ on MoS_2 .

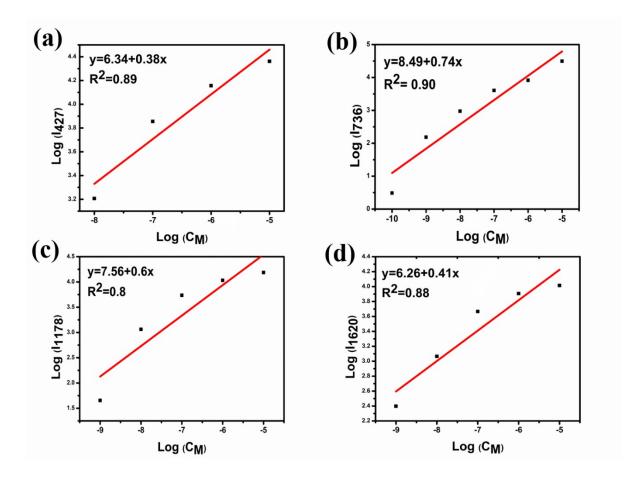
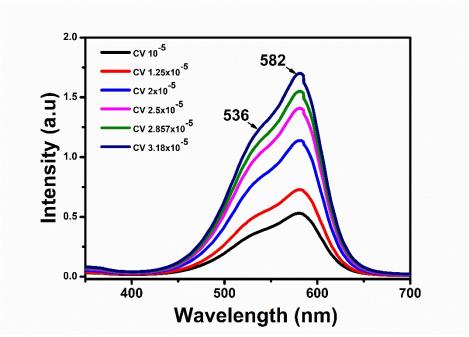



Figure S5: Plot of log of SERS intensity against CV concentration at (a) 427 cm⁻¹; (b) 736

cm⁻¹; *(c)* 1178 *cm*⁻¹; *and (d)* 1620 *cm*⁻¹.

Figure S6: UV-vis absorption spectrum of CV at different concentrations.

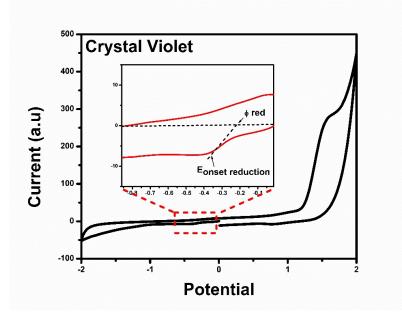


Figure S7: Cyclic voltammogram of Crystal Violet and magnified curve to determine the onset reduction potential (ϕ_{red}).

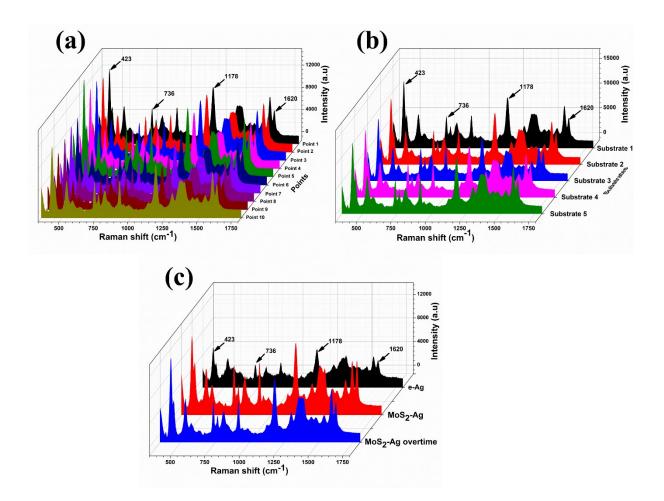


Figure S8: (a) Repeatability and (b) Reproducibility of SERS sensors for CV on MoS_2/Ag overtime; (c) Raman spectrum of CV 10⁻⁶M comparing e-Ag, MoS_2 -Ag and MoS_2 -Ag overtime.

References

 Chen, R.; Shi, H.; Meng, X.; Su, Y.; Wang, H.; He, Y. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum. *Anal. Chem.* 2019, *91* (5), 3597–3603. https://doi.org/10.1021/acs.analchem.8b05595.

- (2) Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. *J. Phys. Chem. C*, 2007, 111, 33, 13794-13803. https://doi.org/10.1021/jp0687908.
- (3) Fu, W. L.; Zhen, S. J.; Huang, C. Z; One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. *Analyst*, 2013, 138, 3075-3081. https://doi.org/10.1039/C3AN00018D.