## **Supplementary Material**

## A Novel Mesna-Based Electrochemical Sensor Embellished with Silver

## Nanoparticles for Ultrasensitive Analysis of Modafinil

## Noha M. Hosny<sup>1\*</sup>, Mohamed I. Gadallah<sup>1</sup>, Ibrahim A. Darwish<sup>2</sup>

<sup>1</sup> Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.

<sup>2</sup> Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

\*Corresponding author: Noha M. Hosny

Email: noha.hosni@aun.edu.eg

Mobile No: +2-011-44438525

Fax No: 0020-88-2080774



Fig. S1: Factors affecting the formation of MSN encrusted with silver nanoparticles on PGE surface: A. MSN concentration, B. deposition potential and C. time, D. number of cycles, E. scan rate, and F. silver nanoparticles concentration required for deposition process.



Fig. S2: A. UV spectrum and B. TEM images of the prepared Ag<sub>NPs</sub>.



Fig. S3: Voltammograms of Fe(CN)<sub>6</sub>]<sup>-3</sup>/ [Fe(CN)<sub>6</sub>]<sup>-4</sup> mixture (1.0 mM) in KCl (0.5 M) recorded at A. Ag<sub>NPs</sub>@MSN/PGE and B. bare PGE electrodes over potential of -0.2 to 0.6 V and scan rate of 0.025-0.800 V. s<sup>-1</sup>. C. is the plot of peak current against the square root of scan rate.



Fig. S4: A. The influence of different pHs of the supporting electrolyte (0.04 M of B.R buffer solutions) on the oxidation of MOD (0.3 mM) at Ag<sub>NPs</sub>@MSN/PGE sensor. B. Linear curve of potential (*Ep*) against pH of the supporting electrolyte. C and D are the effects of deposition potential and time on the current intensities of MOD, respectively.