Development of cell-free toehold switch for hepatitis A virus type I

on-site detection

Supplementary material

Table S1. Sequences of 10 pairs toehold switch sensors and corresponding target

trigger RNAs

	T	C	Normalized ensemble
	larget sequence	Sensor sequence	defect (%)
	AAUGCAGGAAGCCAUAUAA AGAAUUGAGAUUAGAAG	GGGCUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGCAUUGG	
S1		ACUUUAGAACAGAGGAGAUAAAGAUGAAUGCAGGAAGCAACC	17.2
		UGGCGGCAGCGCAAAAG	
S2	GCAGGAAGCCAUAUAAAGA AUUGAGAUUAGAAGUUG	GGGCAACUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGCGG	
		ACUUUAGAACAGAGGAGAUAAAGAUGGCAGGAAGCCACAACC	17.5
		UGGCGGCAGCGCAAAAG	
S3	AUGCAGGAAGCCAUAUAAA GAAUUGAGAUUAGAAGU	GGGACUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGCAUGG	
		ACUUUAGAACAGAGGAGAUAAAGAUGAUGCAGGAAGCGAACC	17.6
		UGGCGGCAGCGCAAAAG	
S4	CAGGAAGCCAUAUAAAGAA UUGAGAUUAGAAGUUGG	GGGCCAACUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGGG	
		ACUUUAGAACAGAGGAGAUAAAGAUGCAGGAAGCCAUCAACC	17.9
		UGGCGGCAGCGCAAAAG	
	UGCAGGAAGCCAUAUAAAG AAUUGAGAUUAGAAGUU	GGGAACUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGCAGG	
S5		ACUUUAGAACAGAGGAGAUAAAGAUGUGCAGGAAGCCUAACC	18.9
		UGGCGGCAGCGCAAAAG	
S6	GAAUGCAGGAAGCCAUAUA AAGAAUUGAGAUUAGAA	GGGUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGCAUUCGG	
		ACUUUAGAACAGAGGAGAUAAAGAUGGAAUGCAGGAACAACC	17.8
		UGGCGGCAGCGCAAAAG	
S7	AGAAUGCAGGAAGCCAUAU	GGGUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGCAUUCUGG	18.6

	AAAGAAUUGAGAUUAGA	ACUUUAGAACAGAGGAGAUAAAGAUGAGAAUGCAGGAAAACC	
		UGGCGGCAGCGCAAAAG	
S8	AGGAAGCCAUAUAAAGAAU UGAGAUUAGAAGUUGGG	GGGCCCAACUUCUAAUCUCAAUUCUUUAUAUGGCUUCCUGG	
		ACUUUAGAACAGAGGAGAUAAAGAUGAGGAAGCCAUACAACC	18.2
		UGGCGGCAGCGCAAAAG	
S9	CAUAUAAAGAAUUGAGAUU AGAAGUUGGGAAACAAA	GGGUUUGUUUCCCAACUUCUAAUCUCAAUUCUUUAUAUGGG	
		ACUUUAGAACAGAGGAGAUAAAGAUGCAUAUAAAGAAUAACC	20.9
		UGGCGGCAGCGCAAAAG	
S10	CACUCUGAUGAAUAUUUG UCUUUUAGUUGCUAUUUG	GGGCAAAUAGCAACUAAAAGACAAAUAUUCAUCAGAGUGGGA	
		CUUUAGAACAGAGGAGAUAAAGAUGCACUCUGAUGACAACCU	24.2
		GGCGGCAGCGCAAAAG	

Fig S1. Partial trigger and switch candidate sequences.

Normalized ensemble defect:	17.2 %	•	To Analysis	>
trigger_strand AAUGCAGGAAG	AAUUGAGAUUAGAAG			
GGGCUUCUAAU	CUCAAUUCUU	UAUAUGGCUUCCUGCAUUGGACUUUAGAACAGAGGAGAU		
AAAGAUGAAUG	CAGGAAGCAA	CCUGGCGGCAGCGCAAAAG		

Fig S2. Probability shading structure after analysis of a sequence.

	sequence	identities
	cagtataaaaaagagaaattttggcttgtgaaaacagtcccttaattttcctagggggtggaagtacttcatttg	
	acaattcctcctgagcatacttgagtctttgtttcccaacttctaatctcaattctttatatggcttcctgcattctat	
HAV-I	gtgactctcaaatcttttgtcctcctctgatctaggatcatccactgatgactccaagtctccagctgcaattctgc	91%
	tcatcattgattcagtggataacatggcatttgaattcaatggagctctgggaaaataaaactctgattgttctg	
	tgacagacaaatagcaactaaaagacaaatattcatcagagtg	
	cagtataaaacaaagaaatttttgcctgtgaaaacagacctttcattttcctaggaggtggaagcacttcatttg	
	acaattcttcctgggcatactttagtctctgcttcccaacctcaagtcttaattctttgtatggttttctgctctcaat	
HAV-II	${\sf atgactttcaaatctcctatcttcttctgatctgggatcatccactgaagattccaaatctccagctgcaattctgc}$	91.69%
	tcatcatagtttcagtggacagcatagcattagagttcaagggggcccttggaaaataaaactctgactgctca	
	gtaacagatagataacagctaaaagacaaatattcatcagaatg	
	tgtaaaataaggagatttttgcttgtgaaaacacacccttaattttacgaggaggaggcaacacttcatttgac	
	a att ctt cct g a g c a t att t a a g t ctt g c t t a c c t a c c t c c a a t c t t a t a	
AV-III	gactttcaaatttac gatcctcctcagatc gggatcatcaactg gggattcaagatcaccaagag caattctat	90.39%
	ccatcattgtttctgatgacatcatagcattggtattcaaaggtgctctaggaaaataaaactcagactgttcag	
	tcacagacaagtaacagctaaaagacaaatattcatctgagtg	
	cagtataaaacaaagaaatttttgcctgtgaaaacagacctttcattttcctaggaggtggaagcacttcatttg	
	acaattcttcctgggcatactttagtctctgcttcccaacctcaagtcttaattctttgtatggttttctgctctcaat	
HAV-VII	atgactttcaaatctcctatcttcttgatctgggatcatccactgaagattccaaatctccagctgcaattctgc	92.46%
	tcatcatagtttcagtggacagcatagcattagagttcaagggggcccttggaaaataaaactctgactgctca	
	gtaacagatagataacagctaaaagacaaatattcatcagaatg	

Table S2. Sequences of different genotypes of HAV for experiments

Fig S3. Validation of NASBA amplification efficiency by agarose gel electrophoresis and concentration determination

Fig S4. Results of the HAV I detection sensitivity with RT-PCR

Fig S5. Curves of fluorescence.

