Zirconium-based metal-organic framework loaded agarose hydrogels for fluorescence turn-on detection of nerve agent simulant vapor

You Lei,^a Yuting Gao,^a Yi Xiao,^a Pengcheng Huang,^{*ab} and Fang-Ying Wu^{*ab}

^aSchool of Chemistry and Chemical Engineering, Nanchang University,

Nanchang, 330031, China

^bJiangxi Province Key Laboratory of Modern Analytical Science, Nanchang

University, Nanchang, 330031, China

*Corresponding Authors: Pengcheng Huang, pchuang@ncu.edu.cn, Fang-Ying

fywu@ncu.edu.cn.

Fig. S1. (a) PXRD patterns of UiO-66-NH₂ and simulated UiO-66-NH₂,
(b) FT-IR plots of UiO-66-NH₂ and BDC-NH₂, (c) SEM image of Aga hydrogel, (d) SEM image of UiO-66-NH₂@Aga.

Fig. S2. Fluorescence spectra of (a) BDC-NH₂, $ZrCl_4$ and UiO-66-NH₂, (b) UVvis absorption spectra of $ZrCl_4$, UiO-66-NH₂, BDC-NH₂ and BDC-NH₂+ $ZrCl_4$.

Fig. S3. The reaction process of UiO-66-NH $_2$ with DCP and the mechanism of LMCT process change.

Fig. S4. UV-vis titration experiment with DCP.

Fig. S5. Optimization of the conditions for $UiO-66-NH_2$ detection of DCP concentration in aqueous solution (a) $UiO-66-NH_2$ concentration, (b) Reaction time.

Fig. S6. Selective experiments for possible distractors in the aqueous phase.

Fig. S7. Optimization of conditions for the reaction of UiO-66-NH₂@Aga with DCP vapor (a) UiO-66-NH₂ concentration, (b) Reaction time.