Electronic Supplementary Information

Capsulation of EBTAC into ZIF-8 for the development of a signal-on fluorescent biosensor to detect alkaline phosphatase

Shanshan Liu^a, Nian Wang^a, Li Li^{a,*}, Yi Liu^{b,c,*}

^aHubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China

^bSchool of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China

^cHubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, P. R. China.

E-mail: 599255968@qq.com; yiliuchem@whu.edu.cn;

Contents

Fig. S1	S-3
Fig. S2	S-4
Fig. S3	S-5
Fig. S4	S-6
Fig. S5	S-7
Fig. S6	S-8
Fig. S7	S-9
Fig. S8	S-10
Fig. S9	S-11
Fig. S10	. S-12
Fig. S11	. S-13
Fig. S12	. S-14
Table. S1	S-15
Table. S2	S-16
References	S-17

Fig. S1 ¹H NMR (Bruker Avance III 400 MHz, DMSO-*d*) of EBTAC: δ 6.3 (4H, CH_{py}), 6.81 (4H, CH_{py}), 4.50 (s, 8H, CH₂).

Fig. S2 ¹³C NMR (Bruker Avance III 400 MHz, DMSO-*d*) of EBTAC: δ 170.9 (C=O), 156.8 (C_{py}), 138.5 (C=C), 136.8 (C_{py}), 132.3 (C_{py}), 114.2 (C_{py}), 63.7 (CH₂).

Fig. S3 The peak at m/z = 628.16 is ascribed to Chemical Formula: $C_{34}H_{28}O_{12}$, m/z: 628.16 (100.0%), 629.16 (36.8%), 630.16 (6.6%), 630.16 (2.5%) according to the analysis by ChemBioDraw). the simulated result fits well with the measured isotopic distribution pattern.

Fig. S4 The XPS spectra for O 1s, N 1s, C 1s and Zn 2p, respectively.

Fig. S5 Ultraviolet-visible absorption spectra of ZIF-8, EBTAC and ZIF-8@EBTAC.

Fig. S6 The fluorescence quantum yield of EBTAC (A) and ZIF-8@EBTAC (B).

Fig. S7 Fluorescence intensity of ZIF-8@EBTAC with increasing storage time.

Fig. S8 UV-vis absorption spectra of sole EBTAC (a), the supernatant of ZIF-8@EBTAC in the absence (b) and presence of ppi (100 μ M) (c).

Fig. S9 Fluorescence response of ZIF-8@EBTAC in the presence of ppi (a), H₂PO₄⁻ (b), HPO₄²⁻ (c) and ppi (d).

Fig. S10 Fluorescence response of ZIF-8@EBTAC versus different pH values of HEPES buffer.

Fig. S11 Effects of the incubation time of ALP with ppi on the fluorescence response of ZIF-8@EBTAC.

Fig. S12 Effects of the catalyze time of ALP with ppi on the fluorescence response of ZIF-8@EBTAC.

Method	Linear range (U/L)	Detection limit (U/L)	Reference
Fluorescence	0.06-600	0.035	S 1
Surface-enhanced Raman scattering	1–300	0.38	S 2
Electrochemical	1.25-100	0.366	S 3
Photoelectrochemical	50-1000	42.1	S 4
Colorimetric	20-800	3.0	S 5
Fluorescence	0.01-100	0.01	This Work

Table S1. Performance comparison of the proposed assay with previously reported

 systems for the detection of ALP.

Sample	Added ALP (U/L)	Detected ALP (U/L)	Recovery (%)
1	0	0.1	/
2	10	9.10	91.0
3	50	47.9	95.8
4	100	96.1	96.1

Table S2. Detection of ALP activity in serum samples.

References

S1. S. S. Ding, M. X. Li, Y. Xiang, J. Tang, Q. Zhang, M. Huang, X. H. Zhao, J. Wang, and C. M. Li, Synergistic effect-mediated fluorescence switching of nitrogen-doped carbon dots for visual detection of alkaline phosphatase, *Microchem. J.*, 2022, **181**, 107651.

S2. C. Y. Xi, M. Zhang, L. Jiang, H.-Y. Chen, J. Lv, Y. He, M. E. Hafez, R.-C. Qian, and D.-W. Li, MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity, *Sensor. Actuat. B-chem.*, 2022, **369**, 132264.

S3. H. H. Rao, J. Y. Li, M. Y. Luo, K. H. Zhang, H. Gou, H. X. Liu, and Z. H. Xue, A label-free and modification-free ratiometric electrochemical strategy for enhanced natural enzyme detection using a bare electrode and nanozymes system, *Anal. Bioanal. Chem.*, 2022, **414**, 2991-3003.

S4. L. Deng, F. H. Ma, M. H. Yang, X. Q. Li, and X. Chen, A halide perovskite/lead sulfide heterostructure with enhanced photoelectrochemical performance for the sensing of alkaline phosphatase (ALP), *Chem. Commun.*, 2023, **59**, 1361.

S5. Z. Y. Ding, Z. Li, X. X. Zhao, Y. R. Miao, Z. F. Yuan, Y. Y. Jiang, and Y. Z. Lu, Self-deposited ultrasmall Ru nanoparticles on carbon nitride with high peroxidase-mimicking activity for the colorimetric detection of alkaline phosphatase, *J. Colloid Interf. Sci.*, 2023, **631**, 86-95.