Electronic Supplementary Information

Electrochemical aptasensor based on DNA-templated copper nanoparticles and RecJf exonuclease-assisted target recycling for lipopolysaccharide detection

- Shunbi Xie^{*,a}, Shuting Liang^a, Liangliang Tian^b, Ge Ding^a, Meiting He^a, Haojie Li^a, Heshan Yang^{*,a}
- a Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, PR China.
- b School of Electronic Information and Electrical Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, PR China.
- * Corresponding authors: Shunbi Xie, Heshan Yang

E-mail addresses: xieshunbi@163.com

F-Tel.: +86-023-61162815

Oligonucleotide	Sequence (5' to 3')			
LPS aptamer	CTT CTG CCC TCC TTC CTA GCC GGA TCG CGC TGG			
	CCA GAT GAT ATA AAG GGT CAG CCC CCC AGG AGA			
	CGA GAT AGG CGG ACA CT			
c DNA	NH ₂ -AGT GTC CGC CTA TCT CGT CTC CTG GGG GGC			
	TGA CCC TTT ATA TCA TCT GGC CAG CGC GAT CCG			
	GCT AGG AAG GAG GCG GGC AGA AG			

 Table S1 Oligonucleotide sequences used in this assay

Fig. S1 Comparison of DPV signals for presence or absence of target and RecJf exonuclease. DPV signals for the absence of LPS and RecJf exonuclease (a), DPV signals for the presence of LPS (b), DPV signals for the presence of LPS and RecJf exonuclease (c).

Fig. S2 The calibration plot for current vs. logarithm of the LPS concentration for the absence of RecJf exonuclease.

Fig. S3. The stability of biosensor for 0 week, 1 week and 2 weeks, respectively.

Analytical method	Materials	Linear range	Detection limit	detection time	Ref.
DPV	graphene and gold nanoparticles	10 fg/mL~ 50 ng/mL	8.7 fg/mL	180 min	1
DPV	(4- (ferrocenylacetamido) phenyl) boronic acid	1.0 pg/mL~ 1 ng/mL	0.34 pg/mL	45 min	2
DPV	copper-based metal- organic framework collaborative	1.0 pg/mL~ 1.0 ng/mL	0.29 fg/mL	65 min	3
Chronoco ulometry	amplification of dual enzymes (Exo III and terminal deoxynucleotidyl transferase)	2.5 pg/mL~ 1 ng/mL	1.0 pg/mL	215 min	4
DPV	Ce-based metal-organic frameworks	50 fg/mL~ 10 pg/mL	33 fg/mL	195 min	5
DPV	nafion/polypyrrole/grap hene oxide	0.01 ng/mL~ 3.0 ng/mL	3.5 pg/mL	25 h	6
DPV	copper ion-assisted gold nanoparticle aggregates	10 fg/mL~ 100 ng/mL	3.3 fg/mL	63 min	7
CV	silver nanoparticles decorated titanium dioxide nanotube/functionalize d reduced graphene oxide	17 fg/mL~ 100 ng/mL	5 fg/mL	60 min	8
DPV	DNA-templated copper nanoparticles	10 fg/mL~ 100 ng/mL	6.8 fg/mL	90 min	This work

 Table S2. The analytical performance of the proposed method compared with other

 LPS electrochemical detection method.

Reference

- 1 L.J. Bai, Y.Q. Chai, X.Y. Pu and R.Yuan, Nanoscale, 2014, 6, 2902-2908.
- 2 Q. Hu, W. X. Feng, Y.Y. Liang, Z.W. Liang, X.J. Cao, S.Q. Li, Y.L. Luo, J.W. Wan, Y.M. Ma, D.X. Han and L. Niu, *Anal. Chem.*, 2022, **94**, 17733-17738.
- 3 Y. Duan, N. Wang, Z. Huang, H. Dai, L. Xu, S. Sun, H. Ma and M. Lin, *Mater. Sci. Eng. C*, 2020, **108**, 110501.
- 4 Y. Huang, L.Wang, L. Sha, Y. Wang, X. Duan and G. Li, *Anal. Chim. Acta*, 2020, **1126**, 31-37.

- 5 W.J. Shen, Y. Zhuo, Y.Q. Chai, and R.Yuan, *Biosens. Bioelectron.*, 2016, **83**, 287-292.
- 6 H. Jiang, J.Yang, K.Wan, D. Jiang, C. Jin, ACS Sens., 2020, 5, 1325-1335.
- 7 N Wang, H Dai, L Sai, H. Ma, M. Lin, Biosens. Bioelectron., 2019, 126, 529-534.
- 8 J.M. Tian, Z. Mu, J. Wang, J. Zhou, Y.H. Yuan and L.J.Bai, *Microchim. Acta*, 2021, 188, 1-11.