Supporting Information

A novel electrochemical sensing based on amino-functionalized

MXene for the rapid and selective detection of Hg²⁺

Jinquan Liu ^{a,b,c}, Jiao Shi ^{a,b,c}, Miao Zhong ^{a,b,c}, Yating Wang ^{a,b,c}, Xinxin Zhang ^{a,b,c}, Wenyu Wang ^{a,b,c}, Zhijun Chen ^{a,b,c}, Yan Tan ^{a,b,c}, Dongyun Xu ^d, Shengyuan Yang ^{a,b,c*} and Le Li ^{a,b,c*}

^a Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.

^b Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China.

^c Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang 421001.

Hunan, People's Republic of China

^d Hengyang Center for Disease Control and Prevention, Hengyang, Hunan, 421001, People's Republic of China.

*Corresponding Author: Shengyuan Yang and Le Li; E-mail addresses: yangshyhy@126.com (Shengyuan Yang) and <u>usclile@126.com</u> (Le Li)

Fluorescamine validation NH₂-Ti₃C₂T_x

The NH₂-Ti₃C₂T_x (5 mg/mL) was dissolved with NaOH (0.02 mol/L) and fluorescamine (0.1 g/L) was dissolved in acetone. Then, 40 μ L of NH₂-Ti₃C₂T_x, 80 μ L of fluorescamine, and 200 μ L of PBS (0.01 mol/L) were mixed, and the reaction was carried out for 10 min under protection from light. Fluorescence spectra were recorded by using F-7100 fluorescence spectrophotometer.

Adsorption experiment

5 mg of NH₂-Ti₃C₂T_x was added into the Hg²⁺(115 μ mol/L) solution and shaken for 24 h. Secondly, the supernatant was centrifuged and filtered through a 0.22 μ m filter. Then the atomic fluorescence was used to detect the Hg²⁺ concentration after adsorption. In order to better demonstrate its adsorption capacity, the concentration of Hg²⁺ solution without NH₂-Ti₃C₂T_x was also tested under the same conditions.

Fig.S1 XRD spectra of $Ti_3AlC_2(a)$, $Ti_3C_2T_x(b)$ and NH_2 - $Ti_3C_2T_x(c)$.

Fig.S2 High-resolution XPS spectra of Ti 2p(A), C 1s (B), O 1s (C) of Ti₃C₂T_x.

Fig.S3 High-resolution XPS spectra of C 1s (A), O 1s (B), Ti 2p (C), N 1s(D) of NH₂-Ti₃C₂T_x.

Fig.S4 The selectivity of propose electrochemical sensing for detection Hg^{2+} . All the data were presented three independent measurements (n = 3).

Fig.S5 (A) The peak current values of 1.0 μ mol/L Hg²⁺ at five independently NH₂-Ti₃C₂T_x/GCE; (B) the peak current of 1.0 μ mol/L Hg²⁺ was detected continuously for ten times under the same condition.

	Average (µmol/L)	RSD (%)	
Hg ²⁺	116.22	0.64	
Hg ²⁺ +NH ₂ -	16.34	3.14	
$Ti_3C_2T_x$			

Table S1 The adsorption experiment AFS detected Hg^{2+} results

Table S2 Comparing different sensor platforms to detect Hg^{2+}

Material	Detection	Linear	LOD	Reference
	method	range	(µmol/L)	
		$(\mu mol/L)$		
Thiazoline-isophorone	Fluorescence	0-60	7.22	1
Carbon Quantum Dots	Fluorescence	0-50	0.934	2
gallium oxide	Electrochemical	0.3-80	0.13	3
NMO-GR	Electrochemical	0.7-6.7	0.027	4
Silver Nanowires/HPMC/Chitosan/Urease	Electrochemical	5-25	3.94	5
Alk-Ti ₃ C ₂ MXene	Electrochemical	0.1-1.5	0.13	6
NH ₂ -Ti ₃ C ₂ T _x	Electrochemical	0.5-50	0.02	This work

References

- 1 S. Erdemir, M. Oguz and S. Malkondu, Anal Chim Acta, 2022, 1192, 339353.
- 2 S. Singh and S.K. Kansal, J Fluoresc, 2022, 32, 1143-1154.
- 3 G.A. El-Fatah, H.S. Magar, R.Y.A. Hassan, R. Mahmoud, A.A. Farghali and M.E.M. Hassouna, Sci Rep, 2022, 12, 20181.
- 4 P. Lei, Y. Zhou, S. Zhao, C. Dong and S. Shuang, J Hazard Mater, 2022, 435, 129036.
- 5 A. Saenchoopa, S. Klangphukhiew, R. Somsub, C. Talodthaisong, R. Patramanon, J. Daduang, S. Daduang and S. Kulchat, Biosensors (Basel), 2021, 11,351.
- 6 X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu, L. Huang, X. Yuan, D. Guo, J. Hu and J. Yang, Electrochimica Acta, 2017, **248**, 46-57.