Supporting Information:

Chlorine-Doped MoS₂ Quantum Dots Embedded in Molecularly Imprinted Polymer for Highly Selective and Sensitive Optosensing of Quercetin

Fengyi Wu*, Jiliang Yang, Yousheng Ye, Rong Wu, Haiyan Wang

Water environment research center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China

Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China; yangjiliang1984@126.com (J.Y.); yysheng@chu.edu.cn (Y.Y.); wurong@chu.edu.cn (R.W.); haiyan681108@163.com (H.W.)

* Correspondence: wfy@chu.edu.cn; Tel.: +86-551-82362251

Contents

Figure and Table	1
The Stern-Volmer equation	5
References	5

Figure and Table :

Fig.S1 BET surface area of Cl-MoS $_2$ QDs @ SiO $_2$ @ QR (a) and Cl-MoS $_2$ QDs @ SiO $_2$ @ MIP(b)

Fig.S2 Fluorescence intensity of Cl-MoS₂ QDs $@SiO_2@$ MIP with (F₀) and without (F) the quercetin under different pH. The results show that the fluorescence intensity of Cl-MoS₂ QDs $@SiO_2@$ MIP first decreases and then increases as the pH value increases. This fluorescence trend is related to the stability of Cl-MoS₂ QDs $@SiO_2@$ MIP. In acidic and alkaline solutions, Cl-MoS₂ QDs $@SiO_2@$ MIP has good stability ,thereby exhibiting relatively strong fluorescence. However, under alkaline conditions,

quercetin undergoes partial decomposition, which affect the reliability of testing results. Overall consideration. The optimal pH value is 4 for detection of quercetin using Cl-MoS₂ QDs $@SiO_2@$ MIP sensor.

Fig. S3 Effect of incubation time on fluorescence intensity of Cl-MoS₂ QDs@SiO₂@ MIP. The results revealed a rapid and significant decrease in fluorescence intensity of Cl-MoS₂ QDs@SiO₂@ MIP within a 5-minute interval upon addition of quercetin. Afterward, the fluorescence intensity of Cl-MoS₂ QDs@SiO₂@ MIP remained relatively constant. As a result, the optimal incubation time for quercetin detection using Cl-MoS₂ QDs@SiO₂@ MIP is determined to be 5 minutes.

Fig. S4 Transient photoluminescence spectra of Cl-MoS₂ QDs @ SiO₂ @ MIP with the additon of different concentrations quercetin (QR).

Fig. S5 Fluorescence of the Cl-MoS₂ QDs @ SiO₂ @ MIP with diverse interfering ions.

Fig. S6 Recyclablility test of quercetin with Cl-MoS₂ QDs $@SiO_2@$ MIP. In order to reuse Cl-MoS₂ QDs $@SiO_2@$ MIP, the fluorescent probe was collected by centrifugation after the latest detection. Then, the obtained fluorescent probe was reflowed with acetone and vacuum dried for the next use.

Material	linear range	LOD	Recovery	Referenc
C QDs	0-40 μM	79 nM		[1]
Au QDs	0.089-180 μM	0.018 µM		[2]
Ag-Au QDs	0.9-100 μM	0.65 µM		[3]
CdSe/ZnS QDs	0.576–184 mg/L	0.14 mg/L		[4]
C NPs	3.3-41.2 μM	0.175 μM		[5]
C dots	1-47µM	172.4 nM		[6]
Ni-CQDs	0.5-300 μM	0.137 µM	97.3-101.9%	[7]
[Tb ₄] MOF	0–993 μM	0.76 µM	-	[8]
C ₃ N ₄ QDs@MIP	10–1000 ng/mL	2.5 ng/mL	90.7-94.1%	[9]
C QDs@MOF@MIP	0–50 µM	2.9 nM		[10]
N-C QDs	0.5-80 μg/mL	0.21 µg/mL		[11]
MoS2QDs@SiO2@MIP	2-200ng/mL	1.2 ng/mL	91.2%-104.2%	This is work

Table S1. Detection of quercetin with different fluorescense sensors

Table S2. The structure formula of small organic molecules

Chemicals	molecular formula	structural formula
Quercetin (QE)	$C_{15}H_{10}O_7$	HO HO HO HO O
Baicalein (BE)	$C_{15}H_{10}O_5$	HO HO OH
Myricetin (ME)	$C_{15}H_{10}O_8$	HO HO HO HO O HO O HO O HO O HO O HO O
Bisphenol C (BC)	$C_{17}H_{20}O_2$	НО ОН

The Stern-Volmer equation:

$$\frac{F_0 - F}{F} = K_{SV}C_q = K_q \tau_0 C_q$$

where F_0 and F are the fluorescence (FL) intensity of Cl-MoS₂ QDs @ SiO₂ @ MIP in the absence and presence of quercetin, respectively; Cq is the concentration of quercetin, and the dynamic quenching constant Ksv is 4.79 ×10⁶ (mol/L)⁻¹ by taking the slope of the regression line in Figure 6 (b). Here, term τ_0 is the average fluorescence lifetime of Cl-MoS₂ QDs @ SiO₂ @ MIP ($\tau_0 = 8.10$ ns).

References

- 1. Y. Zou, F. Y. Yan, T. C. Zheng, D. C.Shi, F. Z. Sun, N. Yang and L. Chen, *Talanta*, 2015, **135**, 145-148.
- 2. Z. G. Chen, S. H. Qian, J. H. Chen and X. Chen, J. Nanopart. Res., 2012, 14, 1-8.
- 3. Z. Chen, G. Zhang, X. Chen, J. Chen and Z. Fu, *Plasmonics*, 2013, **8**, 201-207.
- 4. W.-P. Hu, G.-D. Cao, W. Dong, H.-B. Shen, X.-H. Liu and L.-S. Li, *Anal. Methods*, 2014, **6**, 1442-1447.
- 5. P. L. Zuo, D. L. Xiao, M. M.Gao, J. Peng, R. F. Pan, Y. Xia and H. He, Microchim.

Acta, 2014, 181, 1309-1316.

6. F. F. Du, S. M. Shuang, Z. H. Guo, X. J. Gong, C. Dong, M. Xian and Z. H. Yang, *Talanta*, 2020, **206**, 120243-120250.

7. Y.-F. Gao, X. Jin, F.-Y. Kong, Z.-X. Wang and W. Wang, *Analyst*, 2019, **144**, 7283-7289.

8. T.-Q. Song, K. Yuan, W.-Z. Qiao, Y. Shi, J. Dong, H.-L. Gao, X.-P. Yang, J.-Z. Cui and B. Zhao, *Anal. Chem.*, 2019, **91**, 2595-2599.

9. S. N. Xu, L.G. Chen and L. Ma, *Microchim. Acta*, 2018, **185**, 1-9.

10. L. H. Xu, M. F. Pan, G. Z.Fang and S. Wang, Sens. Actuators, B-Chem., 2019, 286, 321-327.

11. B. H. Gao, Y. Sun, Y. C.Miao, H.H. Min, L. Xu and C. B. Huang, *Aust. J. Chem.*, 2018, **71**, 882-889.