TABLE S1. Molar mass, quantitative ion, qualifier ions and retention time's ions selected for the analysis of OCPs using GC-MS analysis

Analytes	MW (g/mol)	RT (min)	quantitative (precursor ion)(m/z)	qualitative ions (product ions) (m/z)
α-BHC	290.83	7.87	219	189, 109
β-ΒΗC	290.83	9.52	219	189, 109
δ-BHC	290.83	10.08	219	189, 109
Aldrin	364.9	11.78	263	66, 293
HCE	389.3	13.88	263	81, 353
y-chlordane	409.8	15.19	272	65, 373
4,4-DDE	318.02	17.38	246	176, 318
Endrin	380.90	18.74	281	263, 345
P,p-DDT	354.49	19.25	212	165, 235
ESS	422.9	21.87	272	229, 387
Dieldrin	380.91	23.28	280	249, 379
MC	345.65	24.88	240	227, 274
DBC	499	25.25	237	99, 388

Figure S1. Selection of total volume of extraction solvent. Extraction conditions; Sample volume 5mL, mixed standard 5 ng/mL, extraction solvent volume ratio 2:1, the mass of NaCl: 1.5 g, centrifugation at 4000 rpm for 2 min

Figure S2. Effect of centrifugation rate on the extraction efficiency of the proposed method. Extraction conditions; Sample volume 5 mL, mixed standard 5 ng/mL, extraction solvent (volume) ACN:EA (600 μ L), extraction solvent volume ratio 3:1, mass of NaCl 1.5 g, centrifugation time 2

min

Figure S3. Effect of centrifugation time on the extraction efficiency of the proposed method. Extraction conditions; Sample volume 5 mL, mixed standard 5 ng/mL, extraction solvent (volume)

ACN: EA (600μL), extraction solvent volume ratio 3:1, mass of NaCl 1.5 g, centrifugation rate 4000 rpm

Figure S4. AGREE prep assessment result of this study

Note that numbers 1-12 indicated the 12 principles of GAC as mentioned below

Principle 1. Direct analytical techniques should be applied to avoid sample treatment.

Principle 2. Minimal sample size and minimal number of samples are goal

Principle 3. In situ measurements should be performed

Principle 4. Integration of analytical processes and operations saves energy and reduces the use of reagents.

Principle 5. Automated and miniaturized methods should be selected.

Principle 6. Derivatization should be avoided.

Principle 7. Generation of a large volume of analytical waste should be avoided and proper management of analytical waste should be provided

Principle 8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.

Principle 9. The use of energy should be minimized

Principle 10. Reagents obtained from renewable source should be preferred

Principle 11. Toxic reagents should be eliminated or replaced.

Principle 12. The safety of the operator should be increased