Supporting Information for

A Benzoxazole-triphenylamine Conjugated Fluorogenic Probe for Specific Detection of Sarin gas

Mimic, Diethylchlorophosphate

Tuhina Sultana^a, Manas Mahato^a, Najmin Tohora^a, Sabbir Ahamed^a, Arpita Maiti^a, Susanta Ghanta^b and

Sudhir Kumar Dasa*

^aDepartment of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-

734013, India

^bDepartment of Chemistry, National Institute of Technology, Agartala, Barjala, Jirania, Tripura-799046,

India

Corresponding author: (Dr. S. K. Das; E-mail: sudhirkumardas@nbu.ac.in)

Table of contents

Sl. No.	Descriptions	Page No.
Scheme S1	Synthetic route for the preparation of 2-(4-aminophenyl) benzoxazole.	3
Fig. S1	¹ H NMR spectra of PMPA in CDCl ₃ .	4
Fig. S2	¹³ C NMR spectra of PMPA in CDCl _{3.}	4
Fig. S3	High-resolution mass spectra (HRMS) of PMPA.	5
Fig. S4	(a) UV-visible spectrophotometric titration spectra of PMPA (22 μ M) upon	5
	steady addition of DCP (0- 49.2 μ M) in water-DMSO (4:1) medium and (b) the	
	change of absorption behavior with increasing concentration of DCP at	
	wavelengths 326 nm and 390 nm, respectively. (c) The ratiometric [DCP] vs.	
	$log(A_{326}/A_{390})$ calibration curve quantifies the unknown concentration of DCP	
	with minimal experimental error.	
Fig. S5	(a) Fluorometric titration spectrum of PMPA (22 µM) upon steady	6
	accumulation of DCP (0-53.6 μ M) in water-DMSO (4:1) medium. (b)	
	Fluorescence color before and after phosphorylation through CIE diagram,	
	coordinates $x = 0.1612$, $y = 0.0429$ and $x = 0.1629$, $y = 0.0176$ respectively.	
Fig. S6	The bar plot on photoluminescence intensity changed at 392 nm of PMPA	6
	solution in pure DMSO medium in the presence of several OPs, IPs, and other	
	toxic guest analytes.	

Fig. S7 HRMS of phosphorylated product PMPA-DCP

- Fig. S8Pseudo-first-order rate constant plot of PMPA (12.6 μM) in the presence of7DCP (90 μM)
- Fig. S9 (i) long-length cuts of several Whatman filter papers. (ii) The filter papers were immersed into the PMPA solution (1mM). (iii) Photo on PMPA-loaded filter papers. Picture of long-length cuts of filter papers (iv) before (v) after drying. (vi) Taking each OPs, IPs and other analytes having similar concentration by micropipette. (vii) Sincerely add dropwise of each OP, IP, and other analytes into vials. (viii) Arranging the vials in order to add the analytes to perform the "dipstick" experiment.
- Fig. S10Emission spectra of PMPA solution in different spiked and unspiked soil9samples such as (a) sand, (b) field, and (c) clay soil, respectively.
- Fig. S11 The characteristic photoluminescence photos of PMPA solution of different
 9 pesticides-spiked soil samples (a) boxer biostimulant, (b) cypermethrin, and (c)
 bifenthrin under 365 nm UV-lamp irradiation.
- Table S1
 Comparison table of various probes and technologies for detecting
 9

 organophosphates.
 9
- Table S2Comparison table of various chemosensors introduced for detecting nerve agent10-11stimulants in the last few decades with our probe PMPA.10-11

1. Materials and instrumentations

All reagents used in the synthetic procedure are purchased from Sigma-Aldrich, India, and TCI, India, respectively. All organophosphates used in the present study are purchased from Sigma-Aldrich, India, and TCI, India. HPLC-grade solvents are used for synthesis and spectroscopic studies purpose. For nuclear magnetic resonance (NMR) spectral analysis, deuterated chloroform (CDCl₃) is used and obtained from Sigma Aldrich-India. ¹H NMR and ¹³C NMR spectra are recorded on a Bruker 400 MHz instrument

7

8

at ambient conditions using tetramethylsilane (TMS) as a standard reference with chemical shifts (δ) in ppm unit. On an Agilent 6545XT AdvanceBio LC/Q-TOF spectrometer, high-resolution mass spectra (HRMS) have been performed. The UV-visible absorption spectrum study and photoluminescence experiments have been carried out on a HITACHI U-2910 and HITACHI F-7100 fluorimeter with 2.5 nm excitation and emission slit, respectively, under ambient environments. Excitation and emission wavelengths during the photoluminescence experiment are kept at 320 nm and 340-600 nm, respectively.

2. Synthesis of 2-(4-aminophenyl) benzoxazole (L)

2-(4-aminophenyl) benzoxazole is prepared by following the literature procedure. A mixture of 2aminophenol (1 g, 9.17 mmol) and polyphosphoric acid (PPA) (20 g) is refluxed for 30 min at 120 °C, then added 4-aminobenzoic acid (1.3 g, 9.17 mmol) and again refluxed 4 hours at 120°C temperature, then poured the reaction mixture into an ice-cold water bath. The purified product was collected by column chromatography, and finally, the brownish solid of L was isolated (**Scheme S1**). Yield 85% ¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ (ppm): 6.01(s,2H), 6.68 (d, 2H), 7.35 (d, 2H), 7.66 (d, 2H), and 7.85 (d, 2H).

Scheme S1 Synthetic route for preparing 2-(4-aminophenyl) benzoxazole.

compound to rubic									
Name	Formula	Species	RT	RT Diff	Mass	CAS	ID Source	Score	Score (Lib) Score (Tgt)
	C32 H23 N3 O	(M+H)+ (M+Na)+	0,137		465,1838		FBF	99.02	99.02

Agilent | Trusted Answers

Fig. S4 (a) UV-visible spectrophotometric spectra of **PMPA** (22 μ M) upon steady addition of DCP (0-49.2 μ M) in water-DMSO (4:1) medium and **(b)** the change of absorption behavior with increasing concentration of DCP at wavelengths 326 nm and 390 nm, respectively. **(c)** The ratiometric [DCP] vs. $log(A_{326}/A_{390})$ calibration curve for quantifying the unknown concentration of DCP with minimal experimental error.]

Fig. S5 (a) Fluorometric titration spectrum of **PMPA** (22 μ M) upon steady accumulation of DCP (0-53.6 μ M) in water-DMSO (4:1) medium. **(b)** Fluorescence color before and after phosphorylation through CIE diagram, coordinates x = 0.1612, y = 0.0429 and x = 0.1629, y = 0.0176 respectively.

Fig. S6 Bar plot on photoluminescence intensity change at 392 nm of **PMPA** solution in pure DMSO medium in the presence of several OPs, IPs, and other toxic guest analytes.

Fig. S7 HRMS of phosphorylated product PMPA-DCP in DMSO.

Fig. S8 Pseudo first-order rate constant plot of PMPA (12.6 µM) in the presence of DCP (90 µM).

Fig. S9 (i) Long-length cuts of several Whatman filter papers. **(ii)** The filter papers were immersed into the PMPA solution (1mM). **(iii)** Photo on **PMPA**-loaded filter papers. Picture of long-length cuts of filter papers **(iv)** before **(v)** after drying. **(vi)** Taking each OPs, IPs and other analytes having similar concentration by micropipette. **(vii)** Sincerely adding dropwise of each OPs, IPs and other analytes into vials. **(viii)** Arranging the vials in order to add the analytes to perform the "dipstick" experiment.

Fig. S10 Emission spectra of PMPA solution in different spiked and unspiked soil samples such as (a) sand, (b) field, and (c) clay soil, respectively.

Fig. S11 The characteristic photoluminescence photos of PMPA solution of different pesticides-spiked soil samples (a) boxer biostimulant, (b) cypermethrin, and (c) bifenthrin under 365 nm UV-lamp irradiation.

Table S1	Comparison	table of v	arious prob	es and tech	nologies for	^c detecting	organophosphates
			millions prov				o Sunopnospines

Probe	Technology	detecting organophosphates	Ref.
Rhodamine B hydrazide (RbH) - polyvinylpyrrolidone (PVP	Optical waveguides (OWGs)	DCP	1
Radioactive nickel (⁶³ Ni) beta emission ionization source	Time-of-flight mass spectrometer	dimethyl methylphosphonate (DMMP)	2

Cystamine conjugate [(BocNH)Fc(CO)CSA]2	Electrochemical Sensors	EtSCH ₂ CH ₂ Cl, a simulant for sulfur mustard and (NC)(EtO) ₂ P(O), a simulant for nerve agent Tabun.	3
Self-assembled composite layer of Cu ²⁺ /11- mercaptoundecanoic acid	Piezoresistive SiO ₂ microcantilever	dimethyl methylphosphonate (DMMP)	4
La(III) 2- bis(carboxymethyl)amino hexadecanoic acid	Surface Acoustic Wave (SAW) sensor	Nerve agent sarin (GB)	5
Polymerized crystalline colloidal array (PCCA)	Photonic Crystal	Organophosphorus compound parathion	6
hexafluoroisopropanol functionalized polythiophene	Carbon nanotube/polythio phene chemiresistive sensors	dimethyl methylphosphonate (DMMP)	7
triphenylamine– benzaoxazole based	Colorimetric, fluorometric	DCP	Our work

Table S2 Comparison table of various chemosensors introduced for detecting nerve agentstimulants in the last few decades with our probe PMPA.

Sensors	Type of response	Respons e Time	Test kit	Detectio n limit	Detectio n in gaseous	Ref.
					phase	
squaraine-ethanolamine adducts	Colorimetric	Not available	Not available	3.5µM	Not available	8
Terpyridine based	Colorimetric fluorometric	Few seconds	vapor test Paper test	0.35 μM and 0.30 μM	Yes	9
thiourea-based rhodamine	Colorimetric fluorometric	Not available	No	2 μM	No	10
hydroxybenzylidenemalononitr	Colorimetric,	Within	Yes (Test	0.10,	Yes	11
ile	fluorometric (turn-on)	minutes	strip	0.11 and		
derivative			method)	0.20 µM		
4-diphenylamino-2-hydroxy	colorimetric and	30 s.	Not	140 nM	Yes	12

benzaldehyde oxime	ratiometric		mentione			
,			d			
DASA-Derived Polymeric	Colorimetric	Within 2	vapor test	1mM	Yes	13
Probe	(On-off)	minutes				
bis-indolyl based chromogenic	Colorimetric	Few	vapor test	10.8 µM	Yes	14
probe		minutes	Paper test			
Bifunctional azoaniline based	colorimetric	Within 1	Not	0.2 mM	Not	15
		mın	mentione		mentione	
D I I I I I I		N .T. (d		d	10
Rhodamine based	Colorimetric and	Not	Vapor	0.2 μΜ	Yes	16
	fluoremetric	mentione d	test			
Polymer (BPAm-co-DMA-co-	colorimetric	Within	polymeri	18.4 µM	Yes	17
MPDEA)		few mins	c film			
di-methyltin	Fluorometric	Almost 2	Yes (Spot	0.023	Yes	18
derivative	(turn-off)	minutes	Testing	and		
			Device)	0.092 mM		
fluorenepyrene	Fluorometric	Within 3	Yes (Test	132 ppb	Yes	19
copolymer	(turn-on)	seconds	strip method)			
pyrene based turn-on	ON/OFF reversible	Few	Quartz	0.1 mM	Yes	20
fluorescent polymeric probe	fluorescence	minutes	Plate			
			vapor test	0.42.34	N T -	21
benzothiazole-based	Fluorometric	Not	Not	0.43 μM	Not	21
X 7 1		available	available	106.16	available	22
Xanthene	Colorimetric,fluorometr	Not	Not	1.36 μM	NA	22
	ic (turnon)	d	d	and 26		
BODIPY-based fluorescent	fluorometric	within	u Test	20.7 nnb	Not	23
probe	nuorometre	540 s	paper	20.7 pp0	mentione	
r			r - r		d	
triphenylamine-benzoxazole-	Colorimetric,	Within a	(Dipstick	0.42 μM	Yes	Our
based	fluorometric	minute	method)			wor
						k

References

- B. Du, Z. Tong, X. Mu, S. Liu, J. Xu, Z. Liu, Z. M. Qi and Z. Ding, *Anal. Methods*, 2019, **11**, 1208–1213.
- W. E. Steiner, S. J. Klopsch, W. A. English, B. H. Glowers and H. H. Hill, *Anal. Chem.*, 2005, 77, 4792–4799.
- 3 M. A. K. Khan, Y. T. Long, G. Schatte and H. B. Kraatz, *Anal. Chem.*, 2007, **79**, 2877–2884.
- 4 G. Zuo, X. Li, P. Li, T. Yang, Y. Wang, Z. Cheng and S. Feng, Anal. Chim. Acta, 2006, 580, 123–

127.

- 5 M. S. Nieuwenhuizen and J. L. N. Harteveld, *Sensors Actuators B Chem.*, 1997, 40, 167–173.
- 6 J. P. Walker and S. A. Asher, *Anal. Chem.*, 2005, 77, 1596–1600.
- 7 F. Wang, H. Gu and T. M. Swager, J. Am. Chem. Soc., 2008, 130, 5392–5393.
- J. Zhao, M. Qin, J. You, K. Liu, L. Ding, T. Liu, J. Kong and Y. Fang, *Dye. Pigment.*, 2022, 197, 109870.
- P. Zheng, Z. Cui, H. Liu, W. Cao, F. Li and M. Zhang, *J. Hazard. Mater.*, ,
 DOI:10.1016/J.JHAZMAT.2021.125619.
- S. Li, Y. Zheng, W. Chen, M. Zheng, H. Zheng, Z. Zhang, Y. Cui, J. Zhong and C. Zhao, Molecules, DOI:10.3390/MOLECULES24050827.
- S. S. Ali, A. Gangopadhyay, A. K. Pramanik, S. K. Samanta, U. N. Guria, S. Manna and A. K. Mahapatra, *Analyst*, 2018, 143, 4171–4179.
- 12 S. S. Ali, A. Gangopadhyay, A. K. Pramanik, U. N. Guria, S. K. Samanta and A. K. Mahapatra, Dye. Pigment., 2019, 170, 107585.
- 13 A. Balamurugan and H. Il Lee, *Macromolecules*, 2016, **49**, 2568–2574.
- 14 N. Dey, S. Jha and S. Bhattacharya, *Analyst*, 2018, **143**, 528–535.
- 15 M. Gupta and P. H. il Lee, *Sensors Actuators B Chem.*, 2017, 242, 977–982.
- 16 S. Goswami, A. Manna and S. Paul, *RSC Adv.*, 2014, 4, 21984–21988.
- 17 T. N. Annisa, S. H. Jung, M. Gupta, J. Y. Bae, J. M. Park and H. Il Lee, ACS Appl. Mater. Interfaces, 2020, 12, 11055–11062.
- 18 N. Singh, K. Kumar, N. Srivastav, R. Singh, V. Kaur, J. P. Jasinski and R. J. Butcher, New J.

Chem., 2018, 42, 8756–8764.

- H. Jiang, P. Wu, Y. Zhang, Z. Jiao, W. Xu, X. Zhang, Y. Fu, Q. He, H. Cao and J. Cheng, *Anal. Methods*, 2017, 9, 1748–1754.
- 20 M. Gupta and H. Il Lee, *undefined*, 2017, **50**, 6888–6895.
- 21 M. K. Das, T. Mishra, S. Guria, D. Das, J. Sadhukhan, S. Sarker, K. Dutta, A. Adhikary, D. Chattopadhyay and S. S. Adhikari, *New J. Chem.*, 2022, **47**, 250–257.
- 22 K. C. Behera and B. Bag, *Chem. Commun.*, 2020, **56**, 9308–9311.
- Z. Lu, W. Fan, X. Shi, C. A. Black, C. Fan and F. Wang, *Sensors Actuators B Chem.*, 2018, 255, 176–182.