Electronic Supplementary Information (ESI)

Cu²⁺-doped zeolitic imidazolate frameworks and gold nanoparticles (AuNPs@ZIF-8/Cu) nanocomposites enable label-free and highly sensitive electrochemical detection of oral cancer-related biomarkers

Xueting Hu[†], Dengxue Qiu[†], Qi Jiang, Qin Xu, Jing Li^{*}

¹School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China

*Corresponding authors

Email addresses: jinglee@yzu.edu.cn (J. Li)

Experimental details

Materials and Regents

Zinc acetate dihydrate [(CH₃COO)₂Zn·2H₂O], Copper nitrate trihydrate Cu(NO₃)₂·3H₂O, methanol (CH₃OH), chloroauric acid (HAuCl₄), sodium borohydride (NaBH₄), tris (hydroxymethyl) aminomethane (Tris), boric acid (H₃BO₃), Ethylene Diamine Tetraacetic Acid (EDTA), hydrochloric acid (HCl), sodium dihydrogen phosphate (NaH₂PO₄), disodium hydrogen phosphate (Na₂HPO₄), sodium chloride (NaCl), potassium chloride (KCl), potassium ferricyanide (K₃[Fe (CN)]₆), potassium ferrocyanide (K₄[Fe(CN)]₆) were obtained from Sinopharm Chemical Reagent Company Ltd. (Shanghai, China). 2-methylimidazole and bovine serum albumin (BSA) were provided by Aladdin Chemistry Co., Ltd. (Shanghai, China). Ammonium persulphate (APS), 6×loading buffer, N, N, N', N'-tetramethylethylenediamine (TEMED) and 30% acrylamidemethylenebisacrylamide [30% Acr-Bis (29:1)] were obtained from Shanghai Beyotime Biotech Inc. SYBR-Gold were obtained from Thermo Fisher Scientific Inc. Glassy carbon electrodes (GCE, Φ =3) mm) were purchased from Gaoss Union Technology Co., LTD (Wuhan, China). 0.01 M PBS (0.01 M Na₂HPO₄, 0.01 M NaH₂PO₄, 0.01 M NaCl and 0.01 M KCl, pH =7.4) and 0.1 M PBS (0.1 M Na₂HPO₄, 0.1 M NaH₂PO₄, 137 mM NaCl and 0.1 M KCl, pH =7.4) were used to rinse electrode and measure electrochemical signal, respectively. 1×TBE (89 mM Tris, 89 mM boric acid, 2 mM EDTA, pH=8.0) was chose as electrophoresis buffer. HPLC purified DNAs were synthesized by Sangon Biotech. Co., Ltd. (Shanghai, China) and the sequences were listed in Table S1.

Instrument

The scanning electron microscopy (SEM) images were taken on a field emission scanning electron microscope (Zeiss Supra 55, room temperature, atmospheric pressure and humidity of 50%). The transmission electron microscopy (TEM) images were taken on a transmission electron microscope (Tecnai 12, room temperature, atmospheric pressure and humidity of 50%). The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray (EDX) elemental mappings were taken on a field emission transmission electron microscope (Tecnai G2 F30 S-TWIN, The temperature is maintained at 16-30°C and the voltage is 220±5V). Ultraviolet-visible (UV-vis) absorption spectra were carried out with LAMBDA 650 spectrometer (PerkinElmer, USA). The X-ray diffraction (XRD) were performed on a D8 ADVANCE diffractometer (Conventional wide angle 5-90°, small angle 0.5-10°. Conventional test

rates are 10°/min, 5°/min, 1°/min, and small Angle test rates are 1°/min and 0.5°/min). The zeta potential measurements were accomplished with Zetasizer Nano ZS (25°C). Nucleic acid electrophoresis apparatus (BG-VerMINI, run at 95 V for 2 h in 1×TBE) was applied for 12% native polyacrylamide gel electrophoresis (PAGE). All the electrochemical measurements, including differential pulse voltammetry (DPV, scan from -0.1 V to 0.5 V with amplitude of 0.05 V, pulse width of 0.05 V and pulse period of 0.5 s), electrochemical impedance (EIS, scan from 0.01 Hz to 100 kHz with 5 mV amplitude at 0.213 V potential) and cyclic voltammetry (CV, scan form -0.2 to 0.6 V at 50 mV/s) and square wave voltammetry (SWV, scan from -0.4 to 0.2 V in 0.1 M PBS with amplitude of 0.025 V and frequency of 15 Hz) were measured on an electrochemical workstation (CHI 660D). A standard three-electrode system containing a glassy carbon electrode (GCE), a platinum electrode and an Ag/AgCl (saturated KCl) electrode acted as the working, counter and reference electrode, respectively. Centrifugation in a high-speed centrifuge (H1850) and dry in an oven system (DZF-6002).

Name	5' to 3'			
S	CTCTCGTTCTTTATCCCTCGACTGTTTT			
L	AAAGAACGAGAG <i>TCTTTCTG</i>			
Т	CAGAAAGACTCTCGTTCTTT			
P1	AAAGAACGAGAG-TTTTT-SH			
P2	NH ₂ -TTTTT-ACAGTCGAGGGAT			
sm DNA	CAGAAAGACT <u>G</u> TCGTTCTTT			
dm DNA	CAGAAAGAC <u>GG</u> TCGTTCTTT			
non DNA	GCTCCCTTCAGAGCAATCCC			

Table S1. All oligonucleotides used in this work

Note: The red font represent toehold; the bold font of the underline represents the single-mismatched base and double-mismatched bases; non-DNA denotes the non-complementary DNA.

Fig. S1 The EDX spectrum of AuNPs@ZIF-8/Cu nanocomposites. To avoid the influence of copper mesh, AuNPs@ZIF-8/Cu materials are dropped on tinfoil to obtain the EDX result.

Fig. S2 The square wave voltammetry (SWV) (A) and differential pulse voltammetry (DPV) measurements (B) of AuNPs@ZIF-8 (a), AuNPs@ZIF-8/Cu nanocomposites (b) and Cu-MOF (c) in 0.1 M PBS (pH 7.4).

Fig. S3 The peak current change of newly developed electrochemical sensor as a function of P1 concentration in 0.1 M PBS (pH 7.4) containing 5 mM [Fe $(CN)_6$]^{3-/4-}. The error bar represents the standard deviation of the three parallel experiments.

Fig. S4 The peak current change of newly developed electrochemical sensor as a function of the incubation time of P1 in 0.1 M PBS (pH 7.4) containing 5 mM [Fe $(CN)_6$]^{3-/4-}. The error bar represents the standard deviation of the three parallel experiments.

Fig. S5 The peak current change of newly developed electrochemical sensor as a function of the reaction time of BSA in 0.1 M PBS (pH 7.4) containing 5 mM [Fe $(CN)_6$]^{3-/4-}. The error bar represents the standard deviation of the three parallel experiments.

Fig. S6 Study on the effect of P2 concentration on electrochemical signal in 0.1 M PBS (pH 7.4) containing 5 mM [Fe (CN)₆] $^{3-/4-}$. The error bar represents the standard deviation of the three parallel experiments.

Fig. S7 Optimization of the hybridization ratio of L to S in 0.1 M PBS (pH 7.4) containing 5 mM $[Fe (CN)_6]^{3-/4-}$. T was incubated with different L+S duplex in 10 mM PBS for 1 h at 37°C. The error bar represents the standard deviation of the three parallel experiments.

Method	Design	Reaction time	Linear range	LOD	Reference
EC	Complex (Nt·BstNBI)	14-15 h	10 fM-10 nM	3 fM	[1]
ECL	Complex (Nb.BbvCl)	4-6 h	10 fM-1 nM	3.3 fM	[2]
EC	Complex (exonuclease III)	6-7 h	0.02 pM-2 nM	12.8 fM	[3]
EC	Complex (Nt·BstNBI)	3-5 h	1 pM-10 pM	350 fM	[4]
EC	Simple (enzyme-free)	2-3 h	0.1 pM-10 nM	63 fM	This work

 Table S2. Comparison of different electrochemical biosensors for ORAOV 1 detection.

Note: EC denotes Electrochemical, ECL represents Electrochemiluminescence.

Reference

- Y. Hu, Y. Chang, Y. Chai and R. Yuan, *Journal of The Electrochemical Society*, 2018, 165, B289-B295.
- [2] Y. P. Wei, J. S. Chen, X. P. Liu, C. J. Mao, B. K. Jin, ACS Appl. Mater. Interfaces, 2022, 14, 23726-23733
- [3] R. N. Ma, L. L. Wang, H. F. Wang, L. P. Jia, W. Zhang, L. Shang, Q. W. Xue, W. L. Jia, Q. Y. Liu and H. S. Wang, Sensors and Actuators B: Chemical, 2018, 269, 173-179.
- [4] Y. Tan, X. Wei, M. Zhao, B. Qiu, L. Guo, Z. Lin and H. H. Yang, *Analytical Chemistry*, 2015, 87, 9204-9208.