Electronic Supplementary Material

Ultrasensitive fluorometric determination of aluminum using

CoFe₂O₄ NPs/SDS/oxine system with the aid of ultrasound waves

Yahya S. Alqahtani^a, Ashraf M. Mahmoud^a, Mohamed M. El-Wekil^{*b}

^a Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia

^b Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.

*mohamed.elwakeel@pharm.aun.edu.eg, mohamed.mohamoud@ymail.com (corresponding author)

Instrumentation

The morphology assessment of $CoFe_2O_4$ NPs and $oxine/SDS@CoFe_2O_4$ NPs was conducted through transmission electron microscopy (TEM) using the JEOL JSM-7600 F instrument. Scanning electron microscopy (SEM) was employed, utilizing the JEOL JSM-5400 LV instrument in Oxford, USA. Elemental micro-analysis was carried out using the EDX technique with the OXFORD Aztec instrument in the USA. The spectrofluorometer RF-5301 PC from Shimadzu, Tokyo, Japan, was employed for the study, with the excitation and emission slit control configured at a slit width of 5 nm, utilizing a 1 cm quartz cell. Fourier-transform infrared (FT-IR) spectra in the range of 400–4000 cm⁻¹ were recorded using the NicoletTM iSTM10 spectrometer. X-ray diffractometry (XRD) measurements were conducted using a Philips/1710, USA. Particle size distribution was determined through dynamic light scattering (DLS) techniques using the Zeta-sizer Nano ZS instrument from Malvern in the UK. Magnetic properties of the samples were carried out using Lakeshore vibrational sample magnetometer (VSM-7410). The N₂ sorption experiment was carried out by Micromeritics ASAP 2020 analyzer. The sample was out gassed at 150°C for 12 h in a dynamic vacuum before physisorption measurements. The specific surface area was calculated using Brunauer-Emmet-Teller (BET) method.

Fig.S1 SEM image (A) and DLS (B) of $CoFe_2O_4$ NPs while (C) and (D) are SEM image and DLS of oxine/SDS@CoFe_2O_4 NPs, respectively. TEM images of $CoFe_2O_4$ NPs and oxine/SDS@CoFe_2O_4 NPs are presented in (E) and (F), respectively.

Fig.S2 EDX pattern of oxine/SDS@CoFe2O4 NPs.

Fig.S3 BET analysis (A) and vibrating sample magnetometer (B) for oxine/SDS@CoFe₂O₄ NPs.

Fig.S4 The effect of $CoFe_2O_4$ NPs concentration (a), oxine concentration (b), SDS concentration (c), pH (d), and ultrasonication time (e) during the preparation of oxine/SDS@CoFe_2O_4 NPs. Concentration of Al³⁺ is 70 ng mL⁻¹.

Fig.S5 The effect of oxine/SDS/CoFe₂O₄ NPs volume (a), temperature (b), pH (c), and incubation time (d). Concentration of Al^{3+} is 100 ng mL⁻¹.

Tolerance ratio	
Before masking	After masking
5000	5000
2200	2200
1800	1800
1600	1600
700	700
100	1200
100	1200
50	1000
400	400
15	500
	Toleran Before masking 5000 2200 1800 1600 700 100 100 100 50 400 15

Table S1 Tolerance ratios of interfering species in determination of 100 ng mL⁻¹ $Al^{3+.}$