Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Highly Selective and Sensitive Chromogenic Recognition of Sarin Gas Mimicking

Diethylchlorophosphate

Manas Mahato^a, Tuhina Sultana^a, Arpita Maiti^a, Sabbir Ahamed^a, Najmin Tohora^a, Susanat

Ghanta^b and Sudhir Kumar Das^{a*}

^aDepartment of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling,

West Bengal-734013, India

^bDepartment of Chemistry, National Institute of Technology, Agartala, Barjala, Jirania,

Tripura-799046, India

Corresponding author: (Dr. S. K. Das; E-mail: <u>sudhirkumardas@nbu.ac.in</u>)

Fig. S2 ¹³C NMR of our synthesized chemosensor HBD

Fig. S3 HRMS spectra of our developed HBD

Fig. S4 Fluorometric investigation of our probe HBD absence and presence of DCP.

Fig. S5 Change in absorbance at 560 nm of **HBD** (black dots) and **HBD** in the presence of DCP at different pH (red dots)

Fig. S6 Spectrophotometric interference investigation of our probe HBD with the various metal ions.

Fig. S7 Spectrofluorometric interference investigation of our probe HBD with the various metal ions.

Fig. S8 Absorbance spectra of HBD upon sequential addition of DCP and TEA.

Fig. S9 ¹H NMR titration spectra of HBD in the absence and presence of DCP.

Fig. S10 HRMS spectra of phosphorylated product HBD-DCP.

Fig. S11 Absorbance spectra of HBD solution in different spiked and unspiked soil samples such as (a) sand, (b) field, and (c) clay soil, respectively.

Table S1. Comparison table of various chemosensors that have been introduced for the detection of DCP in the last few decades with our **HBD**.

Sensors	Type of response	Response Time	Test kit	Detection limit	Detectio n in gaseous phase	Ref.
squaraine- ethanolamine adducts	Colorimetric	Not available	Not available	3.5µM	Not available	1
Terpyridine based	Colorimetric fluorometric	Few seconds	vapor test Paper test	0.35 μM and 0.30 μM	Yes	2
thiourea-based rhodamine	Colorimetric fluorometric	Not available	No	2 µM	No	3

DASA-	Colorimetric	Within 2	vapor	1mM	Yes	4
Derived	(On-off)	minutes	test			
Polymeric						
Probe						
bis-indolyl	Colorimetric	Few	vapor	10.8 μM	Yes	5
based		minutes	test			
chromogenic			Paper			
Pifunctional	aalaumimatria	Within 1	lesi	0.2 mM	Not	6
azoaniline	colourimente	within 1	mentione	0.2 11111		÷
based		min	d		mentione	
			u 1 .		d	7
Polymer	colorimetric	Within	polymeri	18.4 μM	Yes	/
(BPAm-co-		few mins	c film			
DMA-co-						
MPDEA)						
di-methyltin	Fluorometric	Almost 2	Yes	0.023 and	Yes	8
derivative	(turn-off)	minutes	(Spot	0.092 mM		
			Testing			
	ON/OFF	Earry	Device)	$0.1 \dots M$	Vaa	9
pyrene based	UN/OFF	Few	Quartz	0.1 mM	Y es	,
fluorescent	reversible	minutes	Vapor			
nolymeric	fluorescence		test			
probe			test			
benzothiazole-	Fluorometric	Not	Not	0.43 μM	Not	10
based		available	available	•	available	
Xanthene	Colorimetric,fluor	Not	Not	1.36 µM	NA	11
	ometric (turnon)	mentioned	mentione	and 26 μ M		
			d	•		
Hydrazine	Colorimetric	Few	Paper	0.30 µM	Yes	Our
based		seconds	test,	•		Work
			vapor			
			test			

References

- J. Zhao, M. Qin, J. You, K. Liu, L. Ding, T. Liu, J. Kong and Y. Fang, *Dye. Pigment.*, 2022, **197**, 109870.
- P. Zheng, Z. Cui, H. Liu, W. Cao, F. Li and M. Zhang, J. Hazard. Mater., 2021, 415, 125619.
- 3 S. Li, Y. Zheng, W. Chen, M. Zheng, H. Zheng, Z. Zhang, Y. Cui, J. Zhong and C.

Zhao, *Molecules*, , DOI:10.3390/MOLECULES24050827.

- 4 A. Balamurugan and H. Il Lee, *Macromolecules*, 2016, **49**, 2568–2574.
- 5 N. Dey, S. Jha and S. Bhattacharya, *Analyst*, 2018, **143**, 528–535.
- 6 M. Gupta and P. H. il Lee, Sensors Actuators B Chem., 2017, 242, 977–982.
- T. N. Annisa, S. H. Jung, M. Gupta, J. Y. Bae, J. M. Park and H. Il Lee, *ACS Appl. Mater. Interfaces*, 2020, **12**, 11055–11062.
- 8 N. Singh, K. Kumar, N. Srivastav, R. Singh, V. Kaur, J. P. Jasinski and R. J. Butcher, New J. Chem., 2018, 42, 8756–8764.
- 9 M. Gupta and H. Il Lee, *undefined*, 2017, **50**, 6888–6895.
- M. K. Das, T. Mishra, S. Guria, D. Das, J. Sadhukhan, S. Sarker, K. Dutta, A.
 Adhikary, D. Chattopadhyay and S. S. Adhikari, *New J. Chem.*, 2022, 47, 250–257.
- 11 K. C. Behera and B. Bag, Chem. Commun., 2020, 56, 9308–9311.