Supporting Information:

Liposomal MRI probes containing encapsulated or amphiphilic Fe(III) coordination complexes

Md Saiful I. Chowdhury,¹ Elizabeth A. Kras,¹ Steven G. Turowski,² Joseph A. Spernyak² and Janet R. Morrow¹*

[1] Department of Chemistry, University at Buffalo, The State University of New York

Amherst, NY 14260, United States

[2] Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New

York 14263, United States

Table of Contents	Page no.		
Scheme S1. Synthesis of N,N-distaeryl-2-chloro acetamide, TOAL+ H ⁺ ligand and Fe(III) complex			
Scheme S2. Preparation of TOAB+H ⁺ ligand and Fe(III) complex	5		
Table S1. Molar absorptivity (M ⁻¹ cm ⁻¹) of the complexes at 37 °C	14		
Table S2. R_1 and R_2 of liposomes in saline or serum measured over time	15		
Table S3. r_1 and r_2 proton relaxivity values based on iron liposome (per-particle) concentration	15		
Table S4 : First order elimination rate constants, volume of distributions and half- lives of LipoA, LipoB and LipoC	21		
Figure S1a. ¹ H NMR of N,N-distaeryl-2-chloro acetamide in CDCl ₃ ; Figure S1b. ¹ H NMR of TOALH ligand in CDCl ₃			
Figure S2a. 13 C NMR of N,N-distaeryl-2-chloro acetamide in CDCl ₃ ; Figure S2b. 13 C NMR of TOALH ligand in CDCl ₃	7		
Figure S3. ESI-MS of TOALH ligand			
Figure S4. ESI-MS of [Fe(TOAL)]Cl ₂	9		
Figure S5. ESI-MS of TOABH (483.75). TOAB+Na ⁺ (505.50).	10		
Figure S6. ¹ H NMR of TOABH ligand in DMSO-D ₆	11		
Figure S7. ¹³ C NMR of TOABH ligand in MeOD.	11		
Figure S8. ESI-MS of [Fe(TOAB)]Br ₂ . $M^+ = [Fe(TOAB-H^+)]^+$	12		
Figure S9. ¹ H Spectrum of [Fe(TOAB)]Br ₂ at 15.0 mM (500 MHz, D ₂ O, 298K)	13		

Figure S10. UV-Vis absorbance spectra of TOAB-H ligand and [Fe(TOAB)]Br ₂			
Figure S11. UV-Vis absorbance spectra of 145 μM [Fe(TOAL)]Cl_2 in methanol at 37 °C	14		
Figure S12. T ₁ proton relaxation of micellar Fe(III) complex	16		
Figure S13. Sample r_1 and r_2 proton relaxivities of LipoA, LipoB and LipoC liposomes in aqueous/serum solutions	17		
Figure S14. $1/T_1$ dependence on temperature for LipoA (top), LipoB (left) and LipoC (right)	18		
Figure S15. Biodistribution and clearance of LipoA in a healthy BALB/c mouse	19		
Figure S16. Biodistribution and clearance of LipoB in a CT26 tumored BALB/c mouse	20		
Figure S17. Biodistribution and clearance of LipoC in a CT26 tumored BALB/c mouse	20-21		
Figure S18: : Change in T ₁ -weighted signal intensity for LipoB and LipoC in CT26 murine tumor over time compared to signal in blood vessel.	22		
Figure S19: AUC graph and elimination rate constants of LipoA, LipoB and LipoC in plasma	22-23		
Figures S20a,b,c,d. Dynamic light scattering studies of liposomes and micelle	24-26		
Figure S21: The relaxivity of LipoB as a function of the fraction of the contrast agent inside the liposomal core.	27-28		

Scheme S1. Synthesis of N,N-distaeryl-2-chloro acetamide, TOAL+ H⁺ ligand and Fe(III) complex

[Fe(TOAB)]Br₂

Scheme S2. Preparation of TOAB+H⁺ ligand and Fe(III) complex

Figure S1b. ¹H NMR of TOALH ligand in CDCl₃

Figure S2a. ¹³C NMR of N,N-distaeryl-2-chloro acetamide in CDCl₃

Figure S2b. ¹³C NMR of TOALH ligand in CDCl₃

Figure S3. ESI-MS of TOALH ligand

Figure S5. ESI-MS of TOABH (483.75). TOAB+Na⁺ (505.50)

Figure S6. ¹H NMR of TOABH ligand in DMSO-D₆.

Figure S7. ¹³C NMR of TOABH ligand in MeOD

Figure S8. ESI-MS of [Fe(TOAB)]Br₂. M⁺ = [Fe(TOAB-H⁺)]⁺

Figure S9. ¹H Spectrum of [Fe(TOAB)]Br₂ at 15.0 mM (500 MHz, D₂O, 298K)

Figure S10. UV-Vis absorbance spectra of TOAB-H ligand and [Fe(TOAB)]Br₂; TOAB-H solution contained 0.20 mM ligand. Fe solution contained 0.20 mM [Fe(TOAB)]Br₂ in 1x PBS Buffer (pH 7.1) and was incubated a 37 °C for 72 hours

Figure S11. UV-Vis absorbance spectra of 145 μ M [Fe(TOAL-H⁺)]Cl in methanol at 37 °C

Complay	Wavelength	Molar absorptivity	
Complex	(nm)	(M ⁻¹ cm ⁻¹)	
[Fe(TOAB)]Br ₂	300	3.83 × 10 ³	
	206	9.40 × 10 ³	
[Fe(TOAL-H ⁺)]Cl	247	6.98 × 10 ³	
	332	3.97 × 10 ³	

Table S1. Molar absorptivity (M⁻¹cm⁻¹) of the complexes at 37 °C

	Time	R ₁ (s ⁻¹) saline	R ₂ (s ⁻¹) saline	R ₁ (s ⁻¹) serum	R ₂ (s ⁻¹) serum
LipoA	1 day	0.67	4.9	0.65	2.6
	2 day	0.69	5.0	0.76	2.8
LipoC	1 day	0.93	5.5	2.3	8.5
	2 day	0.88	5.5	2.8	8.0
LipoB	1 day	2.8	20	2.1	9.7
	2 day	2.8	19	2.0	12

Table S2. Relaxivity of liposomes over time measured at 37 °C, pH 7.4 and 9.4 T. (Stored at 4 °C)

AGENT	r ₁ (mM ⁻¹ s ⁻¹)	r ₂ (mM ⁻¹ s ⁻¹)	r ₁ (mM ⁻¹ s ⁻¹)	r ₂ (mM ⁻¹ s ⁻¹)
	1.4 T	1.4 T	9.4 T	9.4 T
LipoA	1.67 × 10 ³	2.28 × 10 ³	1.7 × 10 ³	1.3×10^{4}
LipoB	2.6 × 10 ⁴	4.0×10^{4}	2.8 × 10 ⁴	1.9 × 10 ⁵
LipoC	7.8 × 10 ³	2.3 × 10 ⁴	1.3 × 10 ⁴	7.3 × 10 ⁴

Table S3. r1 and r2 proton relaxivity values based on iron liposome (per-particle) concentration^a

^aValues are reported at 9.4 T (37 °C) and 1.4 T (34 °C), pH 6.8-7.2. The total lipid concentration was converted into liposome concentration by approximation of the number of lipid molecules in a liposome of 100 nm size. A plot of R_1 versus liposome concentration gave the per particle relaxivity.

Figure S12. CMC determination for [Fe(TOAL)]²⁺ micelles at 1.4T and 34 °C. A break at 0.19 mM concentration for [Fe(TOAL)]²⁺ micelle was observed indicating the presence of CMC.

Figure S13. Sample r_1 and r_2 proton relaxivities of LipoA, LipoB and LipoC liposomes in aqueous/serum solutions at 1.4 T (34 °C) / 9.4 T (37 °C) as a function of liposome iron concentration. The relaxivities from the slopes are reported in Table 1. For the lower four graphs, orange is for experiments in serum and blue is in saline.

Figure S14. 1/T₁ dependence on temperature for LipoA (top), LipoB (left) and LipoC (right) sample; Temperature was increased at 5°C steps from 25 °C to 65-70 °C and then decreased to 25 °C. Each incubation was for 7 minutes. Lines are drawn to connect the sequential data points during cooling.

Figure S15. Biodistribution and clearance of LipoA in a healthy BALB/c mouse; Dose was 50 μ mol/kg iron. Orange arrow shows Kidney (top) and bladder (bottom)

Figure S16. Biodistribution and clearance of LipoB in a CT26 tumored BALB/c mice; Dose was 50 μ mol iron per kg. Distribution to Tumor (T), Liver (L), Vena cava (V), Kidney (K) and Bladder (B) are highlighted in 10' post LipoB injection MRI.

Figure S17. Biodistribution and clearance of LipoC in a CT26 tumored BALB/c mice; Dose- 100 μ mol Fe(III) per kg of mouse body weight.

Figure S18. Change in T₁-weighted signal intensity for LipoB (50 μ mol [Fe] /kg) and LipoC (125 μ mol [Fe] /kg) in CT26 murine tumor over time compared to signal in blood vessel.

	LipoA	LipoB	LipoC
Fe(III) CA Dose (μmol/Kg)	55.0	50.0	100
1st order 'k' (min ⁻¹)	6.7 × 10 ⁻²	9.9 × 10 ⁻³	3.4 × 10⁻²
t _{1/2} (min)	10.3	70.0	20.3
Ratio of V _d 2-3 min after injection (ml)	3.2	1.2	11

Table S4. Dose, first order elimination rate constants, half-lives and volume of distribution (V_d) ratio at 2-3 min after LipoA, LipoB and LipoC injections. V_d = dose/C_p ; $V_d \propto \frac{dose}{\Delta Signal/R_{1,obs}}$. R_{1obs} of LipoA, LipoB and LipoC in serum were 0.60, 1.8 and 1.7 respectively for calculation at their administered concentration.

Figure S19. AUC graph and elimination rate constants of LipoA, LipoB and LipoC in Vena Cava

Figure S20a. DLS size measurement of dialyzed LipoA liposomes

Figure S20b. DLS size measurement of dialyzed LipoB liposomes

Figure S20c. DLS size measurement of dialyzed LipoC liposomes

Figure 20d. DLS size measurement of FeTOAL micelle

Total number of lipid per liposome, $N_{tot} = \frac{4 \times \pi \times (r-h)^2 + 4 \times \pi \times (r)^2}{Lipid head group average surface area}$

 $Number of Liposomes, N_{Lipo}$ $= \frac{Liposome \ volume \ (L) \times Liposome \ concentration \ (M) \times Number \ of \ Avogadro}{Total \ number \ of \ lipid \ per \ liposome, N_{tot}}$

$$Permeability, P_{w} = \frac{1000 \times d^{inner} \times r_{1}^{overall} \times r_{1}^{inner} \times [CA]^{inner}}{6(r_{1}^{inner} - r_{1}^{overall})}$$
(1)

Water residence time, $\tau = \frac{d^{inner}}{6 \times P_w}$ (2)

$$r_{1, in} = \frac{f_{in}}{v_{in}} \times r_{1, CA} \tag{3}$$

$$r_{1, out} = (1 - f_{in}) \times r_{1, CA}$$
(4)

$$r_1 = r_{1, out} + \frac{v_{in}}{\frac{1}{r_{1, in} + \tau}}$$
(5)

The water permeability of the liposomal membranes was determined following a method described by Terreno and co-workers¹ and later used in another work by Peters et al². The unencapsulated Fe(NOTP) was removed by dialysis for 24 - 48 h at 4°C . A value of 11.5×10^{-5} cm.s⁻¹ was found for LipoA for the P_w. The water residence time of LipoA was found 13.8 µs at 34 °C and 1.4 T.

For LipoA, LipoB and LipoC, v_{in} = 0.0297, 0.0319 and 0.0145 were estimated from the volume and per mM concentration of [CA] in liposomes.

Figure 21. The relaxivity of LipoB as a function of the fraction of the contrast agent that are inside the liposomal core, as calculated with equations 3-5 at 34 °C, 1.4 T, 37 °C at 9.4 T.

References

(1) Terreno, E.; Sanino, A.; Carrera, C.; Castelli, D. D.; Giovenzana, G. B.; Lombardi, A.; Mazzon, R.; Milone, L.; Visigalli, M.; Aime, S. Determination of water permeability of paramagnetic liposomes of interest in MRI field. *J. Inorg. Biochem.* **2008**, *102*, 1112-1119.

(2) Schühle, D. T.; van Rijn, P.; Laurent, S.; Vander Elst, L.; Muller, R. N.; Stuart, M. C. A.; Schatz, J.; Peters, J. A. Liposomes with conjugates of a calix[4]arene and a Gd-DOTA derivative on the outside surface; an efficient potential contrast agent for MRI. *Chem Commun* **2010**, *46*, 4399-4401.