Controlled Degradation of Polycaprolactone-based Micropillar Arrays

Niamh Geoghegan,^{1,2^} Mark O'Loughlin,^{1^} Colm Delaney,³ Keith D. Rochfort,⁴ Meabh

Kennedy,⁵ Srikanth Kolagatla,^{3,6} Lucia Podhorska,¹ Brian J. Rodriguez,⁶ Larisa Florea,³ and

Susan M. Kelleher ^{1,2,5}

Supplementary Information

Figure S1: ¹H NMR spectra of PCLDMA

Figure S2: FTIR spectra of PCLDMA

Figure S3: FTIR spectra of neat HDDA (1 % PBPO w/w) photopolymerised using the white light irradiation source at different time points from 0 - 120 mins. Top: The full spectra of the timepoints are shown. Middle: A close up of the peaks centred at 1410 cm⁻¹ related to the vibration of terminal allyl –CH groups. Bottom: 1620 cm⁻¹ and 1638 cm⁻¹ describe the stretching of the C=C bonds of acrylate groups.

Figure S4: FTIR spectra of 1:9 PCLDMA:HDDA (1 % PBPO w/w) photopolymerised using the white light irradiation source at different time points from 0 - 120 mins. Top: The full spectra of the timepoints are shown. Middle: A close up of the peaks centred at 1410 cm⁻¹ related to the vibration of terminal allyl –CH groups. Bottom: 1620 cm⁻¹ and 1638 cm⁻¹ describe the stretching of the C=C bonds of acrylate groups.

Figure S5: FTIR spectra of 1:4 PCLDMA:HDDA (1 % PBPO w/w) photopolymerised using the white light irradiation source at different time points from 0 - 120 mins. Top: The full spectra of the timepoints are shown. Middle: A close up of the peaks centred at 1410 cm⁻¹ related to the vibration of terminal allyl –CH groups. Bottom: 1620 cm⁻¹ and 1638 cm⁻¹ describe the stretching of the C=C bonds of acrylate groups.

Figure S6: SEM images of multiple two-photon polymerised templates 'stitched' together to form a large $390 \times 390 \ \mu m$ template.

Figure S7: SEM images of large arrays of pillars replicated using 10%PH from the large 390 \times 390 µm template *via* NIL.

Figure S8: Average mass vs days in 5 M NaOH of bulk samples of HDDA control (black), 10%PH (red), and 20%PH (blue).

Figure S9: FTIR spectra of **20%PH** containing 1 % w/w PBPO before degradation in 5 M NaOH (dry) and after degradation for 160 days in 5 M NaOH. The full spectra are shown (top) as well as a close up of the regions peaks centred at 3400 cm⁻¹ which described the stretching of the OH bonds (middle) and 1723 cm⁻¹ and 1560 cm⁻¹ related to the stretching of C=O bonds and carboxylate anions, respectively (bottom).

Figure S10: FTIR spectra of **10%PH** containing 1 % w/w PBPO before degradation in 5 M NaOH (dry) and after degradation for 160 days in 5 M NaOH. The full spectrum is shown (top) as well as a close up of the regions peaks centred at 3400 cm⁻¹ which described the stretching of the OH bonds (middle) and 1723 cm⁻¹ and 1560 cm⁻¹ related to the stretching of C=O bonds and carboxylate anions, respectively (bottom).

Figure S11: FTIR spectra of neat HDDA containing 1 % w/w PBPO before degradation in 5 M NaOH (dry) and after degradation for 160 days in 5 M NaOH. The full spectrum is shown (top) as well as a close up of the regions peaks centred at 3400 cm⁻¹ which described the stretching of the OH bonds (middle) and 1723 cm⁻¹ and 1560 cm⁻¹ related to the stretching of C=O bonds and carboxylate anions, respectively (bottom).

Figure S12: Atomic force height images of $2x2x2 \ \mu m$ samples, shows traces used to give height profiles in **Figure 5**. From left to right: HDDA, **10%PH** and **20%PH**, all after 5 days NaOH exposure.