Glucose Decorated Engineering Platelet for Active and Precise

Tumor Targeted Drug Delivery

Jiaxuan Zhao^{a,1}, Yan Shi^{a,1}, Lixia Xue^b, Yuqing Liang^b, Jiale Shen^a, Jiarui Wang^a, Meng Wu^a, Hao Chen^{b*}, Ming Kong^{a*}

^a College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003, Qingdao, China.

^b Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

* Send Correspondence to: Dr. Ming Kong (E-mail: <u>kongming@ouc.edu.cn</u>) & Dr. Hao Chen (E-mail:hao.chen@shsmu.edu.cn)

¹ these two authors contributed equally in this work.

Biocompatibility of DPG-PL

L929 was mixed with different concentrations of DPG-PL, and CCK-8 solution was added after co-culture for 24 h, 48 h, and 72 h, respectively. After the reaction in the dark for 2 h, the absorbance value at 450 nm was detected by a microplate reader, and the cell viability was calculated. After coculture for 24 h, the mixture solution of Calcein -AM and propidium iodide (PI) was added and incubated at room temperature for 30 min. Followed by rinsing with PBS for three times and observation under fluorescence microscope.

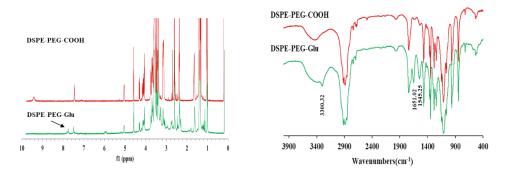


Fig. S1. ¹H NMR spectrum and FTIR absorption spectra of DSPE-PEG-Glu.

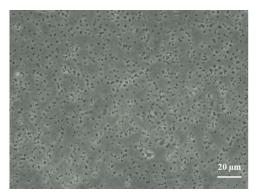


Fig. S2. Representative image of purified platelets (scale bar: $20 \ \mu m$).

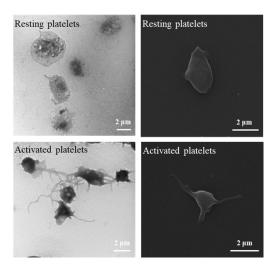


Fig. S3. Representative TEM image and SEM image of resting platelets and actived Platelet (scale bar: $2 \ \mu m$).

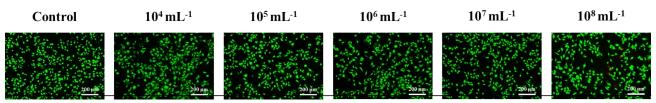


Fig. S4. Live/dead assays for DPG-PL -treated L929 (scale bar: 100 μ m, n=5).

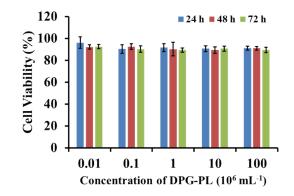


Fig. S5. Viability L929 after incubation with different concentration of DPG-PL (n=5).

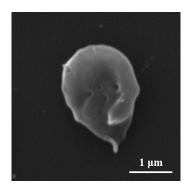


Fig. S6. Representative SEM image of DPG-PL@DOX (scale bar: 1 μ m).

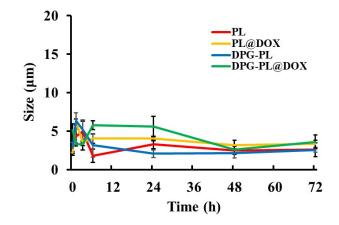


Fig. S7. Changes of PL, PL@DOX, DPG-PL, DPG-PL@DOX particle size in 72h.

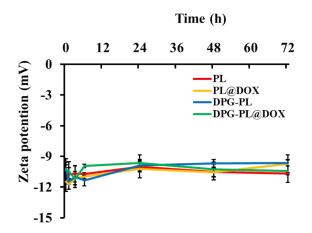


Fig. S8. Changes of PL, PL@DOX, DPG-PL, DPG-PL@DOX Zeta potential in 72h.

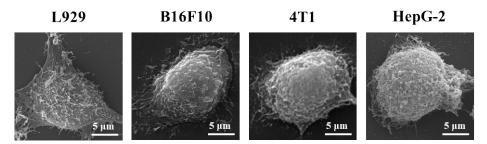


Fig. S9. Representative SEM images of L929, 4T1, B16F10 and HepG-2.

Groups	CK-	ALT ²	AST ³	AST/ALT	TBIL ⁴	CREA ⁵	UA ⁶
	MB^1						
Normal	157.06	54.91	145.95	2.66	7.06	34.99	99.89
	±21.72	±4.6	±7.34	±1.6	± 0.47	±7.77	± 7.18
NC	143.67	46.81	148.62	3.17	7.29	33.32	119.65
	± 31.84	±5.19	±7.33	± 1.4	± 0.7	±12.12	±12.77
DOX	242.83	48.42	155.3	3.21	7.12	45.52	128.44
	± 37.09	±2.2	± 11.77	± 5.48	± 0.4	± 9.94	± 14.43
PL@DOX	219.77	42.47	150.37	3.54	7.97	34.18	103.86
	± 34.15	± 7.66	± 16.15	±2.16	± 0.99	±6.31	± 15.92
DPG-	181.03	56.86	156.23	2.75	7.01	36.74	112.22
PL@DOX	±27.57	± 8.48	± 16.78	± 1.97	± 0.65	± 6.44	±11.47

Table S1 Influence of NC, DOX, PL@DOX, and DPG-PL@DOX on heart, liver, and kidney function after different treatments using serum biochemical analysis.

The heart function is evaluated with serum level of ¹ creatine kinase isoenzyme-MB (CK-MB, U L⁻¹). The liver function is evaluated with serum levels of ² alanine aminotransferase (ALT, U L⁻¹), ³ aspartate aminotransferase (AST, U L⁻¹) and ⁴total bilirubin level (TBIL, µmol L⁻¹). The kidney function is evaluated with serum levels of ⁵ creatinine (CREA, µmol L⁻¹), f uric acid (UA, µmol L⁻¹).