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1. General information

All reagents were purchased from commercial suppliers and used without further purification
unless specified. Water used in this work was triple distilled. 'H NMR spectra were recorded on a
Bruker 500 MHz Spectrometer, with working frequencies of 500 MHz for 'H and 125 MHz for
BC nuclei, respectively. SEM image was obtained using a Nano SEM-450 (FEI, U.S.A.) with an
accelerating voltage of 10.0 kV. TEM image was obtained by TECNAI G2 SPIRIT BIO (FEI,
U.S.A.). DLS measurements were performed on a DelsaTM Nano system (Beckman Coulter,
U.S.A)). K, was measured from Nano-ITC SV (TA-Waters LLC, U.S.A.). UV-vis spectra were
recorded with Shimadzu 1750 UV-visible spectrophotometer (Japan) at 298 K. Human liver
hepatocellular carcinoma HepG2, and human liver HL7702, were obtained from KeyGEN
BioTECH Co. (Nanjing, China). Cell culture was carried out in an incubator with a humidified
atmosphere of 5% CO, at 37 °C. Dihydrorhodamine 123 (DHR123), Dihydroethidium (DHE),
hydroxyphenyl fluorescein (HPF), singlet oxygen sensor green (SOSG) were purchased from
MKbio (China). The green fluorescent probes for labeling Endoplasmic reticula, mitochondria,
lysosomes, and Golgi apparatuses were purchased from Beyotime (China). Annexin V-EGFP/PI
apoptosis detection kit was purchased from Solarbio (China).

2. Live subject statement

All experiments were performed in accordance with the International Ethical Guidelines for
Biomedical Research Involving Human Subjects of World Health Organization, and approved by

the Northwest A&F University Animal Care Committee.
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3. Synthesis and characterizations

The synthesis routes of LAP5 and NBSPD are shown in Scheme S1 and Scheme S2,
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Scheme S1 Synthetic route of LAPS.
Compounds 1, 2, 3, and 4 were synthesized according to our previous method.!> 2 The 'H NMR
spectrum of compound 1 was shown in Fig. S1. 'H NMR (500 MHz, CDCls) ¢ (ppm): 6.81 (s, 4
H),3.94 (t, /J=6.0 Hz, 4 H), 3.48 (t, /= 6.5 Hz, 4 H), 2.09-2.03 (m, 4 H), 1.94-1.88 (m, 4 H). The
'"H NMR spectrum of compound 2 was shown in Fig. S2. 'TH NMR (500 MHz, CDCls) ¢ (ppm):
6.82 (s, 10 H), 3.94 (t, /= 5.0 Hz, 20 H), 3.76 (s, 10 H), 3.45 (t, /= 5.0 Hz, 20 H), 2.08-2.05 (m,



20 H), 1.95-1.93 (m, 20 H). The "H NMR spectrum of compound 3 was shown in Fig. S3. 'TH NMR
(500 MHz, CDCls, 298.15 K) ¢ (ppm): 6.84 (s, 10 H), 3.92 (t, J= 5.0 Hz, 20 H), 3.76 (s, 10 H),
3.37 (t, J = 5.0 Hz, 20 H), 1.92-1.87 (m, 20 H), 1.86-1.81 (m, 20 H). The 'H NMR spectrum of
compound 4 was shown in Fig. S4. 'H NMR (400 MHz, MeOH-d,, 298.15 K) ¢ (ppm): 6.83 (s,
10 H), 3.90 (t, J = 8.0 Hz, 20 H), 3.76 (s, 10 H), 2.83 (t, J = 8.0 Hz, 20 H), 1.86-1.84 (m, 20 H),
1.80-1.78 (m, 20 H).

Synthesis of compound 5. A mixture of compound 4 (20 mg, 0.015 mmol), Boc-Arg(Pbf)-OH )
(158.76 mg, 0.3 mmol), DMAP (37 mg, 0.3 mmol) and EDC+HCI (57.79 mg, 0.3 mmol) in 5 mL
DMF was stirred at 50 ‘C for 24 h, then 20 mL DCM was added into the mixture. The mixture
was washed with water (2 x 20 mL), saturated NaCl (2 x 20 mL) and 1 M HCI (2 x 20 mL). The
organic phase was dried with NaSO, and concentrated under reduced pressure. The crude product
was purified by flash column chromatography (DCM/CH3;0H, v/v = 20:1) to give compound 5 as
a white solid (19.7 mg, 27 %). The '"H NMR and 13C NMR spectrums of compound 5 were shown
in Fig. S5-6. 'TH NMR (400 MHz, DMSO-dg, 298.15 K) J (ppm): 7.88 (s, 10 H), 6.81 (s, 10 H),
6.75 (s, 10 H), 6.66-6.40 (m, 20 H), 4.02 (s, 10 H), 3.88 (s, 10 H), 3.72 (m, 20 H), 3.16 (s, 20 H),
3.03 (s, 20 H), 2.93 (s, 20 H), 2.48 (s, 30 H), 2.43 (s, 30 H), 2.00 (s, 30 H), 1.77-1.85 (m, 50 H),
1.39-1.35 (m, 190 H). 3C NMR (125 MHz, DMSO-dj, 298.15 K) é (ppm): 171.86, 157.43, 156.04,
155.23, 148.95, 137.24, 134.17, 131.41, 127.90, 124.22, 116.20, 113.98, 86.17, 78.00, 67.55,
54.80, 54.08, 42.46, 38.36, 29.46, 28.22, 28.09, 26.69, 25.94, 25.67, 18.87, 17.52, 12.18.
Synthesis of compound LAP5. 5 mL CF;COOH was added drop by drop into a solution of
compound 5 (80 mg, 0.016 mmol in 5 mL DCM) in ice-bath. The mixture was stirred at room
temperature for 2 h, then concentrated under reduced pressure. The crude product was treated with
saturated NaHCO; solution. The white solid was collected and washed with water for 3 times to
give LAPS5 (52 mg, 90 %). The 'H NMR and '3C NMR spectrums of compound LAP5 were shown
in Fig. S7-8. '"H NMR (400 MHz, D,O/DMSO-ds = 1/1, 298.15 K) 6 (ppm): 6.73 (s, 10 H), 3.82
(s, 10 H), 3.69 (s, 10 H), 3.58 (s, 10 H), 3.19 (s, 20 H), 3.06 (s, 20 H), 1.74-1.68 (m, 60 H), 1.50
(s, 20 H). >C NMR (125 MHz, D,O/DMSO-ds = 1/1, 298.15 K) o (ppm): 169.83, 157.67, 150.56,
129.72, 116.00, 69.35, 53.64, 41.50, 40.39, 40.33, 30.69, 30.14, 29.28, 27.95, 27.88, 26.81, 26.76,
25.00.
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Compounds 6, 7, 8, and NBSPD were synthesized according to our previous method.?

The 'H NMR and 3C NMR spectrums of compound 6 were shown in Fig. S9-10. '"H NMR (500
MHz, CDCls, 298 K) & (ppm): 4.33 (t, J = 6.55 Hz, 4H), 3.40 (t, J= 7.75 Hz, 4H), 2.92 (t, J = 6.55
Hz, 4H), 2.34 (t, J = 7.45 Hz, 4H), 1.90-1.84 (m, 4H), 1.69-1.62 (m, 4H), 1.51-1.44 (m, 4H). 13C
NMR (125 MHz, CDCl;, 298 K) o (ppm): 173.3, 62.2, 37.4, 34.0, 33.6, 32.5, 27.7, 24.1.

The 'H NMR and 3C NMR spectrums of compound 7 were shown in Fig. S11-12. '"H NMR (500
MHz, CDCl, 298 K) & (ppm): 7.81-7.77 (m, 2H), 7.45-7.40 (m, 2H), 7.34 (t, J = 15.7 Hz, 1H),
721 (d, J = 8.2 Hz, 1H), 6.59 (d, J = 7.5 Hz, 1H), 4.32 (q, J = 6.4 Hz, 4H), 3.38 (t, J = 6.8 Hz,
2H), 3.27 (t, J = 7.1 Hz, 2H), 2.90 (td, J = 6.6, 3.0 Hz, 4H), 2.37 (t, J = 7.4 Hz, 2H), 2.32 (t, J =
7.4 Hz, 2H), 1.85-1.82 (m, 2H), 1.79-1.76 (m, 2H), 1.74-1.71 (m, 2H), 1.66-1.60 (m, 2H), 1.55-
1.49 (m, 2H), 1.47-1.43 (m, 2H). 13C NMR (125 MHz, CDCls, 298 K) & (ppm): 173.4, 173.2,
143.5, 134.3, 128.7, 126.7, 125.7, 124.6, 123.3, 119.9, 117.1, 104.2, 62.1, 44.0, 37.3, 37.2, 34.1,
33.9,33.6,32.4,29.0, 27.6, 26.8, 24.7, 24.0.

The "H NMR and *C NMR spectrums of compound 8 were shown in Fig. S13-14. 'TH NMR (500
MHz, CDCls, 298 K) & (ppm): 11.22 (s, 1H), 9.12 (d,J = 7.6 Hz, 1H), 8.73-8.71 (m, 1H), 7.74 (d,
J=9.4 Hz, 1H), 7.63-7.59 (m, 2H), 7.01 (dd, J = 9.4, 2.5 Hz, 1H), 6.8 (s, 1H), 6.75 (d, J = 2.5
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Hz,1H), 4.29-4.26 (m, 4H), 3.72 (t, J = 7.3 Hz, 2H), 3.58 (q, J = 7.1 Hz, 4H), 3.49 (t, J = 6.6 Hz,
2H), 2.87 (t, J = 6.5 Hz, 4H), 2.34-2.28 (m, 4H), 1.90-1.84 (m, 2H), 1.76-1.57 (m, 6H), 1.53-1.47
(m, 2H), 1.45-1.39 (m, 2H), 1.30 (t, /= 7.1 Hz, 6H). 3C NMR (125 MHz, CDCl, 298 K) & (ppm):
173.4, 173.2, 154.0, 150.4, 139.7, 136.8, 135.3, 133.3, 131.9, 131.1, 130.1, 125.8, 125.2, 124.8,
116.0, 104.6, 102.7, 62.2, 62.1, 45.8, 44.9, 44.4, 37.3, 37.2, 33.96, 33.2, 28.9, 26.6, 26.4, 24.6,
24.2,12.9.

The 'H NMR and 3C NMR spectrums of compound NBSPD were shown in Fig. S15-16. 'H NMR
(500 MHz, DMSO-ds, 298.15 K) & (ppm): 10.85 (s, 1H), 9.22 (m, 2H), 8.96 (d, J = 7.2 Hz, 1H),
8.88 (d, J = 7.4 Hz, 1H), 8.61 (t, J = 7.1Hz, 1H), 8.17 (s, 2H), 7.87 (s, 2H), 7.77 (t, J = 7.4 Hz,
1H), 7.51(s, 1H), 7.32 (s, 1H), 4.66 (t, J = 7.2 Hz, 2H), 4.26-4.17 (m, 4H), 3.7 (s, 2H), 3.66-3.59
(m, 4H), 2.95-2.91 (m, 4H), 2.35-2.27 (m, 4H), 1.95-1.87 (m, 2H), 1.80-1.73 (m, 2H),1.65-1.49
(m, 4H), 1.47-1.39 (m, 2H),1.30-1.18 (m, 8H). 3C NMR (125 MHz, DMSO-dq, 298.15 K) &
(ppm): 172.7, 172.5, 153.1, 150.6, 145.5, 144.8, 136.6, 133.8, 133.1, 131.7, 131.1, 129.4, 128.0,
124.5, 124.4, 120.0, 116.9, 105.3, 103.4, 99.5, 61.7, 61.6, 60.3, 59.4, 45.2, 45.0, 43.7, 41.0, 36.6,
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Fig. S1 '"H NMR (500 MHz, CDCls, 298.15 K) spectrum of compound 1.
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4. Raw ITC data of LAP5 with NBSPD in water

The binding constant between LAPS5 and NBSPD was performed using a thermostated and fully

computer operated Nano-ITC SV calorimeter purchased from TA-Waters LLC. The

microcalorimetric titrations were performed in D.I. water at atmospheric pressure. Each solution

was degassed and thermostated before titration.
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Fig. S17 ITC Microcalorimetric titration of LAPS and NBSPD in D.I. water at 298.15 K. (TOP) Raw ITC data

for 28 sequential injections (3.54 pL per injection) of a LAPS5 solution (2.00 mM) into a NBSPD solution (0.10

mM). (Bottom) Net reaction heat obtained from the integration of the calorimetric traces.

5. Job’s Plot for LAP5ONBSPD
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Fig. S18 (a) Absorption intensity of the mixture of LAP5 and NBSPD in water at different molar ratio while

[LAP5] + [NBSPD] =1 x10-3 M; (b) Job’s Plot showing 1:1 stoichiometry of the complex between LAP5 and

NBSPD by plotting the difference fluorescence intensity at 260.5 nm.
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6. Tyndall effect and size distribution statistics data
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Fig. S19 (a) The obvious Tyndall effect of LAPSONBSPD NPs; (b) Size distribution statistics data of
LAP5SNBSPD NPs in SEM results.
7. Analysis of LAP5ONBSPD NPs cellular internalization pathways
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Fig. S20 Internalisation of NBS on HepG2 cells after 2 h incubation with 1.28 pM LAP5SNBSPD NPs under

different inhibitory conditions as measured by flow cytometry.

8. Co-localization of NBS with lysosomes
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Fig. S21 Co-localization of NBS with lysosomes were detected via CLSM after HepG2 was treated with

LAP5oNBSPD

Free NBS
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LAPSSNBSPD NPs and Free NBS for 1 h. The scale bar is 20 pm.

9. In vitro ROS detection results
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Fig. S22 O, production and characterization using DHR123 as fluorescence probe: Fluorescence spectra of

DHR123 (10 uM) induced by (a) NBSPD (10 uM), b) LAP5SSNBSPD (10 uM) and ¢) NBSPD (10 uM) + Vc

(100 uM) after 630 nm light irradiation (20 mW/cm?); (d-e) Fluorescence intensity of DHR123 at 525 nm after

660 nm irradiation for 10 min.
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Fig. S23 Fluorescence curves of (a) HPF (10 uM) for OHe characterization and (b) SOSG (10 uM) for 'O,

detection induced by LAP5SNBSPD (10 uM) after 660 nm light irradiation (20 mW/cm?).
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Fig. S25 ROS detection in HepG2 cells after 1 h incubation with 1.28 uM LAP5SSNBSPD NPs and exposure to
660 nm light with 15 J/cm? under normoxia and hypoxia conditions using DHE, HPF, and SOSG as the O, ™,

OHe, and 'O, fluorescence indicator, respectively. The scale bar is 20 pm.

10. Cellular morphological damage results of LAP55NBSPD NPs
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Fig. S26 Observation of morphological changes of organelles such as endoplasmic reticulum, mitochondria and
lysosomes in HepG?2 cells after 4 h incubation with 2.56 pM LAPSSNBSPD NPs by CLSM. The scale bar is 50
pm.

11. Cytotoxicity evaluation

HepG2 and HL7702 cells were cultured in RPMI 1640 medium containing 10% FBS, 1%
penicillin/streptomycin (complete RPMI 1640 medium) in 5% CO, at 37 °C. Liquid paraffin
covering method was used to simulate the tumor hypoxic environment. The relative cytotoxicity
of LAPS, and LAPSSNBSPD NPs were evaluated in vitro by MTT assay, respectively. The cells
were seeded in 96-well plates. Liquid paraffin was added on the surface of cell culture medium
and incubated at 37 C under 5% CO, for 24 h to obtain hypoxic state cells. The dark toxicity and
phototoxicity of LAPSSONBSPD NPs was demonstrated on HepG2 and HL7702 cells for 24 h.
Subsequently, cells were washed and the fresh medium containing MTT (0.5 mg/mL) was added
into each plate. The cells were incubated for another 4 h. After that, the medium containing MTT
was removed and dimethyl sulfoxide (100 uL) was added to each well to dissolve the formazan
crystals. Finally, the plate was gently shaken for 10 min and the absorbance at 490 nm was

recorded with a microplate reader.
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Fig. S27 (a) The dark toxicity of LAPS and LAPSSNBSPD NPs on HL7702 cells without light irradiation for
24 h; (b) The cytotoxicity results of free LAP5 and LAPSONBSPD NPs on HepG2 cells under hypoxia
conditions for 24 h after 660 nm light irradiation (15 J/cm?). (n = 6,*P < 0.05, **P < 0.01, **P < 0.001)
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