Supporting Information for the paper

Anion-encapsulating, discrete prisms and extended frusta, from trimetallated triangular macrocycles and linkers

A. Synthesis of compounds $\mathbf{1 - 3}$-.. 1

B1. Table with crystallographic data for compounds 1-3page 2
B2. Collection and refinement ... 2

B4. References ... 8
B5. Distances and angles in compounds 1-3.. 9
B6. Formulae used to calculate several distances and anglespage 10

F2. ${ }^{1}$ H DOSY NMR .. 35

G1. Table with crystallographic data for compounds $1 P_{6}-3 P_{6} \ldots \ldots \ldots \ldots$................. 39

Structural formulae of ligand \mathbf{L}, linkers (connectors) a-c and complex $\left[\mathrm{Pb}_{3} \mathbf{L}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{6}$

L

$\left[\mathrm{Pb}_{3} \mathbf{L}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{6}=\mathrm{Pb}_{3} \mathbf{L}$

A. Synthesis of compounds 1-3

In a typical synthesis, to a suspension of macrocyclic ligand $\mathbf{L}\left(2.00 \mathrm{mg}, 2.26 \times 10^{-3} \mathrm{mmol}, 1\right.$ equiv.) in acetonitrile (0.2 mL) was added a solution of $\mathrm{Pb}(\mathrm{OTf})_{2}\left(3.42 \mathrm{mg}, 6.77 \times 10^{-3} \mathrm{mmol}\right.$, 3 equiv.; $\left.\mathrm{OTf}=\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$in acetonitrile $(0.4 \mathrm{~mL})$ and the mixture was stirred under reflux for about $10-15 \mathrm{~min}$. After cooling, it was added to a mixture of linker a-c ($3.39 \times 10^{-3} \mathrm{mmol}, 1.5$ equiv.) and acetonitrile $(0.3 \mathrm{~mL})$, and the mixture thus obtained was stirred for 20 minutes. After centrifugation, slow diffusion of diethyl ether afforded yellow crystals of macrocyclic complexes with linkers. Average yields (based on recovered, dried crystals): 4.38 mg ($\approx 74 \%$, compound 1), 4.40 mg ($\approx 73 \%$, compound 2) and $4.34 \mathrm{mg}(\approx 70 \%$, compound $\mathbf{3}$).

B. Crystal data for compounds 1-3.

B1. Table 1. Crystallographic data for compounds 1-3.

	1	2	3
empirical formulae	$\begin{aligned} & \mathrm{C}_{138} \mathrm{H}_{135} \mathrm{~F}_{36} \mathrm{~N}_{51} \mathrm{O}_{36} \mathrm{~Pb}_{6} \mathrm{~S}_{12} \\ & +[\text { masked solvent }] \end{aligned}$	$\begin{aligned} & \mathrm{C}_{141} \mathrm{H}_{132} \mathrm{~F}_{36} \mathrm{~N}_{48} \mathrm{O}_{36} \mathrm{~Pb}_{6} \mathrm{~S}_{12} \\ & +[\text { masked solvent }] \end{aligned}$	$\begin{aligned} & \mathrm{C}_{153} \mathrm{H}_{147} \mathrm{~F}_{27} \mathrm{~N}_{51} \mathrm{O}_{27} \mathrm{~Pb}_{6} \mathrm{~S}_{9} \\ & +[\text { masked solvent/counterions }] \end{aligned}$
	$\begin{aligned} & \mathrm{C}_{120} \mathrm{H}_{126} \mathrm{~N}_{48} \mathrm{~Pb}_{6}, 12 \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}, \\ & 3 \mathrm{CH}_{3} \mathrm{CN} \\ & +\left[10.5 \mathrm{CH}_{3} \mathrm{CN}\right] \\ & \text { where } \mathrm{C}_{120} \mathrm{H}_{126} \mathrm{~N}_{48} \mathrm{~Pb}_{6}= \\ & \mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{a}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{126} \mathrm{H}_{132} \mathrm{~N}_{48} \mathrm{~Pb}_{6}, 9 \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}, \\ & 6\left(\mathrm{CF}_{1.5} \mathrm{O}_{1.5} \mathrm{~S}_{0.5}\right) \\ & +\left[16 \mathrm{CH}_{3} \mathrm{CN}\right] \\ & \text { where } \mathrm{C}_{126} \mathrm{H}_{132} \mathrm{~N}_{48} \mathrm{~Pb}_{6}= \\ & \mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{b}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{138} \mathrm{H}_{138} \mathrm{~N}_{48} \mathrm{~Pb}_{6}, 9 \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}, \\ & 3 \mathrm{CH}_{3} \mathrm{CN} \\ & +\left[3 \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}, 25 \mathrm{CH}_{3} \mathrm{CN}\right] \\ & \text { where } \mathrm{C}_{138} \mathrm{H}_{138} \mathrm{~N}_{48} \mathrm{~Pb}_{6}=\mathrm{Pb}_{6} \mathrm{~L}_{2} \mathrm{c}_{3} \end{aligned}$
$f w[\mathrm{~g} / \mathrm{mol}]$	5395.82	5386.80	5176.89
crystal system	hexagonal	trigonal	trigonal
space group	$P 6_{3} / \mathrm{m}$	$R \overline{3}$	$R \overline{3}$
Cell $a=b[\AA]$	21.0549(6)	21.1054(2)	21.0331(2)
c	31.7103(14)	51.1319(10)	58.2510(12)
$V\left[\AA^{3}\right]$	12174.1(9)	19724.7(5)	22317.2(6)
Z	2	3	3
$T[\mathrm{~K}]$	150(2)	150(2)	150(2)
$\lambda[\AA]$	GaK α (1.34143)	$\mathrm{GaK} \alpha$ (1.34143)	MoK α (0.71073)
$d_{c}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$	1.472	1.360	1.156
$\mu(\lambda)\left[\mathrm{mm}^{-1}\right]$	6.457	6.185	3.513
$F[000]$	5232	7830	7551
$\left.2 \theta_{\text {max }}{ }^{\circ}{ }^{\circ}\right]$	128	129	61
meas reflns	51469	93267	107507
unique reflns	9933	11021	14376
$R_{\text {int }}$	0.0964	0.0471	0.0939
$R_{\text {sigma }}$	0.0665	0.0275	0.0633
reflns with $I>2 \sigma(I)$	5261	7300	8067
refined params	404	409	399
restraints	13	25	4
$R 1(I>2 \sigma(I))^{\text {a }}$	0.0696	0.0800	0.0515
$w R 2$ (all data) ${ }^{\text {b }}$	0.2213	0.2730	0.1633
largest diff. peak/hole / e \AA^{-3}	2.25/-1.68	3.16/-3.42	1.27/-1.53
CCDC number	1436334	2285236	2285239

${ }^{\mathrm{a}} \mathrm{R} 1=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| .{ }^{\mathrm{b}} \mathrm{wR} 2=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-{F_{\mathrm{c}}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$

B2. Collection and refinement

Crystals suitable for single crystal X-ray diffraction (XRD) were selected in perfluoroalkylether oil and mounted on a diffractometer equipped with an Oxford Cryosystem.

Single-crystal X-ray diffraction data of $\mathbf{1}$ and $\mathbf{2}$ were collected using GaK α radiation $(\lambda=1.34143 \AA)$ generated by an ExcilliumGa Metaljet D2 with a Montel multilayer optic on a STOE STADI Vari (DectrisEiger Hybrid Pixel Detector 4M).

Single-crystal X-ray diffraction data of $\mathbf{3}$ were collected using MoK α radiation $(\lambda=$ $0.71073 \AA$) generated by a microfocus sealed X-ray tube (AXO Mo) with a multilayer optic on a STOE STADI Vari (EIGER2 1M CDTE).

Raw intensity data were collected and treated with the STOE X-Area software. All data were corrected for Lorentz and polarization effects.

For $\mathbf{1 - 3}$ interframe scaling of the dataset was done with the implemented program STOE LANA and a multi-scan absorption correction was applied by scaling of reflection intensities. ${ }^{1}$ Absorption corrections by integration based on a crystal description did not lead to better R values and a further reduction of the residual electron density found for all datasets close to the Pb atoms. ${ }^{2}$

Using Olex $2,{ }^{3}$ the structures were solved with the ShelXT ${ }^{4}$ structure solution program using Intrinsic Phasing and refined with the refinement ${ }^{5}$ package using Least Squares minimization.

Molecular diagrams were prepared using Diamond ${ }^{6}$.
Crystals of $\mathbf{1} \mathbf{- 3}$ reveal problems when investigated by single crystal X-ray diffraction (SCXRD). Several crystals have been tested and measured for all compounds on different Xray machines amongst others with a STOE StadiVari equipped with a Ga-metaljet Xray source and an Eiger 4M pixel detector, which is currently the most powerful laboratory X-ray equipment available.

Although the crystals of $\mathbf{1}-\mathbf{3}$ comprise an appropriate size (up to 0.5 mm), nice facets and appear clear when quickly selected from the mother liquor, only freshly separated crystals from the mother liquor display acceptable diffraction patterns indicative for a quick loss of
solvent or non solvent molecules from the crystals accompanied by degradation of the longrange order. Crystals of $\mathbf{1}$ even show some degradation upon the course of the measurement, even when cooled to 150 K .

Quickly mounted crystals do hardly diffract above 2Theta $45^{\circ}(\mathrm{MoK} \alpha)$ and 85° ($\mathrm{GaK} \alpha$), and R (Int) and R (sigma) values significantly increase above 20% for data at higher diffraction angles (1: for $d<0.92 \AA, R($ Int $)>24.4 \%$ and $\mathrm{I} /$ sigma $<1.7 ; \mathbf{2}$: for $d<0.83 \AA$, $R($ Int $)>24.4 \%$ and $\mathrm{I} /$ sigma $<3.2 ; \mathbf{3}$: for $d<0.92 \AA, R($ Int $)>21.4 \%$ and $\mathrm{I} /$ sigma $<1.5)$. This indicates a poor crystallinity i. e. limited long-range order. In addition, for $\mathbf{1}$, these R factors distinctly get worse the more data are measured and integrated. Therefore, the integration of $\mathbf{1}$ was performed only with a minimum of frames required for approximate completeness in hexagonal symmetry.

In compounds $\mathbf{1 - 3}$ all Pb, N and C atoms of the cationic cage structure were refined with anisotropic displacement parameters. H atoms were calculated in fixed positions.

Problems arise from the localization and refinement of a part of the trifluoromethanesulfonate $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$anions. For a proper charge balance of the Pb^{2+} ions one expects a dual number of anions (per unit cell for $\mathbf{1 :} 24 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, for $\mathbf{2}$ and $\mathbf{3}: 36 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$).

In all three structures, in the asymmetric unit two trifluoromethanesulfonate anions comprising $\mathrm{S}(1)$ and $\mathrm{S}(2)$ (located on special positions) could be well localized and refined with reasonable anisotropic displacement parameters, although one of the anions is twofold disordered with the S atom lying on an inversion center. Two additional positions $(\mathrm{S}(3)$ and S(4)) for such anions could be identified in 1 and 2. However, these anions could only be refined with restraints and comprise very large thermal displacement parameters when set to full occupancy. This strongly indicates that these anions are distinctly disordered on these positions or even further distributed over the remaining large voids of the structures (see below). For the dataset of $\mathbf{3}$ only one of these latter anions (S(3)) could be localized and refined leading to the situation that 9 of the 36 expected $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anions are missing.

The additional electron density which was identified within large voids of the crystal structures of $\mathbf{1} \mathbf{- 3}$ was corrected using the solvent masking routine implemented in Olex2, which is based on the method described by van der Sluis and Spek for the PLATON ${ }^{7}$ program. The reaction solvent $\mathrm{CH}_{3} \mathrm{CN}$ has been localized in part in the structures, whereas the non solvent $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ has been identified by ${ }^{1} \mathrm{H}$ NMR of shortly dried and redissolved crystals; the incorporation of $\mathrm{H}_{2} \mathrm{O}$ is suggested by the elemental analysis. However, as the ratios are unclear, we simply used $\mathrm{CH}_{3} \mathrm{CN}$ for the calculation.

Applied corrections:
$1 \rightarrow$ a total of 448 electrons in a potential solvent accessible area of $3056 \AA^{3}$.
This is formally consistent with the presence of $10.5 \mathrm{CH}_{3} \mathrm{CN}$ per formula unit, which account for 462 electrons per unit cell.
$\mathbf{2} \rightarrow$ a total of 1035 electrons in a potential solvent accessible area of $5235 \AA^{3}$.
This is formally consistent with the presence of $16 \mathrm{CH}_{3} \mathrm{CN}$ per formula unit, which account for 1056 electrons per unit cell.
$3 \rightarrow$ a total of 2367 electrons in a potential solvent accessible area of $9246 \AA^{3}$.
This is formally consistent with the presence of $3 \mathrm{CF}_{3} \mathrm{SO}_{3}$ and $18 \mathrm{CH}_{3} \mathrm{CN}$ per formula unit, which account for 2367 electrons per unit cell.

CCDC-1436334 (1), 2285236 (2) and 2285239 (3) contain supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (international) +44-1223/336-033; Email: deposit@ccdc.cam.ac.uk).

B3. Powder X-ray diffraction patterns for 1-3 (suspension of powder of crystals), were measured at room temperature on a STOE STADI P diffractometer $\left(\mathrm{Cu}-\mathrm{K}_{\alpha 1}\right.$ radiation, Germanium primary monochromator, Debye-Scherrer geometry, Mythen 1 K detector) in sealed glass capillaries. The theoretical powder diffraction patterns were calculated on the basis of the atom coordinates obtained from single crystal X-ray analysis (150 K) by using the program package STOE WinXPOW. ${ }^{8}$

Most of the main reflection peaks correspond to the simulated patterns of $\mathbf{1 - 3}$ (see Figure below). Slightly increasing differences in the position of the peaks (like those of $\mathbf{1 a}$ versus $\mathbf{1 b}$ and of $\mathbf{2 a}$ versus $\mathbf{2 b}$) with increasing detection angle arise from the temperature difference between data collections (single crystal XRD at $180 \mathrm{~K} v s$. powder XRD at room temperature) and / or are indicative for structural changes upon the loss of lattice solvent or non solvent molecules. Differences in the intensity of calculated and measured peaks might arise from absorption effects and / or orientation of plate-like crystals in the glass capillaries. Peaks in the low 2 theta region which deviate strongly from the calculated patterns have been marked with an asterisk and might indicate the existence of a minor impurity compound crystallizing with a much smaller unit cell and could not be identified by single crystal XRD.

Measured (black) and simulated (grey) powder X-ray patterns ($\mathrm{CuK}_{\alpha 1}$) for compounds $\mathbf{1} \mathbf{- 3}$ (measured as suspension of grinded microcrystals).

B4. References

(1) STOE LANA, absorption correction by scaling of reflection intensities. J. Koziskova, F. Hahn, J. Richter, J. Kozisek, "Comparison of different absorption corrections on the model structure of tetrakis(μ_{2}-acetato)-diaqua-di-copper(II)", Acta Chim. Slovaca 2016, 9 (2), 136 140.
(2) STOE X-Red32, absorption correction by Gaussian integration, analogous to P . Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen, 1970, 255-270.
(3) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
(4) G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
(5) G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
(6) K. Brandenburg, Diamond Version 2.1d, Crystal Impact GbR, 1996-2000.
(7) A. L. Spek, Acta Cryst. 1990, A46, C-34.
(8) STOE, WinXPOW, STOE \&Cie GmbH, Darmstadt, 2000.

B5. Table 2. Values of several distances (centroid-to-centroid) and angles in structures 1-3.

Distance (\AA)	1	2	3
$\mathrm{Pb}-\mathrm{N}_{\text {pyrimidine }}{ }^{\text {I }}$	$\begin{aligned} & 2.90(1), 2.778(9), \\ & 2.778(7), \\ & 2.899(9), \\ & 2.899(6), 2.78(1) \end{aligned}$	$\begin{aligned} & 2.76(1), 2.764(7), \\ & 2.764(9), \\ & 2.836(6), \\ & 2.836(9), 2.84(1) \end{aligned}$	$\begin{aligned} & \hline 2.878(3), \\ & 2.878(4), \\ & 2.878(6), \\ & 2.726(5), \\ & 2.726(6), \\ & 2.726(9) \end{aligned}$
$\mathrm{Pb}-\mathrm{N}_{\text {pyridine from ligand }} \mathbf{L}^{1)}$	$\begin{aligned} & 2.559(8), \quad 2.56(1), \\ & 2.56(1) \end{aligned}$	$\begin{aligned} & 2.59(1), \quad 2.59(1), \\ & 2.591(8) \end{aligned}$	$\begin{aligned} & 2.751(5), \\ & 2.751(7), \\ & 2.751(9) \end{aligned}$
$\mathrm{Pb}-\mathrm{Nsp}_{\text {hydrazone }}{ }^{1)}$	$\begin{array}{ll} 2.64(1), & 2.64(1), \\ 2.642(9), & 2.70(1), \\ 2.70(1), & 2.697(9) \end{array}$	$\begin{array}{ll} 2.66(1), & 2.66(1), \\ 2.661(9), & 2.70(1), \\ 2.70(1), & 2.703(9) \end{array}$	$\begin{aligned} & 2.681(6), \\ & 2.681(7), \\ & 2.681(8), \\ & 2.656(5), \\ & 2.656(7), \\ & 2.656(8) \end{aligned}$
$\mathrm{Pb}-\mathrm{N}_{\text {linker }}{ }^{\text {1) }}$	$\begin{aligned} & 2.485(6), \\ & 2.485(6), 2.485(7) \end{aligned}$	$\begin{array}{ll} 2.58(2), & 2.58(2), \\ 2.58(2) & \end{array}$	$\begin{aligned} & 2.500(4), \\ & 2.500(4), \\ & 2.500(4) \end{aligned}$
Pb-O encapsulated triflate ${ }^{2)}$	$\begin{aligned} & 2.929(5), \\ & 2.929(7), 2.929(8) \end{aligned}$	$\begin{aligned} & 2.94(1), \quad 2.943(5), \\ & 2.943(7) \end{aligned}$	$\begin{aligned} & 2.903(3), \\ & 2.903(4), \\ & 2.903(5) \end{aligned}$
$\mathrm{Pb}-\mathrm{O}_{\text {triflate }}\left(\right.$ not encapsulated) ${ }^{2)}$	$\begin{aligned} & 2.82(1), \quad 2.82(1), \\ & 2.82(1) \end{aligned}$	$\begin{aligned} & 2.88(1), \quad 2.88(1), \\ & 2.878(9) \end{aligned}$	$\begin{aligned} & 2.829(7), \\ & 2.829(6), \\ & 2.829(6) \end{aligned}$
$\mathrm{Pb}-\mathrm{Pb}\left(\text { in metallated macrocycle }\left[\mathrm{Pb}_{3} \mathbf{L}\right]^{6+}\right)^{1)}$	$\begin{aligned} & 7.0721(5), \\ & 7.0721(6), \\ & 7.0721(9) \end{aligned}$	$\begin{aligned} & 7.0162(5), \\ & 7.0162(6), \\ & 7.0162(9) \end{aligned}$	$\begin{aligned} & 7.0129(6), \\ & 7.0129(7), \\ & 7.0129(8) \end{aligned}$
$\mathrm{Pb}-\mathrm{Pb}$ (connected through a linker \mathbf{s})	11.960(1)	14.142(1)	16.246(2)
$\mathrm{Pb}-\mathrm{Pb}$ (in the lower (larger) base of the frustum)	no frustum	$\begin{aligned} & 14.5927(5), \\ & 14.5927(8), \\ & 14.5927(8) \end{aligned}$	$\begin{aligned} & 14.5162(5), \\ & 14.5162(7) \\ & 14.5162(9) \end{aligned}$
Edge of the macrocyclic complex ${ }^{3)}$	17.772	17.835	17.661
Height of prism or frustum (distance between Pb_{3} planes)	11.960(1)	13.179	15.431
Diameter of the lower (smaller) rim of the calyx-like motif (see paper)	4.683	4.486	4.560
Diameter of the upper (larger) rim of the calyx-like motif (see paper)	12.040	12.213	12.188
Roughly estimated height of anion layer	3.895	3.865	3.986
Angles (${ }^{\circ}$)	1	2	3
Angle between the $\mathrm{N}-\mathrm{N}$ axis of the linker and the Pb_{3} plane of the macrocycle/larger base of the frustum	90.0	60.9	67.8
Twist angle	0.0	26.5	26.4

Notes
${ }^{1)}$ for one subunit $\left[\mathrm{Pb}_{3} \mathbf{L s}_{3}\right]^{6+}$
${ }^{2)}$ see the figure below:

Charges and real bond type (single/double) were omitted for clarity.
${ }^{3)}$ centroid-to-centroid distance between H atoms in position 4 of pyridine rings

B6. Formulae used to calculate several distances and angles

1. Formula for calculating:

- the height of a frustum
- the height of the prism
- the distance between parallel Pb planes

$$
\begin{aligned}
& g(A ̊)=\frac{[(a+d+f)(-a+d+f)(a-d+f)(a+d-f)]^{1 / 2}}{2 f} \quad \text { (not shown) } \\
& i(A)=\frac{[(a+b+c)(-a+b+c)(a-b+c)(a+b-c)]^{1 / 2}}{2 b} \quad \text { (not shown) } \\
& h(\AA)=\left(a^{2}-\frac{2 a^{2}-g^{2}-i^{2}+\frac{e^{2}-b^{2}-f^{2}}{b f}\left[\left(a^{2}-g^{2}\right)\left(a^{2}-i^{2}\right)\right]^{1 / 2}}{1-0.25\left(\frac{e^{2}-b^{2}-f^{2}}{b f}\right)^{2}}\right)^{1 / 2}
\end{aligned}
$$

2. Formula for calculating the twist angle

3. Formula for calculating the angle between the $\mathrm{N}-\mathrm{N}$ axis of the linker and the Pb_{3} plane of the metallated macrocycle (compound $\mathbf{1}$) or the Pb_{3} plane of the larger base of the frustum (compounds $\mathbf{2}$ and $\mathbf{3}$)

$$
\begin{aligned}
& v(\AA)=\frac{[(m+q+s)(-m+q+s)(m-q+s)(m+q-s)]^{1 / 2}}{2 s} \text { (not shown) } \\
& w(A ̊)=\frac{[(m+n+p)(-m+n+p)(m-n+p)(m+n-p)]^{1 / 2}}{2 n} \text { (not shown) } \\
& t(\AA)=\left(m^{2}-\frac{2 m^{2}-v^{2}-w^{2}+\frac{r^{2}-n^{2}-s^{2}}{n s}\left[\left(m^{2}-v^{2}\right)\left(m^{2}-w^{2}\right)\right]^{1 / 2}}{1-0.25\left(\frac{r^{2}-n^{2}-s^{2}}{n s}\right)^{2}}\right)^{1 / 2} \\
& \operatorname{sPba}\left({ }^{\circ}\right)=\frac{180}{3,14} \times \arcsin \frac{t}{m}
\end{aligned}
$$

C. Elemental analysis

Table 3. Microanalysis results for compounds 1-3.

Compound	Formula with x molecules of water	x	C (\%)		H (\%)		N (\%)	
			found	calcd.	found	calcd.	found	calcd.
1	$\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{a}_{3}(\mathrm{OTf})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$	9	29.29	29.17	2.67	2.67	12.34	12.37
2	$\left\{\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{b}_{3}(\mathrm{OTf})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right\}_{\mathrm{n}}$	10	30.12	29.97	2.76	2.77	12.10	12.16
3	$\left\{\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{c}_{3}(\mathrm{OTf})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right\}_{\mathrm{n}}$	9	31.51	31.81	2.62	2.78	11.70	11.87

The crystals were dried for about four days under vacuum at room temperature and for about half an hour under vacuum at $45-50^{\circ} \mathrm{C}$.

D. Infrared spectra of crystals of complexes 1-3

1) A selection of main peaks; for IR spectra (Nicolet IS50 FT-IR), see below. Compound 1, wavenumbers: $514,572,634,808,1022,1153,1220,1236,1483,1584 \mathrm{~cm}^{-1}$. Compound 2, wavenumbers: $514,634,811,1022,1152,1220,1237,1482,1584 \mathrm{~cm}^{-1}$.

Compound 3, wavenumbers: $515,573,634,808,1023,1155,1221,1237,1484,1586 \mathrm{~cm}^{-1}$.
2) Triflate anions give infrared (IR) bands which include those corresponding to symmetric group angle deformation $\delta_{\mathrm{s}} \mathrm{SO}_{3}$ (about $633 \mathrm{~cm}^{-1}$), symmetric stretching $v_{\mathrm{s}} \mathrm{SO}_{3}$ (about $1022 \mathrm{~cm}^{-1}$), and symmetric stretching $v_{\mathrm{s}} \mathrm{CF}_{3}$ (about $1237 \mathrm{~cm}^{-1}$).
3) References: a) M. G. Miles, G. Doyle, R. P. Cooney, R. S. Tobias, Spectrochim. Acta, 1969, 25A, 1515-1526; b) D. H. Johnston, D. F. Shiver, Inorg. Chem. 1993, 32, 1045104.
4) IR spectra of dried crystals of complexes $\mathbf{1 - 3}$ (Nicolet IS50 FT-IR). $\mathrm{T}=$ transmittance

E. ESI-MS of redissolved crystals of complexes 1-3.

E1. Compound 1

Part of the ESI-MS spectrum of redisolved crystals of compound 1

Part of the ESI-MS spectrum of redisolved crystals of compound 1

$\left[\mathrm{PbaCF}_{3} \mathrm{SO}_{3}\right]^{+}=\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{SO}_{3} \mathrm{~Pb}\right]^{+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right]^{3+}=\left[\mathrm{C}_{48} \mathrm{H}_{51} \mathrm{~F}_{9} \mathrm{~N}_{21} \mathrm{O}_{9} \mathrm{~Pb}_{3} \mathrm{~S}_{3}\right]^{3+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{4}\right]^{2+}=\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~F}_{12} \mathrm{~N}_{21} \mathrm{O}_{12} \mathrm{~Pb}_{3} \mathrm{~S}_{4}\right]^{2+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{5}\right]^{+}=\left[\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{~F}_{15} \mathrm{~N}_{21} \mathrm{O}_{15} \mathrm{~Pb}_{3} \mathrm{~S}_{5}\right]^{+}$

$[\mathrm{PbL}]^{2+}=\left[\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{21} \mathrm{~Pb}\right]^{2+}$

$\left[\mathrm{Pb}_{2} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{2+}=\left[\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~F}_{6} \mathrm{~N}_{21} \mathrm{O}_{6} \mathrm{~Pb}_{2} \mathrm{~S}_{2}\right]^{2+}$

E2. Compound 2

ESI-MS spectrum of redisolved crystals of compound $\mathbf{2}$

Part of the ESI-MS spectrum of redisolved crystals of compound 2

Part of the ESI-MS spectrum of redisolved crystals of compound $\mathbf{2}$

$\left[\mathrm{PbbCF}_{3} \mathrm{SO}_{3}\right]^{+}=\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{SO}_{3} \mathrm{~Pb}\right]^{+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{4+}=\left[\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~F}_{6} \mathrm{~N}_{21} \mathrm{O}_{6} \mathrm{~Pb}_{3} \mathrm{~S}_{2}\right]^{4+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right]^{3+}=\left[\mathrm{C}_{48} \mathrm{H}_{51} \mathrm{~F}_{9} \mathrm{~N}_{21} \mathrm{O}_{9} \mathrm{~Pb}_{3} \mathrm{~S}_{3}\right]^{3+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{5}\right]^{+}=\left[\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{~F}_{15} \mathrm{~N}_{21} \mathrm{O}_{15} \mathrm{~Pb}_{3} \mathrm{~S}_{5}\right]^{+}$

$[\mathrm{PbL}]^{2+}=\left[\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{21} \mathrm{~Pb}\right]^{2+}$

$\left[\mathrm{Pb}_{2} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{2+}=\left[\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~F}_{6} \mathrm{~N}_{21} \mathrm{O}_{6} \mathrm{~Pb}_{2} \mathrm{~S}_{2}\right]^{2+}$

$\left[\mathrm{Pb}_{3} \mathrm{Lb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{4+}=\left[\mathrm{C}_{59} \mathrm{H}_{61} \mathrm{~F}_{6} \mathrm{~N}_{23} \mathrm{O}_{6} \mathrm{~Pb}_{3} \mathrm{~S}_{2}\right]^{4+}$

$\left[\mathrm{Pb}_{3} \mathrm{Lb}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{4+}=\left[\mathrm{C}_{71} \mathrm{H}_{71} \mathrm{~F}_{6} \mathrm{~N}_{25} \mathrm{O}_{6} \mathrm{~Pb}_{3} \mathrm{~S}_{2}\right]^{4+}$

E3. Compound 3

ESI-MS spectrum of redisolved crystals of compound 3

Part of the ESI-MS spectrum of redisolved crystals of compound 3

Part of the ESI-MS spectrum of redisolved crystals of compound $\mathbf{3}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{4+}=\left[\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~F}_{6} \mathrm{~N}_{21} \mathrm{O}_{6} \mathrm{~Pb}_{3} \mathrm{~S}_{2}\right]^{4+}$

$\left[\mathrm{Pb}_{3} \mathrm{~L}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right]^{3+}=\left[\mathrm{C}_{48} \mathrm{H}_{51} \mathrm{~F}_{9} \mathrm{~N}_{21} \mathrm{O}_{9} \mathrm{~Pb}_{3} \mathrm{~S}_{3}\right]^{3+}$

$[\mathrm{PbL}]^{2+}=\left[\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{21} \mathrm{~Pb}\right]^{2+}$

$\left[\mathrm{Pb}_{2} \mathrm{LCF}_{3} \mathrm{SO}_{3}\right]^{3+}=\left[\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~F}_{3} \mathrm{~N}_{21} \mathrm{O}_{3} \mathrm{~Pb}_{2} \mathrm{~S}\right]^{3+}$

$\left[\mathrm{Pb}_{2} \mathrm{~L}\right]^{4+}=\left[\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{21} \mathrm{~Pb}_{2}\right]^{4+}$

$\left[\mathrm{Pb}_{3} \mathrm{Lc}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right]^{3+}=\left[\mathrm{C}_{64} \mathrm{H}_{63} \mathrm{~F}_{9} \mathrm{~N}_{23} \mathrm{O}_{9} \mathrm{~Pb}_{3} \mathrm{~S}_{3}\right]^{3+}$

$\left[\mathrm{Pb}_{3} \mathrm{Lc}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{4+}=\left[\mathrm{C}_{63} \mathrm{H}_{63} \mathrm{~F}_{6} \mathrm{~N}_{23} \mathrm{O}_{6} \mathrm{~Pb}_{3} \mathrm{~S}_{2}\right]^{4+}$

$\left[\mathrm{Pb}_{3} \mathrm{Lc}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]^{4+}=\left[\mathrm{C}_{79} \mathrm{H}_{75} \mathrm{~F}_{6} \mathrm{~N}_{25} \mathrm{O}_{6} \mathrm{~Pb}_{3} \mathrm{~S}_{2}\right]^{4+}$

F. NMR spectroscopy

F1. ${ }^{1}$ H NMR-monitored titrations

1) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$-monitored titration of compound \mathbf{a} (1.5 equiv.) with compound $\left[\mathrm{Pb}_{3} \mathrm{~L}\right](\mathrm{OTf})_{6}$ (1 equiv.).

2) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$-monitored titration of compound \mathbf{b} (1.5 equiv.) with compound $\left[\mathrm{Pb}_{3} \mathbf{L}\right](\mathrm{OTf})_{6}$ (1 equiv.).

3) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$-monitored titration of compound \mathbf{c} (1.5 equiv.) with compound $\left[\mathrm{Pb}_{3} \mathrm{~L}\right](\mathrm{OTf})_{6}$ (1 equiv.).

F2. ${ }^{1} \mathrm{H}$ DOSY NMR

DOSY = Diffusion-Ordered Spectroscopy

1) ${ }^{1} \mathrm{H}$ DOSY NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$ of redissolved crystals of compound $\mathbf{1}$.

2) ${ }^{1} \mathrm{H}$ DOSY NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$ of redissolved crystals of compound 2.

3) ${ }^{1} \mathrm{H}$ DOSY NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$ of redissolved crystals of compound 3.

In each tube was added (as an internal standard) an amount of $p-\mathrm{Br}^{-} \mathrm{C}_{6} \mathrm{~F}_{4}-\mathrm{Br}$ which corresponds to the theoretical amount of fluorine in complexes, calculated with the formula

$$
\mathrm{m}_{p-\mathrm{Br}-\mathrm{C}_{6} \mathbf{F}_{4}-\mathrm{Br}}=9 \times \mathrm{m}_{\mathrm{Pb}_{6} \mathrm{~L}_{2} \mathrm{~s}_{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{12}} \times \frac{\mathrm{MW}}{p-{\mathrm{Br}-\mathrm{C}_{6} \mathrm{~F}_{4}-\mathrm{Br}}^{\mathrm{MW}} \mathrm{~Pb}_{6} \mathrm{~L}_{2} \mathrm{~s}_{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{12}} \quad, \text { where } \mathbf{s}=\mathbf{a}, \mathbf{b} \text { or } \mathbf{c} .
$$

The integration of the peaks corresponding to F atoms from $p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{~F}_{4}-\mathrm{Br}$ was fixed at 100.

1) ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 471 \mathrm{MHz}\right)$ spectra of redissolved crystals of compound 1.

2) ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 471 \mathrm{MHz}\right)$ spectra of redissolved crystals of compound 2.

3) ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 471 \mathrm{MHz}\right)$ spectra of redissolved crystals of compound 3.

4) Table 4. ${ }^{19}$ F NMR results

Compound	Theoretical mass percentage of $\mathrm{CF}_{3} \mathrm{SO}_{3}$ in $\mathrm{Pb}_{6} \mathrm{~L}_{2} \mathrm{~s}_{3}(\mathrm{OTf})_{12}(\%)$	Integral of F from spectra of compounds 1-3, when that corresponding to 9 equiv. of $p-\mathrm{BrC}_{6} \mathrm{~F}_{4} \mathrm{Br}$ is 100	Mass percentage of $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$ found in the sample (\%) ($\pm 10.0 \%$ of the values)	Number of $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anions (with respect to the formula $\mathrm{Pb}_{6} \mathrm{~L}_{2} \mathrm{~s}_{3}(\mathrm{OTf})_{12}$) according to the percentage found in the sample ($\pm 10.0 \%$ of the values)	Theoretical number of $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$ anions
	pOTft	1	pOTff	notff	notft
1 ($\mathrm{s}=\mathrm{a}$)	33.9	94.9	32.2	11.4	12.0
2 ($\mathrm{s}=\mathrm{b}$)	33.4	91.5	30.6	11.0	12.0
3 ($\mathrm{s}=\mathrm{c}$)	32.5	92.5	30.1	11.1	12.0

Notations and formulae:

$$
\begin{aligned}
& \text { pOTff }=p \text { OTft } \times I \times 0.01 \\
& \text { nOTff }=12 \times I \times 0.01=0.12 \times I
\end{aligned}
$$

G. Anion exchanges with PF_{6}

To reaction mixtures prepared as described before (section A), but starting from 1.0 mg of ligand \mathbf{L}, was added an excess of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ (7-9 equiv.; $\mathrm{Bu}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$). Slow diffusion of diethyl ether into the solution afforded yellow-orange crystals ($1.8-2.5 \mathrm{mg}$). Only 1-2 single crystals per sample were analyzed through X-ray diffraction.

G1. Table 5. Crystallographic data for compounds $1 \mathrm{PF}_{6}, 2 \mathrm{PF}_{6}$ and $3 \mathrm{PF}_{6}$.

	$1 \mathrm{PF}_{6}$	$2 \mathrm{PF}_{6}$	$3 \mathrm{PF}_{6}$
empirical formulae	$\begin{aligned} & \mathrm{C}_{131} \mathrm{H}_{126} \mathrm{~F}_{39} \mathrm{~N}_{48} \mathrm{O}_{33} \mathrm{PPb}_{6} \mathrm{~S}_{11} \\ & {[+ \text { solvent }]=} \\ & \mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{a}_{3}(\mathrm{OTf})_{11} \mathrm{PF}_{6} \\ & {[+ \text { solvent }]} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{134} \mathrm{H}_{132} \mathrm{~F}_{30} \mathrm{~N}_{48} \mathrm{O}_{24} \mathrm{PPb}_{6} \mathrm{~S}_{8} \\ & {[+ \text { solvent }]=} \\ & \left.\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{b}_{3}(\mathrm{OTf})_{8} \mathrm{PF}_{6} \text { [+ solvent }\right] \end{aligned}$	$\begin{aligned} & \mathrm{C}_{146} \mathrm{H}_{138} \mathrm{~F}_{30} \mathrm{~N}_{48} \mathrm{O}_{24} \mathrm{PPb}_{6} \mathrm{~S}_{8} \\ & {[+ \text { solvent }]=} \\ & \mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{c}_{3}(\mathrm{OTf})_{8} \mathrm{PF}_{6} \\ & {[+ \text { solvent }]} \end{aligned}$
$f w[\mathrm{~g} / \mathrm{mol}]$	5268.56	4899.46	5049.63
crystal system	hexagonal	trigonal	Trigonal
space group	P63/m	R-3:H	R-3:H
Cell $a=b$ [\AA]	21.0367(9)	21.1133(6)	21.0435(6)
c	31.8231(16)	51.250(3)	58.507(3)
$V\left[\AA^{3}\right]$	12196.3(12)	19784.9(15)	22437.5(16)
Z	2	3	3
$T[\mathrm{~K}]$	120(2)	120(2)	120(2)
$\lambda[\AA]$	0.71073	0.71073	0.71073
$d_{c}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$	1.435	1.234	1.121
$\mu(\lambda)\left[\mathrm{mm}^{-1}\right]$	4.317	3.957	3.491
$F[000]$	5092	7107	7341
$\left.2 \theta_{\text {max }}{ }^{\circ}{ }^{\circ}\right]$	56	56	56
meas reflns	216465	117507	70808
unique reflns	9913	10519	11923
$R_{\text {int }}$	0.0821	0.0421	0.0314
$R_{\text {sigma }}$	0.0263	0.0208	0.0224
reflns with $I>2 \sigma(I)$	7225	8716	10039
refined params	365	370	376
restraints	29	35	18
$R 1(I>2 \sigma(I))$	0.0789	0.0395	0.0403
$w R 2$ (all data)	0.2101	0.1158	0.1220
largest diff. peak/hole / e \AA^{-3}	1.90/-2.09	2.52/-1.21	2.43/-2.16
CCDC number	2293672	2293677	2293673

Comments to structure $1 P F_{6}$. 1) Due to high thermal agitation, two $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anions were left as isotropic, a fact that produced an alert of level B in the checkCIF report (F2, F3, F4, O1, O2 etc). 2) The squeeze tool has been used and the residual electron density was assigned to four molecules of $\mathrm{CH}_{3} \mathrm{CN}$ per asymmetric unit.

Comments to structure $2 P F_{6}$. 1) Three negative charges are required for the formula $\mathrm{C}_{134} \mathrm{H}_{132} \mathrm{~F}_{30} \mathrm{~N}_{48} \mathrm{O}_{24} \mathrm{PPb}_{6} \mathrm{~S}_{8}=\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{b}_{3}\left(\mathrm{OTf}_{8} \mathrm{PF}_{6}\right.$ to be neutral. 2) The squeeze tool has been used; the residual electron density was assigned to 14 molecules of acetonitrile (solvent) and $0.50 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$ anion; $2131 / 6 \approx 355$ e per asymmetric unit; 14 molecules of acetonitrile $\mathrm{CH}_{3} \mathrm{CN}$ (solvent) and 0.50 $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anion would give 345 e .3) Some atoms were left as isotropic due to high thermal agitation: S1, O1, O2, O3, C21, F1, F2, F3, C21, AF1, AF2, AF3.

Comments to structure $3 P F_{6}$. 1) Three negative charges are required for the formula $\mathrm{C}_{146} \mathrm{H}_{138} \mathrm{~F}_{30} \mathrm{~N}_{48} \mathrm{O}_{24} \mathrm{PPb}_{6} \mathrm{~S}_{8}=\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{c}_{3}\left(\mathrm{OTf}_{8} \mathrm{PF}_{6}\right.$ to be neutral. 2) The squeeze tool has been used; the residual electron density was assigned to 18 molecules of acetonitrile (solvent) and $0.50 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$
anion; $2695 / 6 \approx 449$ e per asymmetric unit; 18 molecules of acetonitrile $\mathrm{CH}_{3} \mathrm{CN}$ (solvent) and 0.50 $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anion would give 433 e. 3) Some atoms were left as isotropic due to high thermal agitation: C24, F1, F2, F3, C24, AF1, AF2, AF3.

G2. Table 6. Values of several distances (centroid-to-centroid) and angles in structures $\mathbf{1 P F}_{6}$ $3 \mathrm{PF}_{6}$.

Distance (\AA)	$1 \mathrm{PF}_{6}$	$2 \mathrm{PF}_{6}$	$3 \mathrm{PF}_{6}$
$\mathrm{Pb}-\mathrm{N}_{\text {pyrimidine }}{ }^{\text {l }}$	$\begin{array}{ll} \begin{array}{l} 2.87(1), \\ 2.869(8), \\ 2.757(8), \end{array} & 2.76(1), \\ 2.76(1), & \end{array}$	$2.735(5)$, $2.735(3)$, $2.735(6)$, $2.820(5)$, $2.820(5), 2.820(6)$	$2.718(4)$, $2.718(5)$, $2.718(6)$, $2.866(3)$, $2.866(4), 2.866(6)$
$\mathrm{Pb}-\mathrm{N}_{\text {pyridine from ligand }} \mathbf{L}^{1)}$	$\begin{aligned} & 2.57(1), \quad 2.57(1), \\ & 2.57(1) \end{aligned}$	$\begin{aligned} & 2.609(5), \\ & 2.609(5), 2.609(6) \end{aligned}$	$\begin{aligned} & 2.601(4), \\ & 2.601(5), 2.601(6) \end{aligned}$
$\mathrm{Pb}-\mathrm{Nsp}_{\text {hydrazone }}{ }^{1)}$	$\begin{aligned} & 2.64(1), \quad 2.64(2), \\ & 2.644(8), 2.68(1), \\ & 2.68(1), 2.678(8) \end{aligned}$	$\begin{aligned} & 2.668(4), \\ & 2.668(7), \\ & 2.668(3), \\ & 2.692(7), \\ & 2.692(4), 2.692(4) \end{aligned}$	$\begin{aligned} & 2.710(3), \\ & 2.710(5), \\ & 2.710(6), \\ & 2.674(3), \\ & 2.674(5), 2.674(6) \end{aligned}$
$\mathrm{Pb}-\mathrm{N}_{\text {linker }}{ }^{1)}$	$\begin{aligned} & 2.49(1), \quad 2.49(1), \\ & 2.49(1) \end{aligned}$	$\begin{aligned} & 2.476(5), \\ & 2.476(5), 2.476(5) \end{aligned}$	$\begin{aligned} & 2.494(4), \\ & 2.494(4), 2.494(4) \end{aligned}$
$\mathrm{Pb}-\mathrm{O}$ encapsulated triflate ${ }^{2)}$	$\begin{aligned} & 2.905(9), 2.90(1), \\ & 2.90(1) \end{aligned}$	$\begin{aligned} & 2.940(4), \\ & 2.940(5), 2.940(6) \end{aligned}$	$\begin{aligned} & \text { 2.894(5), } 2.894(3) \\ & 2.894(4) \end{aligned}$
$\mathrm{Pb}-\mathrm{O}_{\text {triflate }}(\text { not encapsulated })^{2)}$	$\begin{aligned} & 2.838(9), 2.84(1), \\ & 2.84(1) \end{aligned}$	$\begin{aligned} & 2.809(5), \\ & 2.809(5), 2.809(6) \end{aligned}$	$\begin{aligned} & 2.796(7), \\ & 2.796(7), 2.796(8) \end{aligned}$
$\mathrm{Pb}-\mathrm{Pb}\left(\text { in metallated macrocycle }\left[\mathrm{Pb}_{3} \mathbf{L}\right]^{6+}\right)^{\text {1) }}$	$\begin{aligned} & 7.0369(6), \\ & 7.0369(8), \\ & 7.0369(9) \end{aligned}$	$\begin{aligned} & 6.9862(6), \\ & 6.9862(8), \\ & 6.9862(9) \end{aligned}$	$\begin{aligned} & 6.9792(6), \\ & 6.9792(8), \\ & 6.9792(9) \end{aligned}$
$\mathrm{Pb}-\mathrm{Pb}$ (connected through a linker \mathbf{s})	11.995(1)	14.122(2)	16.248(2)
$\mathrm{Pb}-\mathrm{Pb}$ (in the lower (larger) base of the frustum)	no frustum	$\begin{aligned} & \text { 14.5786(9), } \\ & \text { 14.5786(9), } \\ & 14.5786(6) \end{aligned}$	$\begin{aligned} & 14.5091(6), \\ & 14.5091(9), \\ & 14.5091(9) \end{aligned}$
Edge of the macrocyclic complex ${ }^{3)}$	17.775	17.818	17.725
Height of prism or frustum (distance between Pb_{3} planes)	11.995(1)	13.184	15.452
Diameter of the lower (smaller) rim of the calyx-like motif (see paper)	4.536	4.472	4.533
Diameter of the upper (larger) rim of the calyx-like motif (see paper)	12.158	12.238	12.216
Roughly estimated height of anion layer	3.916	3.900	4.050
Angles (${ }^{\circ}$)	$1 \mathrm{PF}_{6}$	$2 \mathrm{PF}_{6}$	$3 \mathrm{PF}_{6}$
Angle between the $\mathrm{N}-\mathrm{N}$ axis of the linker and the Pb_{3} plane of the macrocycle/larger base of the frustum	90.0	62.5	68.0
Twist angle	0.0	25.1	25.0

Notes
${ }^{1)}$ for one subunit $\left[\mathrm{Pb}_{3} \mathbf{L s}_{3}\right]^{6+}$
${ }^{2)}$ see the figure below:

Charges and real bond type (single/double) were omitted for clarity.
${ }^{3)}$ centroid-to-centroid distance between H atoms in position 4 of pyridine rings

H. Change of the solvent used for NMR: $\mathrm{CD}_{3} \mathrm{CN}->\mathrm{CD}_{\mathbf{3}} \mathrm{OD}$

Crystals of compound 1, dried for about $20-30 \mathrm{~min}$ under vacuum at room temperature, were redissolved in $\mathrm{CD}_{3} \mathrm{OD}$. It can be seen that:

- peaks corresponding to $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ are present;
- dissociation of $\left[\mathrm{Pb}_{6} \mathbf{L}_{2} \mathbf{a}_{3}\right]^{12+}$ occurs in $\mathrm{CD}_{3} \mathrm{OD}$ too.
${ }^{1} \mathrm{H}$ DOSY NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ of redissolved crystals of compound $\mathbf{1}$.

I. Selection

To a suspension of macrocyclic ligand $\mathbf{L}\left(1.00 \mathrm{mg}, 1.13 \times 10^{-3} \mathrm{mmol}, 1\right.$ equiv. $)$ in acetonitrile $(0.1 \mathrm{~mL})$ was added a solution of $\mathrm{Pb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left(1.71 \mathrm{mg}, 3.39 \times 10^{-3} \mathrm{mmol}, 3\right.$ equiv.) in acetonitrile (0.2 mL) and the mixture was refluxed for about 10 min . The mixture was cooled to room temperature, then treated with 1.5 equiv. ($1.69 \times 10^{-3} \mathrm{mmol}$) of linker a in $26.4 \mu \mathrm{~L}$ solution of concentration $1 \mathrm{mg} / 100 \mu \mathrm{~L}, 1.5$ equiv. ($1.69 \times 10^{-3} \mathrm{mmol}$) of linker \mathbf{b} in $30.8 \mu \mathrm{~L}$ solution of concentration $1 \mathrm{mg} / 100 \mu \mathrm{~L}$ and 1.5 equiv. ($1.69 \times 10^{-3} \mathrm{mmol}$) of linker \mathbf{c} in $157.3 \mu \mathrm{~L}$ solution of concentration $1 \mathrm{mg} / 400 \mu \mathrm{~L}$. The mixture thus obtained was stirred for 10 minutes at room temperature, after which it was centrifuged. Slow diffusion of diethyl
ether into the solution afforded yellow crystals, which were dried under vacuum at room temperature (yield: 2.40 mg).
${ }^{1} \mathrm{H}$ DOSY NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$ of redissolved crystals obtained from a mixture of 1 equiv. of $\left[\mathrm{Pb}_{3} \mathbf{L}\right](\mathrm{OTf})_{6}, 1.5$ equiv. of linker $\mathbf{a}, 1.5$ equiv. of linker \mathbf{b} and 1.5 equiv. of linker \mathbf{c}.

