Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information for Palladium-catalyzed synthesis of benzosilacyclobutenes via position-selective C(sp³)–H arylation

Naoya Hamada,[†] Daigo Hayashi[†] and Ryo Shintani*,^{†,‡}

[†]Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan [‡]Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan

I. General	S2
II. Synthesis of Substrates	\$3
III. Catalytic Reactions and Derivatizations	S19
IV. X-ray Crystal Structures	S33
V. ¹ H and ¹³ C NMR Spectra	S41
VI. References	S147

I. General

All reactions were carried out with standard Schlenk techniques under nitrogen unless otherwise noted. NMR spectra were recorded on JEOL JNM-ECS400 or Agilent Unity-Inova500 spectrometer. High resolution mass spectra were recorded on JEOL JMS700 or JEOL JMS-T100LP AccuTOF (DART-MS) spectrometer. X-ray crystallographic analysis was performed by RIGAKU XTaLAB P200 with graphite-monochromated Mo-K α (0.71075 Å) radiation. Preparative GPC was performed with JAI LaboACE LC-5060 equipped with JAIGEL-2HR columns using CHCl₃ as an eluent.

Et₂NH (Wako Chemicals) was distilled over KOH under vacuum. CCl₄ (Wako Chemicals) was dried over MgSO₄ and degassed by purging nitrogen prior to use. Li turnings were prepared by pounding and cutting Li wire (Kishida Chemical) prior to use. DMF (Wako Chemicals; dehydrated), THF (Kanto Chemical; dehydrated), Et₂O (Wako Chemicals; dehydrated), toluene (Wako Chemicals; dehydrated), 1-bromo-2-naphthol (Aldrich or BLD Pharmatech), 1-iodo-3-phenylpropane (Aldrich), iodomethane-d₃ (CIL), benzaldehyde (Wako Chemicals), cinnamaldehyde (Wako Chemicals), dimethyl acetylenedicarboxylate (Aldrich), diethyl acetylenedicarboxylate (Aldrich), methyl propiolate (TCI), dicyclohexyldichlorosilane (BLD Pharmatech), trichloro(propyl)silane (TCI), dichloro(ethyl)(methyl)silane (Thermo Scientific), imidazole (Nacalai Tesque), Nphenylbis(trifluoromethanesulfonimide) (Kanto Chemical, TCI, or Angene), PPh3 (Wako Chemicals), PCy₃•HBF₄ (TCI), P(*t*Bu)₃•HBF₄ (TCI), (±)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl ((±)-binap; Wako Chemicals). 1,1'-bis(diphenylphosphino)ferrocene (dppf; TCI), 1,1'-bis(di-tertbutylphosphino)ferrocene (dtbpf; Wako Chemicals), nBuLi (Kanto Chemical; 1.52-1.59 M solution in hexane), tBuLi (Kanto Chemical; 1.60 M solution in pentane), NaH (Kishida Chemical; 60 wt% in mineral oil), PdCl₂ (Tanaka Kikinzoku), Pd(OAc)₂ (Wako Chemicals), and Ni(cod)₂ (Wako Chemicals) were used as received. 1-Bromo-2-(methoxymethoxy)naphthalene,¹ tert-butylchloro(methyl)silane,² and Pd(PPh₃)₄,³ were synthesized following the literature procedures.

II. Synthesis of Substrates

Representative Procedures for Substrates: 1-(Butyldicyclohexylsilyl)-2-naphthyl trifluoromethanesulfonate (1a)

*n*BuLi (2.77 mL, 4.40 mmol; 1.59 M solution in hexane) was added dropwise over 10 min to a solution of dicyclohexyldichlorosilane (1.06 mL, 4.40 mmol) in THF (8.0 mL) at -78 °C. The mixture was stirred for 30 min at -78 °C, warmed to room temperature gradually over 30 min, and further stirred for 1 h at room temperature. 1-Bromo-2-naphthol (898 mg, 4.02 mmol) and imidazole (557 mg, 8.18 mmol) were added to it with the aid of THF (1.5 mL), and the mixture was stirred for 20 h at 35 °C. The reaction was slowly quenched with saturated NH₄Claq at room temperature and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 50/1 to afford (1-bromo-2-naphthoxy)(butyl)dicyclohexylsilane as a colorless oil (1.82 g, 3.72 mmol; 93% yield).

¹H NMR (CDCl₃): δ 8.21 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.76 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.68 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.54 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.38 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.11 (d, ³*J*_{HH} = 8.7 Hz, 1H), 1.89-1.78 (m, 4H), 1.78-1.67 (m, 6H), 1.46-1.17 (m, 14H), 1.10 (tt, ³*J*_{HH} = 12.6 and 2.7 Hz, 2H), 0.93-0.83 (m, 5H).

*n*BuLi (2.34 mL, 3.72 mmol; 1.59 M solution in hexane) was added dropwise over 5 min to a solution of (1-bromo-2-naphthoxy)(butyl)dicyclohexylsilane (1.82 g, 3.72 mmol) in THF (9.4 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 5/1 to afford 1-(butyldicyclohexylsilyl)-2-naphthol as a yellow oil (1.57 g, 3.67 mmol; 99% yield).

¹H NMR (CDCl₃): δ 8.03 (d, ³*J*_{HH} = 8.8 Hz, 1H), 7.76-7.69 (m, 2H), 7.40 (ddd, ³*J*_{HH} = 8.5 and 6.8 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.29 (ddd, ³*J*_{HH} = 8.0 and 6.8 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 6.93 (d, ³*J*_{HH} = 8.8 Hz, 1H), 5.28 (s, 1H), 1.94-1.85 (m, 2H), 1.79-1.09 (m, 26H), 0.90 (t, ³*J*_{HH} = 7.3 Hz, 3H).

NaH (163 mg, 4.07 mmol; 60 wt% in mineral oil) was added to a solution of 1-(butyldicyclohexylsilyl)-2-naphthol (1.57 g, 3.67 mmol) in THF (18 mL) at 0 °C, and the reaction mixture was stirred for 20 min at 0 °C. *N*-Phenylbis(trifluoromethanesulfonimide) (1.41 g, 3.94 mmol) was added to it, and the mixture was stirred for 5 min at 0 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane to afford compound **1a** as a white solid (1.69 g, 3.20 mmol; 87% yield).

¹H NMR (CDCl₃): δ ¹H NMR (CDCl₃): δ 8.27-8.20 (m, 1H), 7.90 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.90-7.83 (m, 1H), 7.58-7.49 (m, 2H), 7.39 (d, ³*J*_{HH} = 8.7 Hz, 1H), 1.97-1.85 (m, 2H), 1.83-1.07 (m, 26H), 0.89 (d, ³*J*_{HH} = 7.1 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 154.4, 138.7, 132.5, 132.2, 129.03, 129.01, 126.6, 126.4, 126.3, 118.8 (q, ⁵*J*_{CF} = 1.9 Hz), 118.7 (q, ¹*J*_{CF} = 320 Hz), 29.2, 28.9, 28.6, 28.5, 27.13, 27.06, 26.9, 26.8, 13.8, 11.9. ²⁹Si{¹H} NMR (CDCl₃): δ 0.9. HRMS (DART) calcd for C₂₇H₃₈F₃O₃SSi (M+H⁺) 527.2258, found: 527.2271.

1-(Dicyclohexyl(3-phenylpropyl)silyl)-2-naphthyl trifluoromethanesulfonate (1c)

*t*BuLi (5.50 mL, 8.80 mmol; 1.60 M solution in pentane) was added dropwise over 15 min to a solution of 1-iodo-3-phenylpropane (707 μ L, 4.40 mmol) in Et₂O (22 mL) at -78 °C, and the mixture was stirred for 1 h at -78 °C. Dicyclohexyldichlorosilane (1.06 mL, 4.40 mmol) was added to it and the mixture was stirred for 30 min at -78 °C. This was then warmed to room temperature gradually over 30 min and further stirred for 1 h at room temperature. 1-Bromo-2-naphthol (896 mg, 4.01 mmol) and imidazole (566 mg, 8.32 mmol) were added to it with the aid of THF (2.5 mL), and the mixture was stirred for 43 h at 35 °C. The reaction was slowly quenched with saturated NH₄Claq at room temperature and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 30/1 to afford (1-bromo-2-naphthoxy)dicyclohexyl(3-phenylpropyl)silane as a red oil (2.11 g, 3.93 mmol; 98% yield).

¹H NMR (CDCl₃): δ 8.23 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.78 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.66 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.56 (ddd, ³*J*_{HH} = 8.7 and 6.8 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 7.40 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 7.28-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 7.05 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.28-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 7.05 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.28-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 7.05 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.28-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 7.05 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.28-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 7.05 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.28-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 7.05 (m, 2H), 7

Hz, 1H), 2.63 (t, ${}^{3}J_{HH} = 7.3$ Hz, 2H), 1.90-1.63 (m, 12H), 1.42-1.16 (m, 10H), 1.11 (tt, ${}^{3}J_{HH} = 12.4$ and 2.7 Hz, 2H), 0.96-0.87 (m, 2H).

*n*BuLi (2.50 mL, 3.93 mmol; 1.57 M solution in hexane) was added dropwise over 5 min to a solution of (1-bromo-2-naphthoxy)dicyclohexyl(3-phenylpropyl)silane (2.11 g, 3.93 mmol) in THF (9.7 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = $30/1 \rightarrow 20/1$ and again with hexane/EtOAc = $30/1 \rightarrow 20/1 \rightarrow 10/1$ to afford 1-dicyclohexyl(3-phenylpropyl)silyl-2-naphthol as a pale green oil (761 mg, 1.67 mmol; 42% yield).

¹H NMR (CDCl₃): δ 7.99 (d, ³*J*_{HH} = 8.5 Hz, 1H), 7.75-7.69 (m, 2H), 7.37 (ddd, ³*J*_{HH} = 8.5 and 6.8 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 7.32-7.25 (m, 3H), 7.20-7.13 (m, 3H), 6.89 (d, ³*J*_{HH} = 8.8 Hz, 1H), 4.98 (s, 1H), 2.68 (t, ³*J*_{HH} = 7.3 Hz, 2H), 1.89-1.57 (m, 12H), 1.38-1.09 (m, 14H).

NaH (75.5 mg, 1.89 mmol; 60 wt% in mineral oil) was added to a solution of 1-dicyclohexyl(3-phenylpropyl)silyl-2-naphthol (761 mg, 1.67 mmol) in THF (8.5 mL) at 0 °C, and the reaction mixture was stirred for 20 min at 0 °C. *N*-Phenylbis(trifluoromethanesulfonimide) (655 mg, 1.88 mmol) was added to it, and the mixture was stirred for 5 min at 0 °C and for 1.5 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 30/1 and again with hexane/EtOAc = 50/1 to afford compound **1c** as a white solid (495 mg, 0.841 mmol; 50% yield).

¹H NMR (CDCl₃): δ 8.29-8.20 (m, 1H), 7.93 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.92-7.86 (m, 1H), 7.60-7.53 (m, 2H), 7.45 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.32 (t, ³*J*_{HH} = 7.3 Hz, 2H), 7.25-7.17 (m, 3H), 2.74 (t, ³*J*_{HH} = 7.6 Hz, 2H), 2.03-1.89 (m, 2H), 1.87-1.42 (m, 12H), 1.42-1.12 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 154.4, 142.6, 138.7, 132.7, 132.2, 129.0, 128.9, 128.7, 128.4, 126.7, 126.4, 126.1, 125.8, 118.8 (q, ⁵*J*_{CF} = 1.9 Hz), 118.7 (q, ¹*J*_{CF} = 320 Hz), 40.4, 29.1, 28.9, 28.49, 28.46, 27.01, 26.99, 26.7, 12.0. ²⁹Si{¹H} NMR (CDCl₃): δ 0.8. HRMS (DART) calcd for C₃₂H₄₀F₃O₃SSi (M+H⁺) 589.2414, found: 589.2404.

1-(Bis(2-(methoxymethoxy)-1-naphthyl)(propyl)silyl)-2-naphthyl trifluoromethanesulfonate (1h)

*t*BuLi (36.0 mL, 57.6 mmol; 1.60 M solution in pentane) was added dropwise over 15 min to a solution of 1-bromo-2-(methoxymethoxy)naphthalene (7.82 g, 28.7 mmol) in THF (48 mL) at -78 °C, and the mixture was stirred for 30 min at -78 °C. Trichloro(propyl)silane (2.13 mL, 14.4 mmol) was added to it, and the mixture was stirred for 5 min at -78 °C and for 3.5 h at room temperature. 1-Bromo-2-naphthol (2.69 g, 12.0 mmol) and imidazole (1.64 g, 24.0 mmol) were added to it with the aid of THF (6.0 mL), and the mixture was stirred for 41 h at 35 °C. The reaction was slowly quenched with saturated NH₄Claq at room temperature and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = $10/1 \rightarrow 8/1$ to afford (1-bromo-2-naphthoxy)di(2-(methoxymethoxy)-1-naphthyl)(propyl)silane as a white amorphous (6.50 g, 9.73 mmol; 81% yield).

¹H NMR (CDCl₃): δ 9.06 (d, ³*J*_{HH} = 8.7 Hz, 2H), 8.23 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.81 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.77 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.62 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.54-7.43 (m, 3H), 7.40-7.29 (m, 4H), 7.27 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.06 (d, ³*J*_{HH} = 9.2 Hz, 1H), 4.73 (d, ²*J*_{HH} = 6.9 Hz, 2H), 4.70 (d, ²*J*_{HH} = 6.9 Hz, 2H), 2.88 (s, 6H), 1.81-1.72 (m, 2H), 1.57-1.45 (m, 2H), 0.88 (t, ³*J*_{HH} = 7.1 Hz, 3H).

*n*BuLi (6.20 mL, 9.73 mmol; 1.57 M solution in hexane) was added dropwise over 5 min to a solution of (1-bromo-2-naphthoxy)di(2-(methoxymethoxy)-1-naphthyl)(propyl)silane (6.50 g, 9.73 mmol) in THF (26 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 5/1 to afford 1-(bis(2-(methoxymethoxy)-1-naphthyl)(propyl)silyl)-2-naphthol as a white amorphous (5.38 g, 9.13 mmol; 94% yield).

¹H NMR (CDCl₃): δ 8.21-8.08 (m, 2H), 7.93-7.70 (m, 8H), 7.44-7.13 (m, 5H), 7.08-7.01 (m, 2H), 6.97 (d, ${}^{3}J_{HH} = 8.8$ Hz, 1H), 6.83 (s, 1H), 4.80-4.52 (m, 4H), 2.90 (s, 6H), 2.08-1.94 (m, 1H), 1.90-1.78 (m, 1H), 1.48-1.34 (m, 1H), 1.23-1.09 (m, 1H), 0.88 (t, ${}^{3}J_{HH} = 7.2$ Hz, 3H).

NaH (400 mg, 9.13 mmol; 60 wt% in mineral oil) was added to a solution of 1-(bis(2-(methoxymethoxy)-1-naphthyl)(propyl)silyl)-2-naphthol (5.38 g, 9.13 mmol) in THF (46 mL) at 0 °C, and the reaction mixture was stirred for 20 min at 0 °C. *N*-Phenylbis(trifluoromethanesulfonimide) (3.49 g, 9.77 mmol) was added to it, and the mixture was stirred for 5 min at 0 °C and for 3.5 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 8/1 to afford compound **1h** as a white amorphous (3.77 g, 5.22 mmol; 57% yield).

¹H NMR (CDCl₃): δ 8.08 (d, ³*J*_{HH} = 8.2 Hz, 1H), 8.01 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.97 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.93-7.84 (m, 3H), 7.84-7.74 (m, 3H), 7.41-7.33 (m, 4H), 7.30-7.19 (m, 2H), 7.14 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.03 (ddd, ³*J*_{HH} = 9.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.00 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 4.52 (d, ²*J*_{HH} = 7.3 Hz, 1H), 4.42 (d, ²*J*_{HH} = 7.3 Hz, 1H), 4.40 (d, ²*J*_{HH} = 6.9 Hz, 1H), 4.35 (d, ²*J*_{HH} = 7.3 Hz, 1H), 2.83 (s, 3H), 2.81 (s, 3H), 1.91-1.73 (m, 2H), 1.43-1.24 (m, 2H), 0.89 (t, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C {¹H} NMR (CDCl₃): δ 161.73, 161.69, 152.6, 138.6, 138.3, 138.2, 133.0, 132.1, 131.9, 131.4, 130.24, 130.20, 130.0, 129.8, 128.6, 128.5, 128.2, 128.0, 126.1, 126.0, 125.94, 125.85, 123.42, 123.39, 120.02, 119.99, 118.7 (q, ⁵*J*_{CF} = 1.9 Hz), 118.3 (q, ¹*J*_{CF} = 320 Hz), 115.3, 115.2, 94.8, 94.6, 55.5, 55.4, 23.2, 19.3, 18.4. ²⁹Si {¹H} NMR (CDCl₃): δ -19.9. HRMS (FAB) calcd for C₃₈H₃₅F₃O₇SSi (M⁺) 720.1825, found: 720.1833.

1-(tert-Butyl(ethyl)(methyl)silyl)-2-naphthyl trifluoromethanesulfonate (1s)

*t*BuLi (5.50 mL, 8.80 mmol; 1.60 M solution in pentane) was added dropwise over 15 min to a solution of dichloro(ethyl)(methyl)silane (592 μ L, 4.40 mmol) in Et₂O (3.5 mL) at 0 °C, and the mixture was stirred for 17 h while gradually raising the temperature to room temperature. 1-Bromo-2-naphthol (892 mg, 4.00 mmol) and imidazole (553 mg, 8.12 mmol) were added to it with the aid of THF (2.0 mL), and the mixture was stirred for 4 h at 40 °C. The reaction was quenched with H₂O at room temperature and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 50/1 to afford (1-bromo-2-naphthoxy)(*tert*-butyl)(ethyl)(methyl)silane as a colorless oil (855 mg, 2.44 mmol; 61% yield).

¹H NMR (CDCl₃): δ 8.21 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.76 (d, ³*J*_{HH} = 7.4 Hz, 1H), 7.69 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.54 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.38 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 7.13 (d, ³*J*_{HH} = 8.7 Hz, 1H), 1.09 (s, 9H), 1.00 (t, ³*J*_{HH} = 7.6 Hz, 3H), 0.97-0.76 (m, 2H), 0.32 (s, 3H).

*n*BuLi (1.60 mL, 2.44 mmol; 1.52 M solution in hexane) was added dropwise over 5 min to a solution of (1-bromo-2-naphthoxy)(*tert*-butyl)(ethyl)(methyl)silane (855 mg, 2.44 mmol) in THF (6.1 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 5/1 to afford 1-(*tert*-butyl(ethyl)(methyl)silyl)-2-naphthol as a red oil (684 mg, 2.10 mmol; 86% yield).

¹H NMR (CDCl₃): δ 8.05 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.75 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.74 (dd, ³*J*_{HH} = 8.2 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 7.40 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 7.29 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 6.95 (d, ³*J*_{HH} = 8.7 Hz, 1H), 5.19 (s, 1H), 1.44-1.32 (m, 1H), 1.00 (s, 9H), 0.96-0.79 (m, 4H), 0.58 (s, 3H).

NaH (92.4 mg, 2.31 mmol; 60 wt% in mineral oil) was added to a solution of 1-(*tert*-butyl(ethyl)(methyl)silyl)-2-naphthol (684 mg, 2.10 mmol) in THF (10 mL) at 0 °C, and the reaction mixture was stirred for 20 min at 0 °C. *N*-Phenylbis(trifluoromethanesulfonimide) (825 mg, 2.31 mmol) was added to it, and the mixture was stirred for 5 min at 0 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 100/1 to afford compound **1s** as a white solid (778 mg, 1.92 mmol; 92% yield).

¹H NMR (CDCl₃): δ 8.28 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.95 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.92-7.84 (m, 1H), 7.60-7.50 (m, 3H), 1.54-1.38 (m, 1H), 1.06 (s, 9H), 0.98-0.86 (m, 4H), 0.65 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 155.4, 138.6, 133.0, 132.2, 129.8, 129.0, 126.7, 126.2, 125.1, 118.8 (q, ¹*J*_{CF} = 320 Hz), 117.8 (q, ⁵*J*_{CF} = 2.4 Hz), 28.0, 19.3, 8.2, 7.6, -1.9. ²⁹Si{¹H} NMR (CDCl₃): δ 7.9. HRMS (FAB) calcd for C₁₈H₂₄F₃O₃SSi (M+H⁺) 405.1162, found: 405.1165.

1-(Dicyclohexyl(methyl-d₃)silyl)-2-naphthyl trifluoromethanesulfonate (1q-d₃)

A mixture of Li turnings (134 mg, 20.0 mmol) and iodomethane- d_3 (318 µL, 5.00 mmol) in Et₂O (10 mL) was cooled to 0 °C and sonicated for 1.5 h at 0 °C to give a 0.42 M solution of methyllithium- d_3 (determined by acid–base titration). The resulting mixture (except for unreacted Li) was then added dropwise over 15 min to a solution of dicyclohexyldichlorosilane (1.06 mL, 4.40 mmol) in THF (3.0 mL) at -78 °C. The mixture was stirred for 30 min at -78 °C, warmed to room temperature gradually over 30 min, and further stirred for 1.5 h at room temperature. 1-Bromo-2-naphthol (900 mg, 4.03 mmol) and imidazole (567 mg, 8.18 mmol) were added to it with the aid of THF (3.0 mL), and the mixture was stirred for 16 h at 35 °C. The reaction was slowly quenched with saturated NH₄Claq at room temperature and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 50/1 to afford (1-bromo-2-naphthoxy)dicyclohexyl(methyl- d_3)silane as a colorless oil (1.52 g, 3.41 mmol; 85% yield).

¹H NMR (CDCl₃): δ 8.20 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.76 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.68 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.54 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.38 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.10 (d, ³*J*_{HH} = 8.7 Hz, 1H), 1.88-1.65 (m, 10H), 1.42-1.15 (m, 10H), 1.04 (tt, ³*J*_{HH} = 12.6 and 3.0 Hz, 2H).

*n*BuLi (2.50 mL, 3.93 mmol; 1.57 M solution in hexane) was added dropwise over 5 min to a solution of (1-bromo-2-naphthoxy)dicyclohexyl(methyl- d_3)silane (1.52 g, 3.41 mmol) in THF (8.6 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 5/1 to afford 1-dicyclohexyl(methyl- d_3)silyl-2-naphthol as a red oil (1.30 g, 3.38 mmol; 99% yield).

¹H NMR (CDCl₃): δ 8.02 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.77-7.69 (m, 2H), 7.41 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 7.30 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 6.93 (d, ³*J*_{HH} = 8.7 Hz, 1H), 5.30 (s, 1H), 1.94-1.84 (m, 2H), 1.80-1.03 (m, 20H).

NaH (150 mg, 3.75 mmol; 60 wt% in mineral oil) was added to a solution of 1dicyclohexyl(methyl- d_3)silyl-2-naphthol (1.30 g, 3.38 mmol) in THF (16.6 mL) at 0 °C, and the reaction mixture was stirred for 20 min at 0 °C. *N*-Phenylbis(trifluoromethanesulfonimide) (1.30 g, 3.64 mmol) was added to it, and the mixture was stirred for 5 min at 0 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 50/1 to afford compound **1q**-*d*₃ as a colorless oil (1.51 g, 3.10 mmol; 92% yield).

¹H NMR (CDCl₃): δ 8.21 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.89 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.87 (dd, ³*J*_{HH} = 7.8 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 7.61-7.50 (m, 2H), 7.40 (d, ³*J*_{HH} = 8.7 Hz, 1H), 1.98-1.86 (m, 2H), 1.83-1.49 (m, 6H), 1.46-1.00 (m, 14H). ¹³C{¹H} NMR (CDCl₃): δ 154.2, 138.2, 132.5, 132.3, 129.2, 128.9, 127.2, 126.7, 126.4, 119.0, 118.8 (q, ¹*J*_{CF} = 320 Hz), 29.0, 28.34, 28.32, 26.9, 26.6, -5.7-7.5 (m). HRMS (FAB) calcd for C₂₄H₂₉D₃F₃O₃SSi (M+H⁺) 448.1976, found: 448.1986.

1-(tert-Butyl(methyl)(methyl-d3)silyl)-2-naphthyl trifluoromethanesulfonate (1s-d3)

A mixture of Li turnings (279 mg, 40.2 mmol) and iodomethane- d_3 (636 µL, 10.0 mmol) in Et₂O (10 mL) was cooled to 0 °C and sonicated for 4 h at 0 °C to give a 0.20 M solution of methyllithium- d_3 (determined by acid–base titration). The resulting mixture (except for unreacted Li) was then added dropwise over 10 min to a solution of *tert*-butylchloro(methyl)silane (600 mg, 4.39 mmol) in Et₂O (3.0 mL) at –78 °C. The mixture was stirred for 30 min at –78 °C, warmed to room temperature, and further stirred for 1 h at room temperature. The mixture was passed through a pad of Celite with Et₂O under nitrogen, and most of the solvent was removed by distillation under atmospheric pressure. The resulting mixture was vacuum-transferred to afford *tert*-butyl(methyl)(methyl- d_3)silane as a colorless oil (1.89 g, 2.37 mmol; 54% yield, 15 wt% in Et₂O).

¹H NMR (CDCl₃): δ 3.62 (q, ³*J*_{HH} = 3.8 Hz, 1H), 0.91 (s, 9H), 0.02 (d, ³*J*_{HH} = 3.7 Hz, 3H).

tert-Butyl(methyl)(methyl- d_3)silane (1.89 g, 2.37 mmol; 15 wt% in Et₂O) was added to a suspension of PdCl₂ (106 mg, 0.600 mmol) in CCl₄ (2.0 mL) at room temperature. The mixture was

stirred for 5 h at room temperature and passed through a pad of Celite with THF (3.0 mL) under nitrogen. 1-Bromo-2-naphthol (559 mg, 2.51 mmol) and imidazole (350 mg, 5.15 mmol) were added to it and the mixture was stirred for 4 h at 60 °C. The reaction was quenched with H₂O at room temperature and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane to afford (1-bromo-2-naphthoxy)*tert*-butyl(methyl)(methyl-*d*₃)silane as a colorless oil (494 mg, 1.52 mmol; 64% yield).

¹H NMR (CDCl₃): δ 8.21 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.77 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.69 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.55 (ddd, ³*J*_{HH} = 8.7 and 6.8 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.39 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.12 (d, ³*J*_{HH} = 8.7 Hz, 1H), 1.09 (s, 9H), 0.29 (s, 3H).

*n*BuLi (1.00 mL, 1.52 mmol; 1.52 M solution in hexane) was added dropwise over 5 min to a solution of (1-bromo-2-naphthoxy)*tert*-butyl(methyl)(methyl- d_3)silane (494 mg, 1.52 mmol) in THF (4.0 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc = 5/1 to afford 1-(*tert*-butyl(methyl)(methyl- d_3)silyl)-2-naphthol as a red oil (427 mg, 1.38 mmol; 91% yield).

¹H NMR (CDCl₃): δ 8.03 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.75 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.74 (dd, ³*J*_{HH} = 8.3 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.40 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.29 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 6.95 (d, ³*J*_{HH} = 8.7 Hz, 1H), 5.15 (s, 1H), 1.01 (s, 9H), 0.56 (s, 3H).

NaH (61.0 mg, 1.53 mmol; 60 wt% in mineral oil) was added to a solution of 1-(*tert*-butyl(methyl)(methyl- d_3)silyl)-2-naphthol (427 mg, 1.38 mmol) in THF (6.0 mL) at 0 °C, and the reaction mixture was stirred for 20 min at 0 °C. *N*-Phenylbis(trifluoromethanesulfonimide) (546 mg, 1.53 mmol) was added to it, and the mixture was stirred for 5 min at 0 °C and for 1 h at room temperature. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane to afford compound **1s**- d_3 as a white solid (510 mg, 1.30 mmol; 94% yield).

¹H NMR (CDCl₃): δ 8.26 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.94 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.91-7.85 (m, 1H),

7.61-7.50 (m, 3H), 1.07 (s, 9H), 0.64 (s, 3H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 155.1, 138.4, 133.0, 132.2, 130.2, 129.0, 126.6, 126.5, 126.2, 118.8 (q, ${}^{1}J_{CF} = 320$ Hz), 117.8 (q, ${}^{5}J_{CF} = 2.6$ Hz), 27.7, 19.1, 0.5. HRMS (FAB) calcd for C₁₇H₁₉D₃F₃O₃SSi (M+H⁺) 394.1194, found: 394.1197.

Analytical Data for Other Substrates:

1-(Dicyclohexyl(3-methylbutyl)silyl)-2-naphthyl trifluoromethanesulfonate (1b)

¹H NMR (CDCl₃): δ 8.30 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.93 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.88 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.63-7.51 (m, 2H), 7.45 (d, ³*J*_{HH} = 9.2 Hz, 1H), 2.07-1.93 (m, 2H), 1.89-1.15 (m, 25H), 0.96 (d, ³*J*_{HH} = 6.4 Hz, 6H). ¹³C{¹H} NMR (CDCl₃): δ 154.4, 138.8, 132.6, 132.2, 129.1, 129.0, 126.6, 126.4, 126.3, 118.83 (q, ⁵*J*_{CF} = 1.9 Hz), 118.76 (q, ¹*J*_{CF} = 320 Hz), 33.5, 31.7, 29.2, 29.0, 28.6, 28.5, 27.1, 26.8, 22.2, 9.8. ²⁹Si{¹H} NMR (CDCl₃): δ 1.3. HRMS (DART) calcd for C₂₈H₄₀F₃O₃SSi (M+H⁺) 541.2414, found: 541.2408.

1-(Dicyclohexyl(3-(4-fluorophenyl)propyl)silyl)-2-naphthyl trifluoromethanesulfonate (1d)

¹H NMR (CDCl₃): δ 8.20-8.13 (m, 1H), 7.90 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.90-7.83 (m, 1H), 7.56-7.47 (m, 2H), 7.39 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.12-7.03 (m, 2H), 6.98-6.90 (m, 2H), 2.64 (t, ³*J*_{HH} = 7.6 Hz, 2H), 1.95-1.82 (m, 2H), 1.82-1.35 (m, 12H), 1.35-1.05 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 161.4 (d, ¹*J*_{CF} = 243 Hz), 154.4, 138.6, 138.2 (d, ⁴*J*_{CF} = 3.8 Hz), 132.7, 132.2, 130.0 (d, ³*J*_{CF} = 7.7 Hz), 129.1, 128.8, 126.7, 126.4, 126.0, 118.80 (q, ⁵*J*_{CF} = 1.9 Hz), 118.77 (q, ¹*J*_{CF} = 320 Hz), 115.1 (d, ²*J*_{CF} = 21.1 Hz), 39.4, 29.1, 28.9, 28.5, 28.4, 27.1, 27.0, 26.7, 11.8. ²⁹Si{¹H} NMR (CDCl₃): δ 0.8. HRMS (DART) calcd for C₃₂H₃₉F₄O₃SSi (M+H⁺) 607.2320, found: 607.2330.

1-(Dicyclohexyl(3-(4-(phenylethynyl)phenyl)propyl)silyl)-2-naphthyl trifluoromethanesulfonate (1e)

¹H NMR (CDCl₃): δ 8.17 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.96-7.83 (m, 2H), 7.58-7.28 (m, 10H), 7.12 (d,

 ${}^{3}J_{\text{HH}} = 7.8 \text{ Hz}, 2\text{H}$, 2.69 (t, ${}^{3}J_{\text{HH}} = 7.3 \text{ Hz}, 2\text{H}$), 1.96-1.82 (m, 2H), 1.82-1.63 (m, 6H), 1.63-1.36 (m, 6H), 1.36-1.05 (m, 12H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 154.4, 143.0, 138.6, 138.2, 132.7, 132.2, 131.7, 129.1, 128.81, 128.77, 128.4, 128.2, 126.7, 126.4, 126.0, 123.6, 120.7, 118.8 (q, ${}^{5}J_{\text{CF}} = 1.9 \text{ Hz}$), 118.7 (q, ${}^{1}J_{\text{CF}} = 320 \text{ Hz}$), 89.7, 79.0, 40.2, 29.1, 28.9, 28.5, 28.4, 27.0, 26.7, 11.8. ${}^{29}\text{Si}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 0.8. HRMS (DART) calcd for C₄₀H₄₄F₃O₃SSi (M+H⁺) 689.2727, found: 689.2727.

1-((4-(*tert*-Butyldimethylsilyloxy)butyl)dicyclohexylsilyl)-2-naphthyl trifluoromethanesulfonate (1f)

¹H NMR (CDCl₃): δ 8.25 (t, ³*J*_{HH} = 7.8 Hz, 1H), 7.90 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.87 (dd, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 2.3 Hz, 1H), 7.60-7.49 (m, 2H), 7.40 (d, ³*J*_{HH} = 9.2 Hz, 1H), 3.62 (t, ³*J*_{HH} = 6.2 Hz, 2H), 2.00-1.88 (m, 2H), 1.84-1.56 (m, 8H), 1.56-1.08 (m, 18H), 0.87 (s, 9H), 0.02 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 154.3, 138.7, 132.6, 132.2, 129.03, 128.95, 126.6, 126.4, 126.3, 118.8 (q, ⁵*J*_{CF} = 2.2 Hz), 118.7 (q, ¹*J*_{CF} = 320 Hz), 62.8, 37.2, 29.2, 28.9, 28.54, 28.49, 27.0, 26.8, 26.1, 21.1, 18.4, 11.9, -5.2. ²⁹Si{¹H} NMR (CDCl₃): δ 18.3, 1.0. HRMS (DART) calcd for C₃₃H₅₂F₃O₄SSi₂ (M+H⁺) 657.3071, found: 657.3079.

1-((4-(9-Carbazolyl)butyl)dicyclohexylsilyl)-2-naphthyl trifluoromethanesulfonate (1g)

¹H NMR (CDCl₃): δ 8.13 (d, ³*J*_{HH} = 8.7 Hz, 1H), 8.08 (d, ³*J*_{HH} = 7.3 Hz, 2H), 7.90 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.86 (dd, ³*J*_{HH} = 8.2 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 7.53-7.32 (m, 7H), 7.19 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 0.9 Hz, 2H), 4.28 (t, ³*J*_{HH} = 7.1 Hz, 2H), 1.96 (quint, ³*J*_{HH} = 7.3 Hz, 2H), 1.88-1.76 (m, 2H), 1.75-1.30 (m, 12H), 1.30-0.97 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 154.3, 140.5, 138.5, 132.7, 132.1, 129.0, 128.7, 126.6, 126.4, 126.0, 125.6, 123.0, 120.4, 118.8, 118.7 (q, ¹*J*_{CF} = 320 Hz), 108.8, 42.7, 33.1, 29.1, 28.8, 28.5, 28.4, 26.9, 26.7, 22.8, 11.9. ²⁹Si{¹H} NMR (CDCl₃): δ 0.9. HRMS (DART) calcd for C₃₉H₄₅F₃NO₃SSi (M+H⁺) 692.2836, found: 692.2843.

2-(Butyldicyclohexylsilyl)-3-methylphenyl trifluoromethanesulfonate (1i)

¹H NMR (CDCl₃): δ 7.29 (t, ³*J*_{HH} = 8.0 Hz, 1H), 7.13 (d, ³*J*_{HH} = 8.3 Hz, 2H), 2.50 (s, 3H), 1.91-1.62 (m, 8H), 1.58-1.47 (m, 2H), 1.46-1.13 (m, 16H), 1.10-0.99 (m, 2H), 0.91 (t, ³*J*_{HH} = 7.1 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 156.7, 147.7, 130.3, 130.2, 128.2, 118.7 (q, ¹*J*_{CF} = 320 Hz), 117.1 (q, ⁵*J*_{CF} = 2.2 Hz), 29.0, 28.6, 28.5, 27.3, 27.2, 27.1, 26.4, 24.2, 13.9, 11.7. ²⁹Si{¹H} NMR (CDCl₃): δ 0.9. HRMS (DART) calcd for C₂₄H₃₈F₃O₃SSi (M+H⁺) 491.2258, found: 491.2272.

2-(Butyldicyclohexylsilyl)-3,5-dimethylphenyl trifluoromethanesulfonate (1j)

¹H NMR (CDCl₃): δ 6.98 (s, 1H), 6.96 (s, 1H), 2.47 (s, 3H), 2.33 (s, 3H), 1.93-1.63 (m, 8H), 1.62-1.48 (m, 2H), 1.48-1.13 (m, 16H), 1.11-0.99 (m, 2H), 0.93 (t, ³*J*_{HH} = 6.9 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 156.8, 147.3, 140.9, 131.3, 124.4, 118.7 (q, ¹*J*_{CF} = 320 Hz), 117.8 (q, ⁵*J*_{CF} = 2.2 Hz), 29.1, 28.7, 28.6, 27.3, 27.24, 27.15, 26.4, 24.1, 21.1, 13.9, 11.7. ²⁹Si{¹H} NMR (CDCl₃): δ 0.6. HRMS (DART) calcd for C₂₅H₄₀F₃O₃SSi (M+H⁺) 505.2414, found: 505.2428.

2-(Butyldicyclohexylsilyl)-3-(2-methyl-1-propenyl)phenyl trifluoromethanesulfonate (1k)

¹H NMR (CDCl₃): δ 7.34 (dd, ${}^{3}J_{\text{HH}}$ = 8.3 and 7.8 Hz, 1H), 7.17 (d, ${}^{3}J_{\text{HH}}$ = 8.3 Hz, 1H), 7.08 (d, ${}^{3}J_{\text{HH}}$ = 7.8 Hz, 1H), 6.39 (s, 1H), 1.91 (d, ${}^{4}J_{\text{HH}}$ = 1.4 Hz, 3H), 1.85-1.58 (m, 8H), 1.70 (d, ${}^{4}J_{\text{HH}}$ = 0.9 Hz, 3H), 1.56-1.43 (m, 2H), 1.43-1.07 (m, 16H), 1.05-0.95 (m, 2H), 0.89 (t, ${}^{3}J_{\text{HH}}$ = 6.9 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 156.7, 148.6, 135.4, 130.3, 130.0, 128.1, 127.8, 118.7 (q, ${}^{1}J_{\text{CF}}$ = 320 Hz), 117.2 (q, ${}^{5}J_{\text{CF}}$ = 2.2 Hz), 29.00, 28.96, 28.7, 28.6, 27.4, 27.21, 27.16, 26.3, 26.2, 19.4, 14.0, 11.7. ²⁹Si{¹H} NMR (CDCl₃): δ 0.6. HRMS (DART) calcd for C₂₇H₄₂F₃O₃SSi (M+H⁺) 531.2571, found: 531.2578.

¹H NMR (CDCl₃): δ 7.38 (dd, ³*J*_{HH} = 8.2 and 7.3 Hz, 1H), 7.34 (dd, ³*J*_{HH} = 8.2 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.21 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.16 (dd, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 6.93 (d, ³*J*_{HH} = 8.3 Hz, 2H), 3.88 (s, 3H), 1.81-1.60 (m, 8H), 1.56-1.45 (m, 2H), 1.33-1.00 (m, 14H), 1.00-0.85 (m, 2H), 0.78 (t, ³*J*_{HH} = 6.9 Hz, 3H), 0.56-0.42 (m, 2H). ¹³C{¹H} NMR (CDCl₃): δ 159.5, 157.0, 152.9, 136.3, 130.74, 130.67, 129.9, 127.7, 118.7 (q, ¹*J*_{CF} = 320 Hz), 117.3 (q, ⁵*J*_{CF} = 2.2 Hz), 113.3, 55.6, 29.3, 29.2, 28.51, 28.49, 27.14, 27.10, 26.3, 13.8, 11.3. ²⁹Si{¹H} NMR (CDCl₃): δ 1.5. HRMS (DART) calcd for C₃₀H₄₂F₃O₄SSi (M+H⁺) 583.2520, found: 583.2545.

2-(Butyldicyclohexylsilyl)-3-(4-cyanophenyl)phenyl trifluoromethanesulfonate (1m)

¹H NMR (CDCl₃): δ 7.70 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.48-7.39 (m, 4H), 7.09 (dd, ³*J*_{HH} = 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 1.74-1.61 (m, 8H), 1.50-1.41 (m, 2H), 1.25-0.95 (m, 14H), 0.93-0.82 (m, 2H), 0.76 (t, ³*J*_{HH} = 6.9 Hz, 3H), 0.43-0.32 (m, 2H). ¹³C{¹H} NMR (CDCl₃): δ 157.0, 150.6, 148.2, 131.7, 130.40, 130.38, 130.2, 127.7, 118.67 (q, ¹*J*_{CF} = 320 Hz), 118.67, 118.5 (q, ⁵*J*_{CF} = 2.2 Hz), 111.8, 29.2, 29.1, 28.4, 27.1, 27.00, 26.95, 26.2, 13.7, 11.4. ²⁹Si{¹H} NMR (CDCl₃): δ 1.8. HRMS (FAB) calcd for C₃₀H₃₉F₃NO₃SSi (M+H⁺) 578.2367, found: 578.2373.

2-(Butyldicyclohexylsilyl)-3-(3-thienyl)phenyl trifluoromethanesulfonate (1n)

¹H NMR (CDCl₃): δ 7.41-7.31 (m, 3H), 7.19 (dd, ${}^{3}J_{HH} = 7.3$ Hz and ${}^{4}J_{HH} = 1.4$ Hz, 1H), 7.13 (dd, ${}^{4}J_{HH} = 3.2$ and 1.4 Hz, 1H), 7.06 (dd, ${}^{3}J_{HH} = 5.0$ Hz and ${}^{4}J_{HH} = 1.4$ Hz, 1H), 1.76-1.58 (m, 8H), 1.53-1.44 (m, 2H), 1.27-1.03 (m, 14H), 0.91-0.77 (m, 5H), 0.63-0.55 (m, 2H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 156.9, 147.4, 143.9, 130.6, 129.9, 129.7, 128.2, 125.0, 123.8, 118.7 (q, ${}^{1}J_{CF} = 321$ Hz), 118.0 (q, ${}^{5}J_{CF} = 2.2$ Hz), 29.3, 29.2, 28.5, 28.4, 27.3, 27.2, 27.1, 26.2, 13.9, 11.0. ${}^{29}Si{}^{1}H$ NMR (CDCl₃): δ 1.5.

HRMS (FAB) calcd for C₂₇H₃₈F₃O₃S₂Si (M+H⁺) 559.1978, found: 559.1979.

2-(Butyldicyclohexylsilyl)-3-methoxyphenyl trifluoromethanesulfonate (10)

¹H NMR (CDCl₃): δ 7.37 (t, ³*J*_{HH} = 8.2 Hz, 1H), 6.95 (d, ³*J*_{HH} = 8.2 Hz, 1H), 6.81 (d, ³*J*_{HH} = 8.2 Hz, 1H), 3.80 (s, 3H), 1.85-1.47 (m, 10H), 1.46-1.10 (m, 16H), 1.04-0.95 (m, 2H), 0.90 (t, ³*J*_{HH} = 6.9 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 165.9, 156.3, 131.7, 118.7 (q, ¹*J*_{CF} = 320 Hz), 117.4, 112.4 (q, ⁵*J*_{CF} = 1.9 Hz), 109.0, 55.3, 28.8, 28.70, 28.67, 28.6, 27.3, 27.24, 27.16, 25.4, 14.0, 11.3. ²⁹Si{¹H} NMR (CDCl₃): δ 1.1. HRMS (FAB) calcd for C₂₄H₃₈F₃O₄SSi (M+H⁺) 507.2207, found: 507.2210.

4-(Butyldicyclohexylsilyl)-1-(phenylsulfonyl)-5-indolyl trifluoromethanesulfonate (1p)

¹H NMR (CDCl₃): δ 8.04 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.95-7.87 (m, 2H), 7.70 (d, ³*J*_{HH} = 4.1 Hz, 1H), 7.63-7.56 (m, 1H), 7.50 (t, ³*J*_{HH} = 7.8 Hz, 2H), 7.27 (d, ³*J*_{HH} = 9.2 Hz, 1H), 6.85 (d, ³*J*_{HH} = 3.2 Hz, 1H), 1.87-1.43 (m, 10H), 1.43-1.02 (m, 18H), 0.87 (t, ³*J*_{HH} = 6.9 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 152.4, 138.2, 137.0, 134.4, 132.7, 129.6, 127.9, 127.1, 122.6, 118.7 (q, ¹*J*_{CF} = 320 Hz), 116.5 (q, ⁵*J*_{CF} = 1.9 Hz), 115.6, 110.9, 28.7, 28.41, 28.38, 27.2, 27.0, 26.8, 25.6, 13.8, 10.9. ²⁹Si{¹H} NMR (CDCl₃): δ 1.0. HRMS (DART) calcd for C₃₁H₄₁F₃NO₅S₂Si (M+H⁺) 656.2142, found: 656.2145.

1-(Dicyclohexyl(methyl)silyl)-2-naphthyl trifluoromethanesulfonate (1q)

¹H NMR (CDCl₃): δ 8.22 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.89 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.87 (dd, ³*J*_{HH} = 7.3 Hz and ³*J*_{HH} = 1.8 Hz, 1H), 7.62-7.50 (m, 2H), 7.41 (d, ³*J*_{HH} = 9.2 Hz, 1H), 2.01-1.87 (m, 2H), 1.85-1.49 (m, 6H), 1.48-1.00 (m, 14H), 0.57 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 154.2, 138.2, 132.5, 132.3, 129.2, 128.9, 127.3, 126.7, 126.4, 119.0 (q, ⁵*J*_{CF} = 1.9 Hz), 118.8 (q, ¹*J*_{CF} = 320 Hz), 29.0, 28.3, 27.0, 26.6, -5.9. ²⁹Si{¹H} NMR (CDCl₃): δ 2.7. HRMS (DART) calcd for C₂₄H₃₂F₃O₃SSi (M+H⁺) 485.1788, found: 485.1797.

1-(Diisopropyl(methyl)silyl)-2-naphthyl trifluoromethanesulfonate (1r)

¹H NMR (CDCl₃): δ 8.29-8.21 (m, 1H), 7.96-7.85 (m, 2H), 7.61-7.51 (m, 2H), 7.46 (d, ${}^{3}J_{HH} = 8.7$ Hz, 1H), 1.64 (sept, ${}^{3}J_{HH} = 7.4$ Hz, 2H), 1.19 (d, ${}^{3}J_{HH} = 7.4$ Hz, 6H), 0.87 (d, ${}^{3}J_{HH} = 7.4$ Hz, 6H), 0.59 (s, 3H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 154.1, 138.1, 132.6, 132.3, 129.2, 128.9, 127.6, 126.7, 126.4, 119.0 (q, ${}^{5}J_{CF} = 1.9$ Hz), 118.8 (q, ${}^{1}J_{CF} = 320$ Hz), 18.9, 18.8, 14.5, -7.6. ${}^{29}Si{}^{1}H{}$ NMR (CDCl₃): δ 8.1. HRMS (DART) calcd for C₁₈H₂₄F₃O₃SSi (M+H⁺) 405.1162, found: 405.1167.

1-(tert-Butyldimethylsilyl)-2-naphthyl trifluoromethanesulfonate (1s)

¹H NMR (CDCl₃): δ 8.26 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.94 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.88 (dd, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.8 Hz 1H), 7.60-7.49 (m, 3H), 1.07 (s, 9H), 0.64 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 155.1, 138.4, 133.0, 132.2, 130.2, 129.0, 126.6, 126.5, 126.2, 118.8 (q, ¹*J*_{CF} = 320 Hz), 117.8 (q, ⁵*J*_{CF} = 2.4 Hz), 27.7, 19.1, 0.6. ²⁹Si{¹H} NMR (CDCl₃): δ 4.7. HRMS (DART) calcd for C₁₇H₂₂F₃O₃SSi (M+H⁺) 391.1006, found: 391.1015.

2-(Dicyclohexyl(methyl)silyl)-3-methylphenyl trifluoromethanesulfonate (1u)

¹H NMR (CDCl₃): δ 7.28 (dd, ³*J*_{HH} = 8.2 and 7.8 Hz, 1H), 7.19 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.12 (d, ³*J*_{HH} = 7.3 Hz, 1H), 2.49 (s, 3H), 1.93-1.60 (m, 8H), 1.46-1.02 (m, 14H), 0.45 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 156.6, 147.5, 130.4, 130.1, 128.7, 118.7 (q, ¹*J*_{CF} = 320 Hz), 116.9 (q, ⁵*J*_{CF} = 1.9 Hz), 28.9, 28.5, 28.4, 28.3, 27.0, 25.7, 24.8, -5.7. ²⁹Si{¹H} NMR (CDCl₃): δ 2.8. HRMS (DART) calcd for C₂₁H₃₂F₃O₃SSi (M+H⁺) 449.1788, found: 449.1797.

2-(tert-Butyldimethylsilyl)-3-methylphenyl trifluoromethanesulfonate (1v)

¹H NMR (CDCl₃): δ 7.31 (dd, ³*J*_{HH} = 8.2 and 6.9 Hz, 1H), 7.28 (dd, ³*J*_{HH} = 8.7 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H) 7.14 (d, ³*J*_{HH} = 6.4 Hz, 1H), 2.51 (s, 3H), 0.98 (s, 9H), 0.48 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 157.3, 147.7, 130.7, 130.0, 127.7, 118.8 (q, ¹*J*_{CF} = 321 Hz), 115.8 (q, ⁵*J*_{CF} = 2.2 Hz), 27.1, 25.5, 19.2, 0.1. ²⁹Si{¹H} NMR (CDCl₃): δ 4.9. HRMS (DART) calcd for C₁₄H₂₂F₃O₃SSi (M+H⁺) 355.1006, found: 355.1018.

III. Catalytic Reactions and Derivatizations

General Procedure for Compounds 2a-2h in Scheme 2.

Et₂NH (43.4 μ L, 0.420 mmol) was added to a mixture of Pd(OAc)₂ (2.2 mg, 10 μ mol), PCy₃•HBF₄ (7.4 mg, 20 μ mol), and compound **1** (0.200 mmol) in DMF (0.80 mL), and the resulting solution was stirred for 18 h at 80 °C. After cooled to room temperature, the reaction mixture was diluted with Et₂O and H₂O was added. This was extracted with Et₂O, and the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC to afford compound **2**.

General Procedure for Compounds 2i-2p in Scheme 2.

Et₂NH (43.4 μ L, 0.420 mmol) was added to a mixture of Pd(OAc)₂ (2.2 mg, 10 μ mol), PCy₃•HBF₄ (7.4 mg, 20 μ mol), and compound **1** (0.200 mmol) in DMF (4.0 mL), and the resulting solution was stirred for 18 h at 100 °C. After cooled to room temperature, the reaction mixture was diluted with Et₂O and H₂O was added. This was extracted with Et₂O, and the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC to afford compound **2**.

Compound 2a. The reaction was conducted on 0.150 mmol scale. Hexane was used for the preparative TLC. Colorless oil. (45.1 mg, 0.113 mmol; 75% yield, containing ca. 3% impurity). The reaction could be scaled up using 3.05 mmol of **1a** to give **2a** in 75% yield (883 mg, 2.30 mmol; containing ca. 6% impurity).

¹H NMR (CDCl₃): δ 7.83-7.77 (m, 2H), 7.68 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.47 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.41 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 7.31 (d, ³*J*_{HH} = 8.7 Hz, 1H), 2.61 (dd, ³*J*_{HH} = 10.1 and 6.4 Hz, 1H), 2.02-1.62 (m, 12H), 1.62-1.12 (m, 14H), 1.01 (d, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 156.0, 140.8, 135.3, 132.6, 131.0, 129.1, 128.5, 126.5, 125.0, 123.7, 33.7, 31.3, 29.1, 28.9, 28.8, 28.4, 28.3, 28.2, 28.1, 27.0, 26.9, 25.0, 24.8, 24.5, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 14.6. IR (neat) 3042, 2919, 2845, 1502, 1445, 1099, 996, 845, 815, 747 cm⁻¹. HRMS (EI) calcd for C₂₆H₃₆Si (M⁺) 376.2581, found: 376.2586.

Compound 2b. Hexane was used for the preparative TLC. White solid. (60.5 mg, 0.155 mmol; 78% yield, containing ca. 1% impurity).

¹H NMR (CDCl₃): δ 7.85-7.80 (m, 2H), 7.72 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.50 (ddd, ³*J*_{HH} = 8.3 and 6.8 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.43 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.33 (d, ³*J*_{HH} = 8.2 Hz, 1H), 2.73 (dd, ³*J*_{HH} = 10.1 and 6.9 Hz, 1H), 2.00-1.63 (m, 13H), 1.55-1.13 (m, 12H), 1.05 (d, ³*J*_{HH} = 6.0 Hz, 6H). ¹³C{¹H} NMR (CDCl₃): δ 156.1, 140.7, 135.3, 132.6, 131.1, 129.1, 128.5, 126.5, 125.0, 123.6, 40.7, 29.6, 29.3, 29.1, 28.9, 28.8, 28.42, 28.39, 28.3, 28.2, 28.1, 27.0, 26.9, 25.0, 24.5, 23.3, 22.8. ²⁹Si{¹H} NMR (CDCl₃): δ 14.7. IR (KBr) 3044, 2953, 2919, 2844, 1506, 1443, 996, 888, 810, 748 cm⁻¹. HRMS (FAB) calcd for C₂₇H₃₉Si (M+H⁺) 391.2816, found: 391.2810.

Compound 2c. Hexane/EtOAc = $100/1 \rightarrow$ hexane was used for the preparative TLC. Colorless oil (69.6 mg, 0.159 mmol; 79% yield, containing ca. 4% impurity).

¹H NMR (CDCl₃): δ 7.86 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.76 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.53 (t, ³*J*_{HH} = 7.6 Hz, 1H), 7.47 (t, ³*J*_{HH} = 7.3 Hz, 1H), 7.42-7.33 (m, 3H), 7.31 (d, ³*J*_{HH} = 7.4 Hz, 2H), 7.25 (t, ³*J*_{HH} = 7.1 Hz, 1H), 2.98-2.81 (m, 2H), 2.74 (dd, ³*J*_{HH} = 9.6 and 6.0 Hz, 1H), 2.46-2.32 (m, 1H), 2.21-2.06 (m, 1H), 2.06-1.67 (m, 10H), 1.64-1.10 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 155.5, 142.9, 140.7, 135.3, 132.7, 131.2, 129.1, 128.6, 128.52, 128.49, 126.5, 125.9, 125.1, 123.5, 38.1, 33.7, 31.4, 29.2, 28.94, 28.92, 28.39, 28.37, 28.3, 28.2, 28.1, 27.0, 26.9, 25.0, 24.5. ²⁹Si{¹H} NMR (CDCl₃): δ 14.6. IR (neat) 3026, 2919, 2845, 1496, 1445, 1096, 887, 817, 745, 698 cm⁻¹. HRMS (EI) calcd for C₃₁H₃₈Si (M⁺) 438.2737, found: 438.2743.

Compound 2d. Hexane/EtOAc = 50/1 was used for the preparative TLC. Colorless oil (72.1 mg, 0.158 mmol; 79% yield, containing ca. 4% impurity).

¹H NMR (CDCl₃): δ 7.88 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.78 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.55 (t, ³*J*_{HH} = 7.6

Hz, 1H), 7.49 (t, ${}^{3}J_{\text{HH}} = 7.3$ Hz, 1H), 7.39 (dd, ${}^{3}J_{\text{HH}} = 8.2$ Hz and ${}^{4}J_{\text{HH}} = 2.3$ Hz, 1H), 7.31-7.22 (m, 2H), 7.06 (td, ${}^{3}J = 8.7$ Hz and ${}^{4}J_{\text{HH}} = 2.3$ Hz, 2H), 2.96-2.79 (m, 2H), 2.79-2.69 (m, 1H), 2.44-2.30 (m, 1H), 2.18-2.04 (m, 1H), 2.05-1.67 (m, 10H), 1.65-1.17 (m, 12H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 161.4 (d, ${}^{1}J_{\text{CF}} = 243$ Hz), 155.3, 140.7, 138.5 (d, ${}^{4}J_{\text{CF}} = 2.9$ Hz), 135.3, 132.7, 131.2, 129.8 (d, ${}^{3}J_{\text{CF}} = 7.7$ Hz), 129.1, 128.5, 126.6, 125.2, 123.5, 115.2 (d, ${}^{2}J_{\text{CF}} = 21.1$ Hz), 37.2, 33.8, 31.2, 29.2, 28.91, 28.89, 28.34, 28.29, 28.1, 28.0, 27.0, 26.8, 25.0, 24.4. ${}^{29}\text{Si}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 14.6. IR (neat) 3041, 2919, 2845, 1508, 1445, 1221, 1098, 846, 819, 747 cm⁻¹. HRMS (FAB) calcd for C₃₁H₃₈FSi (M+H⁺) 457.2721, found: 457.2716.

Compound 2e. Hexane/EtOAc = $15/1 \rightarrow 50/1$ was used for the preparative TLC. White amorphous (60.7 mg, 0.113 mmol; 56% yield).

¹H NMR (CDCl₃): δ 7.82 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.70 (d, ³*J*_{HH} = 7.3 Hz, 1H), 7.56-7.45 (m, 5H), 7.42 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.38-7.28 (m, 4H), 7.23 (d, ³*J*_{HH} = 8.2 Hz, 2H), 2.92-2.75 (m, 2H), 2.67 (dd, ³*J*_{HH} = 10.1 and 6.4 Hz, 1H), 2.38-2.25 (m, 1H), 2.12-1.99 (m, 1H), 1.97-1.61 (m, 10H), 1.53-1.37 (m, 2H), 1.37-1.11 (m, 10H). ¹³C{¹H} NMR (CDCl₃): δ 155.3, 143.4, 140.7, 135.3, 132.7, 131.8, 131.7, 131.2, 129.1, 128.6, 128.5, 128.2, 126.6, 125.2, 123.6, 123.5, 120.8, 89.7, 89.0, 38.0, 33.5, 31.2, 29.2, 28.91, 28.89, 28.4, 28.3, 28.1, 28.0, 27.0, 26.8, 25.0, 24.4. ²⁹Si{¹H} NMR (CDCl₃): δ 14.5. IR (KBr) 3041, 2918, 2845, 1510, 1444, 996, 816, 753, 689, 510 cm⁻¹. HRMS (FAB) calcd for C₃₉H₄₃Si (M+H⁺) 539.3129, found: 539.3141.

Compound 2f. Hexane/EtOAc = $30/1 \rightarrow 50/1$ was used for the preparative TLC. Colorless oil (81.2 mg, 0.160 mmol; 80% yield, containing ca. 3% impurity).

¹H NMR (CDCl₃): δ 7.82 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.70 (d, ³*J*_{HH} = 7.3 Hz, 1H), 7.48 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.42 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.33 (d, ³*J*_{HH} = 8.7 Hz, 1H), 3.82-3.64 (m, 2H), 2.68-2.56 (m, 1H), 2.08-1.61 (m, 14H), 1.55-1.11 (m, 12H), 0.93 (s, 9H), 0.09 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 155.8, 140.7, 135.3, 132.6, 131.1, 129.1, 128.5, 126.5, 125.1, 123.6, 63.6, 34.9, 31.2, 29.0, 28.9, 28.8, 28.4, 28.34, 28.29, 28.2, 28.1, 27.7, 27.0, 26.9,

26.2, 24.9, 24.4, -5.06, -5.08. ²⁹Si{¹H} NMR (CDCl₃): δ 18.5, 14.6. IR (neat) 3042, 2922, 2848, 1445, 1256, 1099, 1018, 836, 815, 777 cm⁻¹. HRMS (FAB) calcd for C₃₂H₅₁OSi₂ (M+H⁺) 507.3473, found: 507.3480.

Compound 2g. Hexane/EtOAc = 30/1 was used for the preparative TLC. White amorphous (76.4 mg, 0.141 mmol; 70% yield, containing ca. 2% impurity).

¹H NMR (CDCl₃): δ 8.14 (d, ³*J*_{HH} = 7.8 Hz, 2H), 7.85-7.78 (m, 2H), 7.69 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.56-7.40 (m, 6H), 7.33-7.22 (m, 3H), 4.55-4.34 (m, 2H), 2.63 (dd, ³*J*_{HH} = 9.6 and 5.0 Hz, 1H), 2.25-2.01 (m, 3H), 1.95-1.57 (m, 11H), 1.45-1.02 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 155.0, 140.7, 140.6, 135.2, 132.6, 131.2, 129.1, 128.4, 126.6, 125.8, 125.2, 123.5, 123.0, 120.5, 118.9, 108.7, 43.3, 31.04, 31.02, 29.3, 29.0, 28.8, 28.4, 28.2, 28.14, 28.08, 28.0, 26.9, 26.8, 24.9, 24.3. ²⁹Si{¹H} NMR (CDCl₃): δ 14.5. IR (KBr) 3045, 2920, 2845, 1597, 1484, 1463, 1451, 1347, 1326, 1243, 1151, 816, 749, 722 cm⁻¹. HRMS (FAB) calcd for C₃₈H₄₃NSi (M⁺) 541.3159, found: 541.3168.

 $(Ar = 2-MeOCH_2O-1-naphthyl)$

Compound 2h. Hexane/EtOAc = 10/1 and then hexane/EtOAc = 50/1 were used for the preparative TLC. White amorphous (81.9 mg, 0.143 mmol; 72% yield).

¹H NMR (CDCl₃): δ 8.88 (d, ³*J*_{HH} = 8.2 Hz, 1H), 8.69 (d, ³*J*_{HH} = 8.7 Hz, 1H), 8.58 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.87 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.81 (d, ³*J*_{HH} = 9.2 Hz, 1H), 7.79-7.72 (m, 3H), 7.56 (t, ³*J*_{HH} = 7.8 Hz, 2H), 7.53-7.42 (m, 2H), 7.40-7.31 (m, 3H), 7.27 (dd, ³*J*_{HH} = 8.2 and 6.9 Hz, 1H), 7.17 (ddd, ³*J*_{HH} = 8.7 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 4.91 (d, ²*J*_{HH} = 6.9 Hz, 2H), 4.64 (d, ²*J*_{HH} = 6.9 Hz, 2H), 3.67 (t, ³*J*_{HH} = 7.3 Hz, 1H), 2.85 (s, 3H), 2.59 (s, 3H), 2.06-1.92 (m, 1H), 1.87-1.72 (m, 1H), 1.17 (t, ³*J*_{HH} = 7.6 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 160.2, 159.8, 155.9, 142.0, 138.5, 137.9, 135.2, 133.5, 132.1, 131.94, 131.85, 130.3, 129.8, 129.4, 128.7, 128.44, 128.40, 128.3, 126.43, 126.37, 126.1, 125.1, 124.3, 123.7, 123.6, 122.2, 120.7, 115.8, 114.4, 95.0, 94.1, 55.6, 55.2, 39.6, 25.8, 14.8. ²⁹Si{¹H} NMR (CDCl₃): δ 14.5. IR (KBr) 3047, 2956, 2928, 1587, 1505, 1458, 1428, 1322, 1236, 1194, 1148, 1078, 1033, 1013, 987, 921, 888, 822, 777, 748 cm⁻¹. HRMS (FAB) calcd for C₃₇H₃₅O₄Si (M+H⁺) 571.2299, found: 571.2303.

Compound 2i. Hexane was used for the preparative TLC. Colorless oil (49.0 mg, 0.144 mmol; 72% yield, containing ca. 7% impurity). The reaction could be scaled up using 3.18 mmol of **1h** to give **2h** in 79% yield (918 mg, 2.52 mmol; containing ca. 6% impurity).

¹H NMR (CDCl₃): δ 7.23 (t, ³*J*_{HH} = 7.6 Hz, 1H), 7.01 (d, ³*J*_{HH} = 6.9 Hz, 1H), 7.00 (d, ³*J*_{HH} = 7.8 Hz, 1H), 2.50 (dd, ³*J*_{HH} = 9.6 and 6.9 Hz, 1H), 2.31 (s, 3H), 1.94-1.61 (m, 12H), 1.61-1.10 (m, 14H), 0.99 (t, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 157.1, 142.4, 141.1, 130.6, 126.8, 121.8, 33.7, 31.2, 29.1, 28.9, 28.8, 28.38, 28.35, 28.3, 28.2, 28.1, 27.0, 26.9, 24.8, 24.7, 24.4, 22.8, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 155.2. IR (neat) 3046, 2919, 2846, 1575, 1460, 1445, 1095, 888, 781, 758 cm⁻¹. HRMS (EI) calcd for C₂₃H₃₆Si (M⁺) 340.2581, found: 340.2583.

Compound 2j. Hexane was used for the preparative TLC. Colorless oil (55.5 mg, 0.157 mmol; 78% yield, containing ca. 7% impurity).

¹H NMR (CDCl₃): δ 6.86 (s, 1H), 6.84 (s, 1H), 2.46 (dd, ³*J*_{HH} = 9.6 and 6.9 Hz, 1H), 2.31 (s, 3H), 2.28 (s, 3H), 1.93-1.59 (m, 12H), 1.59-1.05 (m, 14H), 0.98 (t, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 157.2, 141.0, 140.6, 138.6, 128.2, 122.6, 33.7, 30.9, 29.1, 28.9, 28.8, 28.40, 28.38, 28.3, 28.2, 28.1, 27.1, 27.0, 24.9, 24.8, 24.4, 22.7, 22.1, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 14.3. IR (neat) 2919, 2846, 1591, 1445, 1097, 995, 888, 846, 815, 732, 608 cm⁻¹. HRMS (FAB) calcd for C₂₄H₃₉Si (M+H⁺) 355.2816, found: 355.2819.

Compound 2k. Hexane was used for the preparative TLC. Colorless oil (58.6 mg, 0.154 mmol; 77% yield, containing ca. 7% impurity).

¹H NMR (CDCl₃): δ 7.29 (t, ³*J*_{HH} = 7.6 Hz, 1H), 7.15 (d, ³*J*_{HH} = 7.3 Hz, 1H), 7.01 (d, ³*J*_{HH} = 7.3 Hz, 1H), 6.17 (s, 1H), 2.52 (dd, ³*J*_{HH} = 9.6 and 6.9 Hz, 1H), 1.97-1.60 (m, 12H), 1.90 (d, ⁴*J*_{HH} = 0.9 Hz, 3H), 1.85 (d, ⁴*J*_{HH} = 0.9 Hz, 3H), 1.60-1.12 (m, 14H), 1.00 (t, ³*J*_{HH} = 7.1 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 156.9, 143.0, 141.8, 134.8, 130.1, 126.8, 126.0, 122.2, 33.7, 31.3, 28.9, 28.8, 28.6, 28.4,

28.29, 28.26, 28.2, 28.1, 27.07, 27.06, 27.0, 24.8, 24.7, 24.3, 19.6, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 14.8. IR (neat) 3048, 2919, 2846, 1562, 1458, 1445, 1097, 888, 844, 741 cm⁻¹. HRMS (FAB) calcd for C₂₆H₄₁Si (M+H⁺) 381.2972, found: 381.2981.

Compound 21. Hexane/EtOAc = 20/1 was used for the preparative TLC. Yellow oil (78.5 mg, 0.181 mmol; 91% yield, containing ca. 9% impurity).

¹H NMR (CDCl₃): δ 7.50 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.43-7.35 (m, 2H), 7.14-7.09 (m, 1H), 6.96 (d, ³*J*_{HH} = 8.7 Hz, 2H), 3.87 (s, 3H), 2.59 (dd, ³*J*_{HH} = 10.1 and 6.9 Hz, 1H), 2.02-1.43 (m, 14H), 1.40-1.05 (m, 12H), 1.02 (t, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 159.1, 157.4, 143.5, 139.9, 134.7, 131.0, 128.2, 124.2, 122.8, 114.0, 55.4, 33.6, 31.0, 28.9, 28.8, 28.5, 28.2, 28.14, 28.08, 28.02, 28.00, 27.0, 26.9, 24.9, 24.82, 24.80, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 14.9. IR (neat) 3047, 2998, 2920, 2846, 1609, 1515, 1456, 1248, 1178, 1037, 785, 833 cm⁻¹. HRMS (FAB) calcd for C₂₉H₄₀OSi (M⁺) 432.2843, found: 432.2854.

Compound 2m. The purification was performed by column chromatography on silica gel with hexane/EtOAc = 20/1 and by GPC with CHCl₃. Yellow oil (62.9 mg, 0.147 mmol; 74% yield, containing ca. 9% impurity).

¹H NMR (CDCl₃) δ 7.71 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.62 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.44-7.40 (m, 2H), 7.24-7.18 (m, 1H), 2.61 (dd, ³*J*_{HH} = 10.1 and 6.9 Hz, 1H), 2.00-1.87 (m, 1H), 1.85-1.40 (m, 13H), 1.36-1.03 (m, 12H), 1.01 (t, ³*J*_{HH} = 7.3 Hz, 3H).¹³C{¹H} NMR (CDCl₃): δ 157.7, 146.8, 141.8, 141.3, 132.5, 131.2, 127.7, 125.1, 124.7, 119.2, 110.7, 33.5, 31.1, 28.9, 28.8, 28.3, 28.03, 27.96, 27.9, 26.9, 26.8, 24.8, 24.74, 24.71, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 15.2. IR (neat) 2920, 2846, 1606, 1445, 909, 844, 792, 546, 507 cm⁻¹. HRMS (FAB) calcd for C₂₉H₃₈NSi (M+H⁺) 428.2768, found: 428.2770.

Compound 2n. The purification was performed by column chromatography on silica gel with hexane and by GPC with CHCl₃. Colorless oil (54.2 mg, 0.133 mmol; 67% yield, containing ca. 6% impurity).

¹H NMR (CDCl₃): δ 7.44 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.41-7.31 (m, 4H), 7.11 (d, ³*J*_{HH} = 7.8 Hz, 1H), 2.58 (dd, ³*J*_{HH} = 9.6 and 6.9 Hz, 1H), 2.01-1.43 (m, 14H), 1.38-1.07 (m, 12H), 1.02 (t, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 157.4, 143.6, 139.9, 138.6, 131.0, 126.7, 125.8, 124.3, 123.3, 120.4, 33.5, 30.8, 29.04, 29.00, 28.5, 28.2, 28.1, 27.0, 24.9, 24.7, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 15.2. IR (neat) 2919, 2845, 1568, 1459, 1445, 888, 845, 768, 740, 525 cm⁻¹. HRMS (FAB) calcd for C₂₆H₃₆SSi (M⁺) 408.2301, found: 408.2314.

Compound 20. Hexane/EtOAc = $100/1 \rightarrow 50/1$ was used for the preparative TLC. Colorless oil (44.1 mg, 0.124 mmol; 62% yield, containing ca. 5% impurity).

¹H NMR (CDCl₃): δ 7.27 (dd, ³*J*_{HH} = 8.2 and 7.4 Hz, 1H), 6.80 (d, ³*J*_{HH} = 7.8 Hz, 1H), 6.66 (d, ³*J*_{HH} = 8.2 Hz, 1H), 3.77 (s, 3H), 2.53 (dd, ³*J*_{HH} = 9.6 and 6.4 Hz, 1H), 1.96-1.61 (m, 12H), 1.61-1.06 (m, 14H), 1.00 (t, ³*J*_{HH} = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 161.2, 158.2, 132.1, 125.5, 117.4, 110.8, 55.2, 33.5, 31.5, 29.0, 28.7, 28.4, 28.30, 28.28, 28.09, 28.08, 27.0, 26.9, 24.9, 24.8, 24.5, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 13.7. IR (neat) 3055, 2920, 2846, 1584, 1561, 1463, 1445, 1255, 1096, 1042, 888, 784 cm⁻¹. HRMS (FAB) calcd for C₂₃H₃₆OSi (M⁺) 356.2530, found: 356.2525.

Compound 2p. Hexane/EtOAc = $10/1 \rightarrow 30/1$ was used for the preparative TLC. This was further purified by recrystallization from CH₂Cl₂/MeOH at room temperature. Colorless solid (27.7 mg, 54.7 μ mol; 27% yield).

¹H NMR (CDCl₃): δ 7.97 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.94-7.87 (m, 2H), 7.60 (d, ³*J*_{HH} = 3.7 Hz, 1H), 7.57-7.49 (m, 1H), 7.49-7.40 (m, 2H), 7.11 (d, ³*J*_{HH} = 8.2 Hz, 1H), 6.51 (d, ³*J*_{HH} = 3.6 Hz, 1H), 2.58 (dd, ³*J*_{HH} = 9.6 and 6.4 Hz, 1H), 1.94-1.59 (m, 12H), 1.57-1.08 (m, 14H), 0.98 (t, ³*J*_{HH} = 7.1 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 152.4, 138.8, 135.6, 133.8, 133.3, 132.6, 129.4, 127.0, 126.9, 121.2, 115.8,

110.1, 34.0, 31.8, 28.7, 28.6, 28.2, 28.04, 27.97, 26.9, 26.8, 24.69, 24.66, 24.2, 14.5. ²⁹Si{¹H} NMR (CDCl₃): δ 14.3. IR (KBr) 2920, 2846, 1447, 1369, 1187, 1165, 1143, 727, 607, 590 cm⁻¹. Mp 172–174 °C. HRMS (FAB) calcd for C₃₀H₄₀NO₂SSi (M+H⁺) 506.2544, found: 506.2541.

General Procedure for Compounds 2q-2t in Scheme 3.

Et₂NH (41.4 μ L, 0.400 mmol) was added to a mixture of Pd(OAc)₂ (2.2 mg, 10 μ mol), dtbpf (5.2 mg, 11 μ mol), and compound **1** (0.200 mmol) in DMF (0.80 mL), and the resulting solution was stirred for 18 h at 80 °C. After cooled to room temperature, the reaction mixture was diluted with Et₂O and H₂O was added. This was extracted with Et₂O, and the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC with hexane to afford compound **2**.

General Procedure for Compounds 2u–2v in Scheme 3.

Et₂NH (41.4 μ L, 0.400 mmol) was added to a mixture of Pd(OAc)₂ (2.2 mg, 10 μ mol), dtbpf (5.2 mg, 11 μ mol), and compound **1** (0.200 mmol) in DMF (4.0 mL), and the resulting solution was stirred for 18 h at 100 °C. After cooled to room temperature, the reaction mixture was diluted with Et₂O and H₂O was added. This was extracted with Et₂O, and the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC with hexane to afford compound **2**.

Compound 2q. White solid (56.9 mg, 0.170 mmol; 85% yield). The reaction could be scaled up using 3.01 mmol of **1q** to give **2q** in 82% yield (823 mg, 2.46 mmol).

¹H NMR (CDCl₃): δ 7.84 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.81 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.71 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.51 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.45 (ddd, ³*J*_{HH} = 8.2 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.28 (d, ³*J*_{HH} = 8.2 Hz, 1H), 2.18 (s, 2H), 2.00-1.83 (m, 4H), 1.83-1.63 (m, 6H), 1.48-1.15 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 150.9, 142.0, 135.2, 132.3, 130.9, 129.0, 128.3, 126.4, 125.5, 125.0, 28.5, 28.09, 28.06, 28.0, 26.9, 24.4, 14.4. ²⁹Si{¹H} NMR (CDCl₃): δ 15.1. IR (KBr) 3040, 2917, 2844, 1505, 1444, 890, 847, 812, 780, 738, 715, 546 cm⁻¹. HRMS (FAB) calcd for C₂₃H₃₀Si (M⁺) 334.2111, found: 334.2112.

Compound 2r. Colorless oil. (35.4 mg, 0.139 mmol; 70% yield).

¹H NMR (CDCl₃): δ 7.87-7.79 (m, 2H), 7.70 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.49 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.44 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.29 (d, ³*J*_{HH} = 8.3 Hz, 1H), 2.18 (s, 2H), 1.40 (sept, ³*J*_{HH} = 7.8 Hz, 2H), 1.18 (d, ³*J*_{HH} = 7.8 Hz, 6H), 1.13 (d, ³*J*_{HH} = 7.3 Hz, 6H). ¹³C{¹H} NMR (CDCl₃): δ 150.8, 141.7, 135.2, 132.3, 131.0, 129.0, 128.3, 126.5, 125.5, 125.1, 18.6, 18.2, 14.6, 12.8. ²⁹Si{¹H} NMR (CDCl₃): δ 20.6. IR (neat) 3043, 2939, 2863, 1504, 1461, 879, 814, 781, 738, 696, 614 cm⁻¹. HRMS (EI) calcd for C₁₇H₂₂Si (M⁺) 254.1485, found: 254.1492.

Compound 2s. Colorless oil. (25.2 mg, 0.105 mmol; 52% yield).

¹H NMR (CDCl₃): δ 7.88-7.80 (m, 2H), 7.70 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.50 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.44 (ddd, ³*J*_{HH} = 8.2 and 6.4 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.30 (d, ³*J*_{HH} = 8.7 Hz, 1H), 2.31 (d, ²*J*_{HH} = 16.5 Hz, 1H), 2.14 (d, ²*J*_{HH} = 16.5 Hz, 1H), 1.11 (s, 9H), 0.54 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 150.1, 142.8, 134.9, 132.3, 131.2, 129.1, 128.0, 126.5, 125.6, 125.1, 26.5, 18.2, 17.1, -5.1. ²⁹Si{¹H} NMR (CDCl₃): δ 16.4. IR (neat) 3043, 2950, 2926, 2855, 1504, 1469, 1249, 1071, 829, 778, 761, 741, 593 cm⁻¹. HRMS (EI) calcd for C₁₆H₂₀Si (M⁺) 240.1329, found: 240.1334.

Compound 2t. Colorless oil. (40.8 mg, 0.154 mmol; 77% yield, selectivity = 96/4).

¹H NMR (CDCl₃): δ 7.84-7.77 (m, 2H), 7.67 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.46 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.41 (ddd, ³*J*_{HH} = 7.8 and 6.9 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.26 (d, ³*J*_{HH} = 8.2 Hz, 1H), 2.20 (d, ²*J*_{HH} = 16.5 Hz, 1H), 2.15 (d, ²*J*_{HH} = 16.5 Hz, 1H), 1.16-0.95 (m, 14H). ¹³C{¹H} NMR (CDCl₃): δ 150.5, 141.8, 135.2, 132.3, 131.0, 129.1, 128.1, 126.5, 125.5, 125.1, 27.0, 18.5, 15.1, 8.2, 3.9. ²⁹Si{¹H} NMR (CDCl₃): δ 20.6. IR (neat) 3043, 2952, 2926, 2855, 1504, 1469, 1361, 1070, 815, 782, 738, 704 cm⁻¹. HRMS (EI) calcd for C₁₇H₂₂Si (M⁺) 254.1485, found: 254.1491.

Compound 2u. Colorless oil. (48.9 mg, 0.164 mmol; 82% yield).

¹H NMR (CDCl₃): δ 7.20 (dd, ³*J*_{HH} = 7.8 and 7.3 Hz, 1H), 6.99 (d, ³*J*_{HH} = 7.3 Hz, 1H), 6.92 (d, ³*J*_{HH} = 7.8 Hz, 1H), 2.30 (s, 3H), 2.01 (s, 2H), 1.88-1.62 (m, 10H), 1.36-1.07 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 151.7, 143.8, 140.9, 130.6, 126.4, 123.6, 28.5, 28.12, 28.10, 28.0, 26.9, 24.4, 22.7, 14.2. ²⁹Si{¹H} NMR (CDCl₃): δ 15.9. IR (neat) 3045, 2919, 2845, 1576, 1445, 1094, 887, 846, 817, 781, 755 cm⁻¹. HRMS (EI) calcd for C₂₀H₃₀Si (M⁺) 298.2111, found: 298.2113.

Compound 2v. Colorless oil. (20.4 mg, 0.100 mmol; 50% yield).

¹H NMR (CDCl₃): δ 7.23 (dd, ³*J*_{HH} = 7.8 and 7.3 Hz, 1H), 7.01 (d, ³*J*_{HH} = 7.8 Hz, 1H), 6.96 (d, ³*J*_{HH} = 7.3 Hz, 1H), 2.30 (s, 3H), 2.16 (d, ²*J*_{HH} = 16.5 Hz, 1H), 1.99 (d, ²*J*_{HH} = 16.5 Hz, 1H), 1.03 (s, 9H), 0.43 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 150.9, 144.7, 140.8, 130.8, 126.5, 123.8, 26.5, 22.3, 18.1, 16.9, -5.4. ²⁹Si{¹H} NMR (CDCl₃): δ 17.5. IR (neat) 3048, 2951, 2926, 2856, 1575, 1461, 1248, 1093, 827, 771, 601 cm⁻¹. HRMS (EI) calcd for C₁₃H₂₀Si (M⁺) 204.1329, found: 204.1326.

General Procedure for Scheme 4a.

Alkyne **3** (0.225 mmol) was added to a mixture of Pd(PPh₃)₄ (8.7 mg, 7.5 μ mol) and compound **2** (0.150 mmol) in toluene (375 μ L), and the resulting solution was stirred for 15 h at 110 °C. After cooled to room temperature, the mixture was passed through a pad of silica gel with EtOAc. The solvent was removed under vacuum, and the residue was purified by silica gel preparative TLC to afford compound **4**.

Compound 4aa. Hexane/EtOAc = 5/1 was used for the preparative TLC. White amorphous (41.2 mg, 79.4 μ mol; 53% yield).

¹H NMR (CDCl₃): δ 7.82-7.75 (m, 1H), 7.72 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.69-7.61 (m, 1H), 7.42-7.35 (m, 2H), 7.28 (d, ³*J*_{HH} = 8.2 Hz, 1H), 3.84 (s, 3H), 2.70 (s, 3H), 2.20 (dd, ³*J*_{HH} = 11.4 and 2.7 Hz, 1H), 1.87-1.65 (m, 6H), 1.65-1.16 (m, 13H), 1.16-0.54 (m, 10H). ¹³C{¹H} NMR (CDCl₃): δ 171.8, 168.9, 142.2, 142.1, 139.8, 132.7, 131.9, 130.0, 129.2, 128.8, 126.3, 125.0, 123.9, 52.5, 52.0, 31.5, 28.9, 28.6,

28.4, 28.3, 28.24, 28.22, 27.8, 27.7, 27.0, 26.6, 22.6, 22.4, 22.1, 14.4. ²⁹Si{¹H} NMR (CDCl₃): δ –7.9. IR (KBr) 2922, 2848, 1718, 1446, 1433, 1228, 1197, 1179, 1045, 742 cm⁻¹. HRMS (FAB) calcd for C₃₂H₄₂O₄Si (M⁺) 518.2847, found: 518.2854.

Compound 4ia. Hexane/EtOAc = 5/1 was used for the preparative TLC. Colorless oil (37.9 mg, 78.5 μ mol; 52% yield).

¹H NMR (CDCl₃): δ 7.08 (t, ³*J*_{HH} = 7.6 Hz, 1H), 6.98 (d, ³*J*_{HH} = 7.4 Hz, 1H), 6.96 (d, ³*J*_{HH} = 7.4 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 2.16 (s, 3H), 2.12-2.01 (m, 1H), 1.84-1.34 (m, 13H), 1.34-1.13 (m, 6H), 1.13-0.52 (m, 10H). ¹³C{¹H} NMR (CDCl₃): δ 171.6, 168.4, 143.3, 141.0, 140.8, 137.1, 133.1, 129.3, 128.4, 52.4, 51.9, 31.3, 28.6, 28.5, 28.4, 28.34, 28.32, 28.25, 28.22, 27.9, 27.5, 27.0, 26.8, 22.6, 22.3, 22.1, 20.9, 14.3. ²⁹Si{¹H} NMR (CDCl₃): δ -8.6. IR (neat) 2922, 2848, 1731, 1582, 1446, 1227, 1060, 1011, 891, 742 cm⁻¹. HRMS (FAB) calcd for C₂₉H₄₂O4Si (M⁺) 482.2847, found: 482.2849.

Compound 4qa. Hexane/EtOAc = 5/1 was used for the preparative TLC. White amorphous (70.4 mg, 0.148 mmol; 99% yield).

¹H NMR (CDCl₃): δ 7.82-7.75 (m, 1H), 7.75-7.68 (m, 2H), 7.43-7.36 (m, 2H), 7.33 (d, ${}^{3}J_{\text{HH}} = 8.2$ Hz, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 2.31 (s, 2H), 1.71-1.52 (m, 10H), 1.20-0.87 (m, 12H). ${}^{13}C\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 171.5, 169.4, 144.7, 140.7, 136.5, 132.6, 131.8, 129.9, 129.7, 129.4, 128.9, 126.5, 124.9, 123.6, 52.5, 52.1, 28.1, 27.9, 26.7, 22.6, 16.7. ${}^{29}\text{Si}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ –7.0. IR (KBr) 2923, 2847, 1736, 1716, 1445, 1228, 1177, 1049, 822, 744 cm⁻¹. HRMS (FAB) calcd for C₂₉H₃₆O₄Si (M⁺) 476.2377, found: 476.2381.

Compound 4qb. 0.153 mmol of **2q** was used. Hexane/EtOAc = 6/1 was used for the preparative TLC. White solid (76.0 mg, 0.151 mmol; 99% yield).

¹H NMR (CDCl₃): δ 7.84-7.74 (m, 2H), 7.70 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.42-7.34 (m, 2H), 7.32 (d, ³*J*_{HH} = 8.3 Hz, 1H), 4.30 (q, ³*J*_{HH} = 7.2 Hz, 2H), 4.22 (q, ³*J*_{HH} = 7.0 Hz, 2H), 2.31 (s, 2H), 1.72-1.55

(m, 10H), 1.37 (t, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 3H), 1.20 (t, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 3H), 1.18-0.87 (m, 12H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 171.0, 168.9, 144.8, 140.4, 136.4, 132.6, 131.8, 129.72, 129.67, 128.8, 126.1, 124.7, 124.0, 61.6, 61.0, 28.1, 27.9, 26.7, 22.5, 16.6, 14.4, 13.9. ${}^{29}\text{Si}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ –7.0. IR (KBr) 2921, 2848, 1721, 1707, 1246, 1224, 1181, 1044, 822, 743 cm⁻¹. HRMS (FAB) calcd for C₃₁H₄₀O₄Si (M⁺) 504.2690, found: 504.2696.

Compound 4qc. Hexane/EtOAc = 8/1 was used for the preparative TLC. Pale yellow oil (18.8 mg, 41.8 μ mol; 28% yield, regioselectivity: 82/18).

¹H NMR (CDCl₃): δ 9.20 (s, 0.18H), 8.34 (d, ${}^{3}J_{\text{HH}} = 8.7$ Hz, 0.18H), 7.85-7.64 (m, 2H), 7.60-7.49 (m, 1H), 7.48-7.31 (m, 2.82H), 7.29 (s, 0.82H), 3.87 (s, 0.54H), 3.71 (s, 2.46H), 2.34 (s, 0.36H), 2.22 (s, 1.64H), 1.83-1.50 (m, 10H), 1.35-0.80 (m, 12H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃, major isomer): δ 170.8, 148.1, 138.6, 135.9, 132.5, 131.4, 130.8, 129.9, 128.7, 128.6, 125.8, 124.5, 124.2, 52.2, 28.3, 28.1, 26.8, 22.5, 16.7. IR (KBr) 2918, 2845, 1718, 1594, 1445, 1219, 1070, 1000, 820, 741 cm⁻¹. HRMS (FAB) calcd for C₂₇H₃₄O₂Si (M⁺) 418.2323, found: 418.2325.

General Procedure for Scheme 4b.

Aldehyde **5** (0.240 mmol) was added to a mixture of Ni(cod)₂ (5.5 mg, 20 μ mol), PPh₃ (10.5 mg, 40.0 μ mol), and compound **2** (0.200 mmol) in toluene (1.2 mL), and the resulting solution was stirred for 20 h at 100 °C. After cooled to room temperature, the mixture was passed through a pad of silica gel with CH₂Cl₂. The solvent was removed under vacuum, and the residue was purified by silica gel preparative TLC and further purified by GPC with CHCl₃ to afford compound **6**.

Compound 6aa. Hexane/EtOAc = 100/1 was used for the preparative TLC. Pale yellow amorphous (66.5 mg, 0.138 mmol; 69% yield, dr = 89/11). For analytical purpose, the diastereomers were separated by further purification using silica gel preparative TLC with hexane/EtOAc = 100/1. The relative configuration of the major diastereomer was determined to be *cis* by X-ray crystallographic analysis after recrystallization from CH₂Cl₂/MeOH.

cis-6aa: ¹H NMR (CDCl₃): δ 7.89-7.83 (m, 1H), 7.75 (d, ³J_{HH} = 8.2 Hz, 1H), 7.71 (d, ³J_{HH} = 8.2

Hz, 1H), 7.46-7.36 (m, 2H), 7.30-7.15 (m, 6H), 6.96 (s, 1H), 2.28 (dd, ${}^{3}J_{HH} = 11.9$ and 4.1 Hz, 1H), 2.09-1.99 (m, 1H), 1.87-1.66 (m, 4H), 1.62-1.13 (m, 11H), 1.13-0.80 (m, 8H), 0.78-0.67 (m, 1H), 0.66-0.50 (m, 4H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 144.8, 138.4, 134.4, 133.0, 132.2, 132.1, 128.7, 128.0, 127.7, 127.3, 127.1, 126.4, 124.9, 123.6, 74.2, 32.7, 28.4, 28.3, 28.24, 28.21, 28.17, 28.15, 27.4, 27.3, 27.2, 26.8, 25.5, 25.3, 22.2, 14.0. ${}^{29}Si{}^{1}H{}$ NMR (CDCl₃): δ 5.4. IR (KBr) 3055, 2919, 2846, 1446, 1094, 1069, 935, 818, 741, 697 cm⁻¹. HRMS (FAB) calcd for C₃₃H₄2OSi (M⁺) 482.2999, found: 482.3000.

Compound 6ia. The diastereoselectivity was 95/5 before purification. Hexane/EtOAc = 100/1 was used for the preparative TLC. White amorphous (68.0 mg, 0.152 mmol; 76% yield, single diastereomer). The relative configuration was determined to be *cis* by X-ray crystallographic analysis after recrystallization from CH₂Cl₂/MeOH.

cis-6ia: ¹H NMR (CDCl₃): δ 7.30-7.11 (m, 6H), 7.06 (dd, ³*J*_{HH} = 7.8 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 6.98 (d, ³*J*_{HH} = 7.3 Hz, 1H), 6.30 (s, 1H), 2.20 (s, 3H), 2.11 (dd, ³*J*_{HH} = 12.4 and 4.1 Hz, 1H), 2.06-1.96 (m, 1H), 1.86-1.64 (m, 4H), 1.62-1.48 (m, 4H), 1.45-0.48 (m, 20H). ¹³C{¹H} NMR (CDCl₃): δ 144.3, 139.8, 138.3, 135.9, 132.2, 128.0, 127.9, 127.1, 127.0, 126.7, 74.5, 32.4, 28.4, 28.22, 28.20, 28.1, 28.0, 27.7, 27.4, 27.3, 27.1, 27.0, 25.2, 25.3, 21.9, 19.9, 13.8. ²⁹Si{¹H} NMR (CDCl₃): δ 6.2. IR (KBr) 3063, 2919, 2846, 1491, 1460, 1444, 1173, 1094, 1060, 743 cm⁻¹. HRMS (FAB) calcd for C₃₀H₄₂OSi (M⁺) 446.2999, found: 446.3008.

Compound 6qa. Hexane/EtOAc = 50/1 and then hexane/EtOAc = 500/1 were used for the preparative TLC. White amorphous (76.6 mg, 0.174 mmol; 87% yield).

¹H NMR (CDCl₃): δ 7.89-7.82 (m, 1H), 7.82-7.74 (m, 2H), 7.44-7.38 (m, 2H), 7.36 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.29-7.16 (m, 5H), 7.01 (s, 1H), 2.08 (d, ²*J*_{HH} = 15.1 Hz, 1H), 1.96 (d, ²*J*_{HH} = 15.6 Hz, 1H), 1.74-1.43 (m, 10H), 1.22-0.62 (m, 12H). ¹³C{¹H} NMR (CDCl₃): δ 142.8, 134.6, 134.1, 131.9, 131.5, 130.8, 128.8, 128.33, 128.29, 127.9, 127.5, 126.5, 124.6, 122.6, 74.3, 28.10, 28.08, 28.01, 27.99, 27.5, 27.4, 27.0, 26.9, 26.8, 25.44, 25.39, 15.7. ²⁹Si{¹H} NMR (CDCl₃): δ 8.1. IR (KBr) 3053, 2918, 2845, 1446, 1083, 1065, 937, 815, 741, 699 cm⁻¹. HRMS (FAB) calcd for C₃₀H₃₆OSi (M⁺) 440.2530, found: 440.2531.

Compound 6qb. Hexane/EtOAc = 8/1 was used for the preparative TLC. White amorphous (76.7 mg, 0.164 mmol; 82% yield).

¹H NMR (CDCl₃): δ 7.97 (d, ³*J*_{HH} = 8.7 Hz, 1H), 7.86 (d, ³*J*_{HH} = 7.8 Hz, 1H), 7.75 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.51 (t, ³*J*_{HH} = 7.3 Hz, 1H), 7.44 (t, ³*J*_{HH} = 7.3 Hz, 1H), 7.33 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.32-7.23 (m, 4H), 7.19 (t, ³*J*_{HH} = 6.9 Hz, 1H), 6.59 (d, ³*J*_{HH} = 5.0 Hz, 1H), 6.53 (dd, ³*J*_{HH} = 15.8 and 5.3 Hz, 1H), 6.32 (d, ³*J*_{HH} = 15.6 Hz, 1H), 2.25 (d, ²*J*_{HH} = 15.6 Hz, 1H), 2.12 (d, ²*J*_{HH} = 15.1 Hz, 1H), 2.04-1.66 (m, 5H), 1.66-1.44 (m, 5H), 1.44-1.17 (m, 5H), 1.17-0.63 (m, 7H). ¹³C{¹H} NMR (CDCl₃): δ 137.0, 134.0, 133.9, 132.0, 130.95, 130.87, 130.1, 128.9, 128.6, 128.2, 127.6, 126.7, 126.5, 124.7, 122.4, 73.2, 28.20, 28.16, 28.0, 27.9, 27.5, 27.42, 27.37, 27.3, 27.1, 26.8, 25.3, 25.1, 15.3. ²⁹Si{¹H} NMR (CDCl₃): δ 7.7. IR (neat) 3052, 2918, 2845, 1596, 1509, 1445, 1069, 933, 820, 735cm⁻¹. HRMS (FAB) calcd for C₃₂H₃₈OSi (M⁺) 466.2686, found: 466.2696.

Procedure for Scheme 6a.

Et₂NH (41.4 μ L, 0.400 mmol) was added to a mixture of Pd(OAc)₂ (2.2 mg, 10 μ mol), dtbpf (5.2 mg, 11 μ mol), and compound **1s-d₃** (78.7 mg, 0.200 mmol) in DMF (0.80 mL), and the resulting solution was stirred for 18 h at 80 °C. After cooled to room temperature, the reaction mixture was diluted with Et₂O and H₂O was added. This was extracted with Et₂O, and the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC with hexane to afford a mixture of compounds **2s-d₃** and **2s-d₂** (19.5 mg, 80.1 μ mol; 40% yield, **2s-d₃/2s-d₂** = 7.5/1).

Procedure for Scheme 6b.

Et₂NH (41.4 µL, 0.400 mmol) was added to a mixture of Pd(OAc)₂ (2.2 mg, 10 µmol) and dtbpf (5.2 mg, 11 µmol) in DMF (0.30 mL), and the resulting solution was stirred for 20 min at 80 °C. A solution of compound **1q** (48.5 mg, 0.100 mmol) and compound **1q**-*d*₃ (48.7 mg, 0.100 mmol) in DMF (0.50 mL) was added to it and the resulting solution was stirred for 15 min at 80 °C. The reaction was quenched with H₂O and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC with hexane to afford a mixture of compounds **2q** and **2q**-*d*₂ (7.5 mg, 22 µmol; 11% yield, **2q/2q-d**₂ = 1.2/1).

IV. X-ray Crystal Structures

Compound 2g

A colorless hexane solution of compound **2g** was prepared. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2237530). The data can be obtained free of charge via the Internet at https://www.ccdc.cam.ac.uk/structures/.

Crystal Data and Structure Refinement.

Empirical Formula	C ₃₈ H ₄₃ NSi	
Formula Weight	541.82	
Temperature	113.15 K	
Wavelength	0.71073 Å	
Crystal System	Monoclinic	
Space Group	$P2_1/c$	
Unit Cell Dimensions	a = 22.9951(8) Å b = $8.0662(3)$ Å c = $35.0695(12)$ Å	$\alpha = 90^{\circ}$ $\beta = 106.116(4)^{\circ}$ $\gamma = 90^{\circ}$

Volume	6249.2(4) Å ³
Z Value	8
Calculated Density	1.152 g/cm ³
Absorption coefficient	0.102 mm^{-1}
F(000)	2336
Crystal size	0.500 x 0.200 x 0.050 mm
Theta Range for Data Collection	2.495–25.325°
Index Ranges	$-27 \le h \le 27, -9 \le k \le 9, -42 \le l \le 42$
Reflections Collected	59490
Independent Reflections	11450 [R(int) = 0.0788]
Completeness to Theta = 25.242°	99.8%
Absorption Correction	Semi-empirical from equivalents
Max. and Min. Transmission	1.00000 and 0.77709
Refinement Method	Full-matrix least-squares on F ²
Data / Restraints / Parameters	11450 / 432 / 850
Goodness-of-Fit on F ²	1.108
Final R Indices [I>2sigma(I)]	R1 = 0.0779, wR2 = 0.1526
R Indices (All Data)	R1 = 0.1274, wR2 = 0.1699
Largest Diff. Peak and Hole	0.395 and –0.589 $e^{-}/Å^{3}$

Compound 2p

A colorless CH₂Cl₂ solution of compound **2p** was prepared. Crystals suitable for X-ray analysis were obtained by layering MeOH and slow diffusion of the solvents at room temperature. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2237529). The data can be obtained free of charge via the Internet at https://www.ccdc.cam.ac.uk/structures/.

Crystal Data and Structure Refinement.

Empirical Formula	C ₃₀ H ₃₉ NO ₂ SSi	
Formula Weight	505.77	
Temperature	113.15 K	
Wavelength	0.71073 Å	
Crystal System	Monoclinic	
Space Group	P2 ₁ /c	
Unit Cell Dimensions	a = $18.8834(16)$ Å b = $10.0790(6)$ Å c = $15.7187(14)$ Å	$\alpha = 90^{\circ}$ $\beta = 111.762(10)^{\circ}$ $\gamma = 90^{\circ}$
Volume	2778.5(4) Å ³ S35	

Z Value	4
Calculated Density	1.209 g/cm ³
Absorption coefficient	0.187 mm^{-1}
F(000)	1088
Crystal size	0.200 x 0.100 x 0.050 mm
Theta Range for Data Collection	2.321–28.228°
Index Ranges	$-24 \le h \le 25, -13 \le k \le 13, -18 \le l \le 21$
Reflections Collected	45872
Independent Reflections	7294 [R(int) = 0.0580]
Completeness to Theta = 25.242°	99.9%
Absorption Correction	Semi-empirical from equivalents
Max. and Min. Transmission	1.00000 and 0.63788
Refinement Method	Full-matrix least-squares on F ²
Data / Restraints / Parameters	7294 / 463 / 465
Goodness-of-Fit on F ²	1.030
Final R Indices [I>2sigma(I)]	R1 = 0.0590, wR2 = 0.1497
R Indices (All Data)	R1 = 0.0899, wR2 = 0.1651
Largest Diff. Peak and Hole	0.558 and -0.530 $e^{-/}Å^3$
Compound 6aa

A colorless CH₂Cl₂ solution of compound **6aa** was prepared. Crystals suitable for X-ray analysis were obtained by layering MeOH and slow diffusion of the solvents at room temperature. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2237531). The data can be obtained free of charge via the Internet at https://www.ccdc.cam.ac.uk/structures/.

Crystal Data and Structure Refinement.

Empirical Formula	C ₃₃ H ₄₂ OSi	
Formula Weight	482.75	
Temperature	113.15 K	
Wavelength	0.71073 Å	
Crystal System	Triclinic	
Space Group	P-1	
Unit Cell Dimensions	a = 10.3545(2) Å b = 12.0752(2) Å c = 12.5616(3) Å	$\alpha = 68.423(2)^{\circ}$ $\beta = 70.324(2)^{\circ}$ $\gamma = 89.9840(10)^{\circ}$
Volume	1361.51(5) Å ³	
	S37	

Z Value	2
Calculated Density	1.178 g/cm ³
Absorption coefficient	0.110 mm^{-1}
F(000)	524
Crystal size	0.190 x 0.160 x 0.160 mm
Theta Range for Data Collection	2.583–29.518°
Index Ranges	$-14 \le h \le 14, -16 \le k \le 14, -16 \le l \le 17$
Reflections Collected	25360
Independent Reflections	6676 [R(int) = 0.0985]
Completeness to Theta = 25.242°	97.6%
Absorption Correction	Semi-empirical from equivalents
Max. and Min. Transmission	1.00000 and 0.52786
Refinement Method	Full-matrix least-squares on F ²
Data / Restraints / Parameters	6676 / 625 / 481
Goodness-of-Fit on F ²	1.010
Final R Indices [I>2sigma(I)]	R1 = 0.0497, wR2 = 0.1231
R Indices (All Data)	R1 = 0.0686, wR2 = 0.1258
Largest Diff. Peak and Hole	0.398 and -0.388 e ⁻ /Å ³

Compound 6ia

A colorless CH₂Cl₂ solution of compound **6ia** was prepared. Crystals suitable for X-ray analysis were obtained by layering MeOH and slow diffusion of the solvents at room temperature. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2237532). The data can be obtained free of charge via the Internet at https://www.ccdc.cam.ac.uk/structures/.

Crystal Data and Structure Refinement.

Empirical Formula	C ₃₀ H ₄₂ OSi
Formula Weight	446.72
Temperature	$113 \pm 2 \text{ K}$
Wavelength	0.71075 Å
Crystal System	Triclinic
Space Group	P-1
Unit Cell Dimensions	$a = 9.9322(13)$ Å $\alpha = 72.762(7)^{\circ}$ $b = 10.0147(10)$ Å $\beta = 87.903(8)^{\circ}$ $c = 13.5979(14)$ Å $\gamma = 82.672(3)^{\circ}$

Volume	1281.2(3) Å ³
Z Value	2
Calculated Density	1.158 g/cm ³
Absorption coefficient	0.111 mm^{-1}
F(000)	488
Crystal size	0.300 x 0.300 x 0.100 mm
Theta Range for Data Collection	3.1–27.5°
Index Ranges	$-12 \le h \le 12, -12 \le k \le 12, -17 \le l \le 17$
Reflections Collected	23983
Independent Reflections	5819 [R(int) = 0.0360]
Completeness to Theta = 25.242°	99.7%
Absorption Correction	Semi-empirical from equivalents
Max. and Min. Transmission	1.000 and 0.922
Refinement Method	Full-matrix least-squares on F ²
Data / Restraints / Parameters	5819 / 0 / 291
Goodness-of-Fit on F ²	1.016
Final R Indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.1174
R Indices (All Data)	R1 = 0.0463, wR2 = 0.1260
Largest Diff. Peak and Hole	$0.348 \text{ and } -0.422 \text{ e}^{-}/\text{Å}^{3}$

V. ¹H and ¹³C NMR Spectra

compound 1a

compound 1a

compound 1b

compound 1b

compound 1c

S46

compound 1d

compound 1d

compound 1e

compound 1e

compound 1f

S51

compound 1f

compound 1g

compound 1g

compound 1h

compound 1i

compound 1i

compound 1j

compound 1j

compound 1k

compound 1k

compound 11

compound 1m

compound 1m

compound 1n

compound 1n

compound 10

compound 10

compound 1p

compound 1q

compound 1q

compound 1r

compound 1r

compound 1s

S77

compound 1s

compound 1t

compound 1t

compound 1u

compound 1u

compound 1v

compound 1v

compound 2a (97% pure)

compound 2a (97% pure)

compound **2b** (99% pure)

compound **2b** (99% pure)

compound **2c** (96% pure)

compound **2c** (96% pure)

compound 2d (96% pure)

compound 2d (96% pure)

compound 2e

compound 2e

compound **2f** (97% pure)

compound 2g (98% pure)

compound 2h

compound 2i (93% pure)

compound **2j** (93% pure)

compound 2j (93% pure)

compound 2k (93% pure)

compound 2k (93% pure)

compound **2l** (91% pure)

compound **2l** (91% pure)

compound **2m** (91% pure)

compound **2m** (91% pure)

compound **2n** (94% pure)

compound 2n (94% pure)

compound 20 (95% pure)

compound 20 (95% pure)

S114

compound 2p

compound 2p

compound 2q

compound 2q

compound 2r

compound 2r

compound 2s

S121

compound 2s

compound 2t (96% pure)

compound 2t (96% pure)

compound 2u

compound 2u

$\text{compound} \ 2v$

S127

compound 2v

compound 4aa

compound 4aa

compound 4ia

compound 4ia

compound 4qa

compound 4qa

compound 4qb

compound 4qb

compound 4qc (regioselectivity: 82/18)

compound **4qc** (regioselectivity: 82/18)

S140

compound 6ia

S141

compound 6ia

compound 6qa

S143

compound 6qa

compound 6qb

compound 6qb

VI. References

- 1. Li, C.; Qiang, X. Y.; Qi, Z. C.; Cao, B.; Li, J. Y.; Yang, S.-D. Org. Lett. 2019, 21, 7138.
- 2. Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem., Int. Ed. 2009, 48, 9077.
- 3. Coulson, D. R.; Satek, L. C.; Grim, S. O. Inorg. Synth. 1972, 13, 121.