Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

## Electronic Supplementary Information

for

# Electrophilicity of neutral square-planar organosilver(III) compounds

Daniel Joven-Sancho, Luca Demonti, Antonio Martín, Nathalie Saffon-Merceron, Noel Nebra, \* Miguel Baya, and Babil Menjón\*

| 1. Experimental section                  | S1  |
|------------------------------------------|-----|
| 2. NMR spectra                           | S5  |
| 3. Crystal data and structure refinement | S12 |
| 4. Computational details                 | S27 |
| 5. References                            | S32 |

#### **1. Experimental Section**

General Procedures and Materials. Unless otherwise indicated, the reactions and manipulations were carried out under purified argon and exclusion of light using Schlenk techniques. Previously degassed solvents were dried using an MBraun SPS-800 System (CH<sub>2</sub>Cl<sub>2</sub>, *n*-hexane) or over activated 3 Å molecular sieves (Me<sub>2</sub>CO, MeCN). The precursor material [PPh4][(CF3)3AgCl] was prepared using published methods.<sup>S1</sup> All other reagents were purchased from standard commercial suppliers and used as received. Elemental analyses were carried out using a Perkin Elmer 2400 CHNS/O Series II microanalyzer. IR spectra were recorded on neat solid samples using a PerkinElmer Spectrum FT-IR spectrometer (4000–450 cm<sup>-1</sup>) equipped with an ATR device. NMR spectra were recorded at room temperature on Bruker ARX-300 or ARX-400 spectrometers. Chemical shifts of the measured nuclei ( $\delta$  in ppm) are given with respect to the standard references in use: SiMe<sub>4</sub> (<sup>1</sup>H), CFCl<sub>3</sub> (<sup>19</sup>F) and 85% aq. H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P). Multiplicity of the observed signals is indicated as follows: s = singlet, d = doublet, q =quartet, spt = septet, m = multiplet. Chemically inequivalent CF<sub>3</sub> groups are indicated as follows: CF<sub>3</sub>–Ag–CF<sub>3</sub> refers to the mutually *trans*-standing CF<sub>3</sub> groups (q), whereas CF<sub>3</sub>– Ag–L refers to the CF<sub>3</sub> group *trans* to the neutral L ligand (spt).

CAUTION: Thallium compounds are highly toxic and must be handled with special care.

Synthesis of (CF<sub>3</sub>)<sub>3</sub>Ag(NCMe) (1): TlClO<sub>4</sub> (97.8 mg, 0.322 mmol) was added to a solution of [PPh<sub>4</sub>][(CF<sub>3</sub>)<sub>3</sub>AgCl] (200 mg, 0.28 mmol) in 5 cm<sup>3</sup> of MeCN at 233 K. After 15 min of stirring, the suspension was concentrated to *ca*. 0.5 cm<sup>3</sup> and the resulting residue was extracted with Et<sub>2</sub>O ( $8 \times 3$  cm<sup>3</sup>) at 195 K. The extract was filtered and the filtrate was evaporated to dryness. By treatment of the resulting residue with *n*-hexane ( $3 \times 2$  cm<sup>3</sup>) at 195 K, a white solid was obtained, which was identified as compound 1 (25 mg, 0.07 mmol, 25% yield). The compound decomposes readily in the solid state on standing, being unstable even at 243 K. In contrast, MeCN solutions are significantly more stable: they can be stored for months at 243 K without significant decomposition and are therefore preferred for synthetic use. <sup>19</sup>F NMR (282.231 MHz, CD<sub>3</sub>CN, 298 K;

Fig. S1):  $\delta_F$  /ppm = -22.73 [two (52:48) dspt, 3F,  ${}^2J({}^{109}Ag,F) = 91.5$  Hz,  ${}^4J(F, F) = 9.5$  Hz; CF<sub>3</sub>-Ag-L], -32.67 ppm [two (52:48) dq, 6F,  ${}^2J({}^{109}Ag,F) = 22.7$  Hz; CF<sub>3</sub>-Ag-CF<sub>3</sub>]. No satisfactory elemental analyses were obtained owing to the instability of the substance and the ease with which it releases MeCN. **Single crystals** suitable for X-ray diffraction were obtained by slow diffusion at 4 °C of a layer of *n*-hexane (3 cm<sup>3</sup>) into a solution of compound **1** in Et<sub>2</sub>O/MeCN (150 mm<sup>3</sup>; 95/5) at -30 °C.

Synthesis of (CF<sub>3</sub>)<sub>3</sub>Ag(py) (2): To a solution of compound 1 (50 mg, 0.14 mmol) in 2 cm<sup>3</sup> of MeCN, previously dried and degassed py (22.7 mm<sup>3</sup>, 0.28 mmol) was added and the solution was stirred at room temperature for 5 min. After removal of the solvent in vacuo for 4 h, a white solid was obtained, which was identified as compound 2 (48 mg, 0.141 mmol, 86% yield). <sup>1</sup>H NMR (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K):  $\delta_{\rm H}$ /ppm = 8.59 [dt, 2H, <sup>2</sup>*J*(H,H) = 4.92 Hz, <sup>3</sup>*J*(H,H) = 1.53 Hz; *ortho*-H], 8.13 [tt, 1H, <sup>2</sup>*J*(H,H) = 7.76 Hz, <sup>3</sup>*J*(H,H) = 1.53 Hz; *para*-H], 7.71 (m, 2H; *meta*-H). <sup>19</sup>F NMR (376.49 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K; Fig. S2):  $\delta_{\rm F}$ /ppm = -22.33 [two (52:48) dspt, 3F, <sup>2</sup>*J*(<sup>109</sup>Ag,F) = 75.8 Hz, <sup>4</sup>*J*(F,F) = 9.3 Hz; CF<sub>3</sub>-Ag-L], -34.14 [two (52:48) dq, 6F, <sup>2</sup>*J*(<sup>109</sup>Ag,F) = 29.0 Hz; CF<sub>3</sub>-Ag-CF<sub>3</sub>]. Elemental analysis (%) calcd for C<sub>8</sub>H<sub>5</sub>AgF<sub>9</sub>N: C 24.4, H 1.3, N: 3.6; found, C: 24.3, H: 1.3, N: 3.7. Single crystals suitable for X-ray diffraction purposes were obtained by slow diffusion of *n*-pentane (3 cm<sup>3</sup>) into a solution of compound 2 in CH<sub>2</sub>Cl<sub>2</sub> (150 mm<sup>3</sup>) at -30 °C. Single crystals or the solvates 2·NCMe and 2·py suitable for X-ray diffraction purposes were respectively obtained in the presence of either NCMe or py.

Synthesis of (CF<sub>3</sub>)<sub>3</sub>Ag(dmap) (3): To a solution of compound 1 (100 mg, 0.28 mmol) in 3 cm<sup>3</sup> of MeCN, 4-dimethylaminopyridine (34.20 mg, 0.28 mmol) was added and the solution was stirred at room temperature for 5 min. After removing the solvent in vacuo and treating the residue with cold *n*-hexane (2 × 1 cm<sup>3</sup>), a white solid was obtained, which was identified as compound **3** (69 mg, 0.098 mmol, 35% yield). **IR** (ATR):  $\tilde{v}$ /cm<sup>-1</sup> = 2936 (w), 1620 (s), 1543 (m), 1394 (m), 1235 (w), 1128 (m), 1059 (vs), 999 (vs), 948 (m), 809 (vs), 724 (s), 709 (m), 524 (m), 311 (s). <sup>1</sup>H NMR (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>,

298 K):  $\delta_{\rm H}$  /ppm = 7.98 (br s, 2H; *ortho*-H), 6.68 (br s, 2H; *meta*-H), 3.13 (s, 6H; Me). <sup>19</sup>F NMR (282.231 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K; Fig. S3):  $\delta_{\rm F}$  /ppm = -23.73 [two (52:48) dspt, 3F, <sup>2</sup>J(<sup>109</sup>Ag,F) = 70.4 Hz, <sup>4</sup>J(F,F) = 9.0 Hz; CF<sub>3</sub>-Ag-L], -34.34 [two (52:48) dq, 6F, <sup>2</sup>J(<sup>109</sup>Ag,F) = 30.7 Hz, <sup>4</sup>J(F,F) = 9.0Hz; CF<sub>3</sub>-Ag-CF<sub>3</sub>]. Elemental analysis (%) calcd for C<sub>10</sub>H<sub>10</sub>AgF<sub>9</sub>N<sub>2</sub>: C 27.5, H 2.3, N 6.4; found: C 27.7, H 2.4, N 6.4. Single crystals suitable for X-ray diffraction purposes were obtained by slow diffusion of a *n*-hexane (3 cm<sup>3</sup>) layer into a solution of 10 mg of compound **3** in CH<sub>2</sub>Cl<sub>2</sub> (150 mm<sup>3</sup>) at -30 °C.

Synthesis of (CF<sub>3</sub>)<sub>3</sub>Ag(PPh<sub>3</sub>) (4): To a solution of compound 1 (100 mg, 0.28 mmol) in 3 cm<sup>3</sup> of MeCN, PPh<sub>3</sub> (50.45 mg, 0.28 mmol) was added and the solution was stirred at room temperature for 5 min. After removing the solvent in vacuo and treating the residue with cold *n*-hexane  $(2 \times 1 \text{ cm}^3)$ , a white solid was obtained, which was identified as compound 4 (49 mg, 0.10 mmol, 36% yield). IR (ATR):  $\tilde{v}$  /cm<sup>-1</sup> = 3062 (w), 2963 (w), 2255 (w), 1483 (w), 1438 (m), 1109 (s), 1044 (vs), 993 (vs), 745 (vs), 709 (m), 670 (vs), 520 (s), 508 (s), 494 (s), 449 (m), 428 (w), 291 (vs). <sup>1</sup>H NMR (300 MHz,  $CD_2Cl_2$ , 193 K):  $\delta_H$  /ppm = 7.68–7.61 (m, 9H; aromatics), 7.54 (m, 6H; aromatics). <sup>19</sup>F **NMR** (282.231 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 193 K; Fig. S4):  $\delta_F$  /ppm = -27.12 [two (52:48) not wellresolved dspt, 3F,  ${}^{2}J(P,F) = 159.28$  Hz,  ${}^{2}J({}^{109}Ag,F) = 60.93$  Hz;  $CF_{3}-Ag-L$ ], -28.08 [two (52:48) dq, 6F, <sup>2</sup> $J(^{109}Ag,F) = 41.30$  Hz; CF<sub>3</sub>-Ag-CF<sub>3</sub>] (simulated in Fig. S6a). <sup>31</sup>P NMR (121.442 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 193 K; Fig. S5):  $\delta_P$  /ppm = 28.84 ppm (simulated in Fig. S6b). Elemental analysis (%) C<sub>21</sub>H<sub>15</sub>AgF<sub>9</sub>P: C 43.7, H 2.6; found: C 43.1, H 2.6. Single crystals suitable for X-ray diffraction purposes were obtained by slow diffusion of a nhexane (3 cm<sup>3</sup>) layer into a solution of 10 mg of compound 4 in CH<sub>2</sub>Cl<sub>2</sub> (150 mm<sup>3</sup>) at −30 °C.

Synthesis of  $(CF_3)_3Ag(AsPh_3)$  (5): To a solution of compound 1 (100 mg, 0.28 mmol) in 3 cm<sup>3</sup> of CH<sub>2</sub>Cl<sub>2</sub>, AsPh<sub>3</sub> (85.74 mg, 0.28 mmol) was added and the solution was stirred at room temperature for 5 min. After removing the solvent in vacuo and treating the residue with cold *n*-hexane (2 × 1 cm<sup>3</sup>), a pale-yellow solid was obtained,

which was identified as compound **5** (46 mg, 0.078 mmol, 28% yield). **IR** (ATR):  $\tilde{\nu}$ /cm<sup>-1</sup> = 3058 (w), 1650 (w), 1578 (w), 1484 (m), 1438 (m), 1120 (s), 1052 (vs), 1029 (vs) 993 (vs), 739 (s), 731 (s), 716 (m), 688 (m), 527 (w), 517 (w), 480 (s), 466 (s), 347 (m), 333 (m), 325 (s), 317 (s). <sup>19</sup>**F NMR** (282.231 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 193 K; Fig. S7):  $\delta_{\rm F}$ /ppm = -24.40 (dm, 3F, <sup>2</sup>*J*(<sup>109</sup>Ag,F) unresolved; CF<sub>3</sub>-Ag-L), -25.52 (m, 6F, <sup>2</sup>*J*(<sup>109</sup>Ag,F) unresolved; CF<sub>3</sub>-Ag-CF<sub>3</sub>). **Elemental analysis** (%) C<sub>21</sub>H<sub>15</sub>AgF<sub>9</sub>As: C 40.6, H 2.4; found: C 40.7, H 2.5. **Single crystals** suitable for X-ray diffraction purposes were obtained by slow diffusion of a *n*-hexane (3 cm<sup>3</sup>) layer into a solution of 10 mg of compound **5** in 10:1 Et<sub>2</sub>O/Me<sub>2</sub>CO (150 mm<sup>3</sup>) at -30 °C.

**Table S1.** <sup>19</sup>F NMR spectroscopic parameters independently assigned by Naumann<sup>*a*</sup> and Eujen<sup>*b*</sup> to the (CF<sub>3</sub>)<sub>3</sub>AgNCMe complex in MeCN solution.

| $\delta_F$ /ppm     | $^{2}J(^{109}\text{Ag},^{19}\text{F})/\text{Hz}$ | <sup>4</sup> <i>J</i> ( <sup>19</sup> F, <sup>19</sup> F)/Hz |
|---------------------|--------------------------------------------------|--------------------------------------------------------------|
| -21.7 (spt) / -21.5 | 91.2 / 85.3                                      | 9.5 /                                                        |
| -31.6 (q) / -36.4   | 22.6 / 25.5                                      | 9.0 (cis) & 19 (trans)                                       |

<sup>*a*</sup> See Ref. S2 (T = 20 °C). <sup>*b*</sup> See Ref. S3 (T = -25 °C).



Fig. S1. <sup>19</sup>F NMR spectrum (282.231 MHz, CD<sub>3</sub>CN, 298 K) of (CF<sub>3</sub>)<sub>3</sub>Ag(NCMe)] (1).



-21.5 -22.5 -23.5 -24.5 -25.5 -26.5 -27.5 -28.5 -29.5 -30.5 -31.5 -32.5 -33.5 -34.5 -35.5

Fig. S2. <sup>19</sup>F NMR spectrum (376.49 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of (CF<sub>3</sub>)<sub>3</sub>Ag(py) (2).



Fig. S3. <sup>19</sup>F NMR spectrum (282.231 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of (CF<sub>3</sub>)<sub>3</sub>Ag(dmap) (3).



Fig. S4. <sup>19</sup>F NMR spectrum (282.231 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of (CF<sub>3</sub>)<sub>3</sub>Ag(PPh<sub>3</sub>) (4). The spectrum is simulated in Fig. S6a.



**Fig. S5.** <sup>31</sup>P NMR spectrum (121.442 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of (CF<sub>3</sub>)<sub>3</sub>Ag(PPh<sub>3</sub>) (4): a) overall view; b) detail of the characteristic signal. The spectrum is simulated in Fig.

S6b.

|                                                        | <sup>31</sup> P |                                         |                                                        |
|--------------------------------------------------------|-----------------|-----------------------------------------|--------------------------------------------------------|
| <sup>19</sup> F (CF <sub>3</sub> -Ag-P)                | 94.0            | <sup>19</sup> F (CF <sub>3</sub> -Ag-P) |                                                        |
| <sup>19</sup> F (CF <sub>3</sub> -Ag-CF <sub>3</sub> ) | 10.0            | 8.0                                     | <sup>19</sup> F (CF <sub>3</sub> -Ag-CF <sub>3</sub> ) |
| <sup>109</sup> Ag / <sup>107</sup> Ag                  | 190.0 / 165.8   | 59.8 / 52.2                             | 34.8 / 30.4                                            |



**Fig. S6.** Simulated (red) vs experimental (black) <sup>19</sup>F (a) and <sup>31</sup>P (b) NMR spectra of (CF<sub>3</sub>)<sub>3</sub>Ag(PPh<sub>3</sub>) (4) using the set of parameters given above.



**Fig. S7.** <sup>19</sup>F NMR spectrum (282.231 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of (CF<sub>3</sub>)<sub>3</sub>Ag(AsPh<sub>3</sub>) (**5**).

#### 3. Crystal Data and Structure Refinement

Crystal data and other details of the structure analysis are presented in Tables S2, S4, S6, S8, S10, S12, S14. Single crystals suitable for X-ray diffraction studies were obtained as indicated in the corresponding Experimental entry. Crystals were mounted at the end of quartz fibres. The radiation used in all cases was graphite-monochromated Mo-K $\alpha$  ( $\lambda$  = 71.073 pm). X-ray intensity data were collected on an Oxford Diffraction Xcalibur (1, 3, 4·1/4CH<sub>2</sub>Cl<sub>2</sub> and 5·Me<sub>2</sub>CO) or a Bruker D8 VENTURE Photon III-C14 (2, 2·NCMe and 2·py) diffractometer. Data collection was performed at the temperature indicated in each entry. The diffraction frames were integrated and corrected from absorption by using the CrysAlis Pro program<sup>S4</sup> (1, 3, 4·1/4CH<sub>2</sub>Cl<sub>2</sub> and 5·Me<sub>2</sub>CO) or by using the SADABS software<sup>S5</sup> (2, 2·NCMe and 2·py).

The structures were solved by Patterson and Fourier methods and refined by full-matrix least squares on  $F^2$  with SHELXL.<sup>S6</sup> All non-H atoms were assigned anisotropic displacement parameters and refined without positional constraints. The positions of the H atoms were constrained to idealised geometries and assigned isotropic displacement parameters equal to 1.2 times the  $U_{iso}$  values of their respective parent atoms. For **2**, all the CF<sub>3</sub> groups were rotationally disordered and each of the corresponding F atoms was refined over two positions with unequal partial occupancy. For **4**·1/4CH<sub>2</sub>Cl<sub>2</sub>, a CH<sub>2</sub>Cl<sub>2</sub> solvent moiety is disordered over two positions near an inversion centre which were refined with 0.3/0.2 partial occupancy. Restrains were used in its geometry as well as in some of the anistrotropic thermal parameters of its atoms.

Full-matrix least-squares refinement of these models against  $F^2$  converged to final residual indices given in Tables S2, S4, S6, S8, S10, S12, S14. Selected interatomic distances and angles are given in Tables S3, S5, S7, S9, S11, S13, S15.

| formula                                | C5H3AgF9N  |
|----------------------------------------|------------|
| $M_t [\mathrm{g} \ \mathrm{mol}^{-1}]$ | 355.95     |
| <i>T</i> [K]                           | 100(1)     |
| $\lambda$ [pm]                         | 71.073     |
| crystal system                         | monoclinic |
| space group                            | $P2_{1}/n$ |
| <i>a</i> [pm]                          | 792.74(2)  |
| <i>b</i> [pm]                          | 685.92(1)  |
| <i>c</i> [pm]                          | 1786.81(4) |
| eta[°]                                 | 101.645(2) |
| $V[nm^3]$                              | 0.95159(3) |
| Ζ                                      | 4          |
| ho [g cm <sup>-3</sup> ]               | 2.485      |
| $\mu$ [mm <sup>-1</sup> ]              | 2.229      |
| <i>F</i> (000)                         | 672        |
| $2\theta$ range [°]                    | 6.4–56.6   |
| no. of reflns colltd                   | 17583      |
| no. of unique reflns                   | 2191       |
| $R_{ m int}$                           | 0.0240     |
| <i>R</i> indices $[I > 2\sigma(I)]^a$  |            |
| $R_1$                                  | 0.0175     |
| $wR_2$                                 | 0.0430     |
| <i>R</i> indices (all data)            |            |
| $R_1$                                  | 0.0182     |
| $wR_2$                                 | 0.0433     |
| goodness-of-fit <sup>b</sup> on $F^2$  | 1.058      |
| CCDC no.                               | 2226904    |

Table S2. Crystal data and structure refinement for compound  $(CF_3)_3Ag(NCMe)$  (1)

<sup>*a*</sup>  $R_1 = \sum (|F_o| - |F_c|) / \sum |F_o|; wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}.$ 

<sup>b</sup> Goodness-of-fit =  $[\sum w(F_0^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}$ .



**Table S3**. Interatomic distances [pm] and angles [°] for (CF<sub>3</sub>)<sub>3</sub>Ag(NCMe) as found in crystals of **1** with atom labelling as indicated above.

| Ag-C(1)     | 211.08(19) | C(1)–Ag– $C(2)$ | 89.54(8)   |
|-------------|------------|-----------------|------------|
| Ag-C(2)     | 205.10(18) | C(1)–Ag– $C(3)$ | 174.27(7)  |
| Ag-C(3)     | 210.46(18) | C(1)–Ag–N       | 87.72(7)   |
| Ag–N        | 209.05(16) | C(2)–Ag–C(3)    | 90.53(7)   |
| N–C(4)      | 113.2(2)   | C(2)–Ag–N       | 174.12(7)  |
| C(4)–C(5)   | 144.8(3)   | C(3)–Ag–N       | 92.71(7)   |
| av. C(1)–F  | 134.4(2)   |                 |            |
| av. C(2)–F  | 133.3(2)   | av. Ag–C(1)–F   | 104.93(17) |
| av. C(3)–F  | 135.1(2)   | av. Ag–C(2)–F   | 106.84(16) |
|             | (-)        | av. Ag–C(3)–F   | 105.37(15) |
| Ag-N-C(4)   | 173.22(16) |                 |            |
| N-C(4)-C(5) | 179.7(2)   | av. F–C(1)–F    | 113.62(13) |
|             |            | av. F–C(2)–F    | 111.98(13) |
|             |            | av. F-C(3)-F    | 113.28(12) |
|             |            | ( )             | . /        |

| formula                               | C <sub>8</sub> H <sub>5</sub> AgF <sub>9</sub> N |
|---------------------------------------|--------------------------------------------------|
| $M_t$ [g mol <sup>-1</sup> ]          | 394.00                                           |
| <i>T</i> [K]                          | 193(2)                                           |
| λ [pm]                                | 71.073                                           |
| crystal system                        | orthorhombic                                     |
| space group                           | $P2_{1}2_{1}2_{1}$                               |
| <i>a</i> [pm]                         | 749.04(3)                                        |
| <i>b</i> [pm]                         | 927.69(4)                                        |
| <i>c</i> [pm]                         | 1720.85(8)                                       |
| <i>V</i> [nm <sup>3</sup> ]           | 1.19578(9)                                       |
| Ζ                                     | 4                                                |
| ho [g cm <sup>-3</sup> ]              | 2.189                                            |
| $\mu[\mathrm{mm}^{-1}]$               | 1.786                                            |
| <i>F</i> (000)                        | 752                                              |
| $2\theta$ range [°]                   | 5.0-56.6                                         |
| no. of reflns colltd                  | 36668                                            |
| no. of unique reflns                  | 2957                                             |
| $R_{\rm int}$                         | 0.0370                                           |
| <i>R</i> indices $[I > 2\sigma(I)]^a$ |                                                  |
| $R_1$                                 | 0.0283                                           |
| $wR_2$                                | 0.0609                                           |
| R indices (all data)                  |                                                  |
| $R_1$                                 | 0.0358                                           |
| $wR_2$                                | 0.0643                                           |
| absolute structure factor             | -0.023(13)                                       |
| goodness-of-fit <sup>b</sup> on $F^2$ | 1.046                                            |
| <br>CCDC no.                          | 2226905                                          |
|                                       |                                                  |

Table S4. Crystal data and structure refinement for compound (CF<sub>3</sub>)<sub>3</sub>Ag(py) (2)



**Table S5**. Interatomic distances [pm] and angles [°] for  $(CF_3)_3Ag(py)$  as found in crystals of **2** with atom labelling as indicated above.<sup>*a*</sup>

| Ag-C(1)    | 209.9(6)  | C(1)–Ag–C(2)    | 89.8(2)   |
|------------|-----------|-----------------|-----------|
| Ag-C(2)    | 205.1(6)  | C(1)-Ag- $C(3)$ | 179.5(2)  |
| Ag-C(3)    | 210.0(6)  | C(1)–Ag–N       | 89.6(2)   |
| Ag–N       | 211.4(4)  | C(2)–Ag–C(3)    | 90.1(2)   |
| av. C(1)–F | 131.8(12) | C(2)–Ag–N       | 178.7(2)  |
| av. C(2)–F | 130.3(12) | C(3)–Ag–N       | 90.4(2)   |
| av. C(3)–F | 132.5(17) | av. Ag–C(1)–F   | 115.1(7)  |
|            |           | av. $Ag-C(2)-F$ | 113.7(7)  |
|            |           | av. $Ag-C(3)-F$ | 113.3(10) |
|            |           | av. F–C(1)–F    | 103.2(11) |
|            |           | av. F–C(2)–F    | 104.8(12) |
|            |           | av. F–C(3)–F    | 105.2(14) |
|            |           |                 |           |

<sup>a</sup> Only one set of the rotationally disordered F atoms is shown in the image above.

| formula                               | $C_{10}H_8AgF_9N_2$ |
|---------------------------------------|---------------------|
| $M_t$ [g mol <sup>-1</sup> ]          | 435.05              |
| <i>T</i> [K]                          | 193(2)              |
| λ [pm]                                | 71.073              |
| crystal system                        | triclinic           |
| space group                           | $P\overline{1}$     |
| <i>a</i> [pm]                         | 818.28(7)           |
| <i>b</i> [pm]                         | 902.35(7)           |
| <i>c</i> [pm]                         | 1009.23(8)          |
| α [°]                                 | 92.634(3)           |
| $\beta$ [°]                           | 92.974(3)           |
| γ [°]                                 | 106.819(3)°.        |
| <i>V</i> [nm <sup>3</sup> ]           | 0.71090(10)         |
| Ζ                                     | 2                   |
| $\rho$ [g cm <sup>-3</sup> ]          | 2.032               |
| $\mu[\mathrm{mm}^{-1}]$               | 1.514               |
| <i>F</i> (000)                        | 420                 |
| $2\theta$ range [°]                   | 5.9–56.6            |
| no. of reflns colltd                  | 25335               |
| no. of unique reflns                  | 3528                |
| $R_{ m int}$                          | 0.0586              |
| <i>R</i> indices $[I > 2\sigma(I)]^a$ |                     |
| $R_1$                                 | 0.0311              |
| $wR_2$                                | 0.0626              |
| R indices (all data)                  |                     |
| $R_1$                                 | 0.0430              |
| $wR_2$                                | 0.0667              |
| goodness-of-fit <sup>b</sup> on $F^2$ | 1.074               |
| CCDC no.                              | 2226906             |

**Table S6.** Crystal data and structure refinement for compound<br/> $(CF_3)_3Ag(py)\cdot NCMe$  (2·NCMe)



**Table S7**. Interatomic distances [pm] and angles [°] for  $(CF_3)_3Ag(py)$ ·NCMe as found in crystals of **2**·NCMe with atom labelling as indicated above.<sup>*a*</sup>

| Ag-C(1)          | 210.8(3) | C(1)–Ag–C(2)  | 90.01(13)  |
|------------------|----------|---------------|------------|
| Ag-C(2)          | 205.9(3) | C(1)–Ag–C(3)  | 176.86(14) |
| Ag-C(3)          | 209.6(3) | C(1)–Ag–N(1)  | 92.77(11)  |
| Ag-N(1)          | 213.4(2) | C(2)–Ag–C(3)  | 89.32(13)  |
| av. C(1)–F       | 134.5(4) | C(2)–Ag–N(1)  | 169.96(12) |
| av. C(2)–F       | 132.6(4) | C(3)–Ag–N(1)  | 88.41(11)  |
| av. C(3)–F       | 134.4(4) | av. Ag–C(1)–F | 113.7(2)   |
| $Ag \cdots N(2)$ | 278.4(3) | av. Ag–C(2)–F | 112.7(2)   |
|                  |          | av. Ag–C(3)–F | 113.7(2)   |
|                  |          | av. F–C(1)–F  | 104.9(3)   |
|                  |          | av. F–C(2)–F  | 106.1(3)   |
|                  |          | av. F–C(3)–F  | 104.9(3)   |
|                  |          |               |            |

<sup>*a*</sup> The Ag–N(2) line deviates just  $2.5(5)^{\circ}$  from the normal to the best basal plane.

| form         | nula                               | $C_{13}H_{10}AgF_9N_2$ |
|--------------|------------------------------------|------------------------|
| $M_t$ [      | g mol <sup>-1</sup> ]              | 473.10                 |
| <i>T</i> [K  | []                                 | 193(2)                 |
| λ [p:        | m]                                 | 71.073                 |
| crys         | tal system                         | orthorhombic           |
| spac         | e group                            | Pbca                   |
| <i>a</i> [pi | m]                                 | 1412.38(16)            |
| <i>b</i> [pi | m]                                 | 1258.90(15)            |
| <i>c</i> [pi | m]                                 | 1809.4(2)              |
| <i>V</i> [n  | m <sup>3</sup> ]                   | 3.2171(7)              |
| Ζ            |                                    | 8                      |
| ρ[g          | cm <sup>-3</sup> ]                 | 1.954                  |
| μ[n          | $1m^{-1}$ ]                        | 1.347                  |
| F(00)        | )0)                                | 1840                   |
| $2\theta$ r  | ange [°]                           | 6.6–48.8               |
| no. o        | of reflns colltd                   | 62109                  |
| no. o        | of unique reflns                   | 2640                   |
| $R_{ m int}$ |                                    | 0.1784                 |
| R in         | dices $[I > 2\sigma(I)]^a$         |                        |
| 1            | $R_1$                              | 0.0428                 |
| ν            | $vR_2$                             | 0.0865                 |
| R in         | dices (all data)                   |                        |
| 1            | $R_1$                              | 0.0922                 |
| V            | $vR_2$                             | 0.1094                 |
| good         | dness-of-fit <sup>b</sup> on $F^2$ | 1.045                  |
| CCI          | DC no.                             | 2226907                |

**Table S8.** Crystal data and structure refinement for compound<br/>  $(CF_3)_3Ag(py) \cdot py (\mathbf{2} \cdot py)$ 



**Table S9**. Interatomic distances [pm] and angles [°] for  $(CF_3)_3Ag(py) \cdot py$  as found in crystals of **2** · py with atom labelling as indicated above.<sup>*a*</sup>

| Ag-C(1)<br>Ag-C(2)<br>Ag-C(3)<br>Ag-N(2)<br>av. C(1)-F<br>av. C(2)-F<br>av. C(3)-F | 208.3(7)<br>205.2(7)<br>209.3(7)<br>213.1(5)<br>134.9(8)<br>133.9(8)<br>134.9(9) | C(1)-Ag-C(2)<br>C(1)-Ag-C(3)<br>C(1)-Ag-N(2)<br>C(2)-Ag-C(3)<br>C(2)-Ag-N(2)<br>C(3)-Ag-N(2)<br>av. Ag-C(1)-F | 89.1(3)<br>176.8(3)<br>87.7(2)<br>91.9(3)<br>166.2(3)<br>90.5(2)<br>113.8(5) |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $Ag \cdots N(1)$                                                                   | 263.6(5)                                                                         | av. $Ag-C(2)$ -F                                                                                              | 114.1(5)                                                                     |
|                                                                                    |                                                                                  | av. F–C(1)–F<br>av. F–C(2)–F<br>av. F–C(3)–F                                                                  | 104.7(6)<br>105.6(6)<br>104.4(6)                                             |

<sup>*a*</sup> The Ag–N(1) line deviates just  $1.8(5)^{\circ}$  from the normal to the best basal plane.

| formula                                | $C_{10}H_{10}AgF_9N_2$ |
|----------------------------------------|------------------------|
| $M_t [\mathrm{g} \ \mathrm{mol}^{-1}]$ | 437.07                 |
| <i>T</i> [K]                           | 100(2)                 |
| $\lambda$ [pm]                         | 71.073                 |
| crystal system                         | monoclinic             |
| space group                            | $P2_{1}/c$             |
| <i>a</i> [pm]                          | 500.405(14)            |
| <i>b</i> [pm]                          | 2213.54(6)             |
| <i>c</i> [pm]                          | 1240.17(4)             |
| $\beta$ [°]                            | 93.858(3)              |
| <i>V</i> [nm <sup>3</sup> ]            | 1.37059(7)             |
| Ζ                                      | 4                      |
| ho [g cm <sup>-3</sup> ]               | 2.118                  |
| $\mu[\mathrm{mm}^{-1}]$                | 1.571                  |
| <i>F</i> (000)                         | 848                    |
| $2\theta$ range [°]                    | 6.4–56.6               |
| no. of reflns col                      | ltd 11462              |
| no. of unique re                       | flns 2955              |
| $R_{ m int}$                           | 0.0354                 |
| <i>R</i> indices $[I > 2a]$            | $\sigma(I)]^a$         |
| $R_1$                                  | 0.0299                 |
| $wR_2$                                 | 0.0588                 |
| R indices (all da                      | ta)                    |
| $R_1$                                  | 0.0457                 |
| $wR_2$                                 | 0.0632                 |
| goodness-of-fit <sup>b</sup>           | on $F^2$ 1.067         |
| CCDC no.                               | 2226908                |

Table S10. Crystal data and structure refinement for compound  $(CF_3)_3Ag(dmap)(3)$ 



**Table S11**. Interatomic distances [pm] and angles [°] for (CF<sub>3</sub>)<sub>3</sub>Ag(dmap) as found in crystals of **3** with atom labelling as indicated above.

| Ag-C(1)       | 209.6(3) | C(1)–Ag–C(2)    | 90.43(14)  |
|---------------|----------|-----------------|------------|
| Ag-C(2)       | 205.2(4) | C(1)-Ag- $C(3)$ | 176.25(14) |
| Ag-C(3)       | 208.9(4) | C(1)–Ag–N(1)    | 88.73(12)  |
| Ag-N(1)       | 209.8(3) | C(2)–Ag–C(3)    | 89.22(15)  |
| C(1) E        | 124 4(4) | C(2)–Ag–N(1)    | 176.07(13) |
| av. $C(1)$ –F | 134.4(4) | C(3)-Ag-N(1)    | 91.87(13)  |
| av. C(2)–F    | 133.8(4) |                 |            |
| av. C(3)–F    | 135.6(4) | av. Ag–C(1)–F   | 114.1(2)   |
|               |          | av. Ag–C(2)–F   | 112.8(2)   |
|               |          | av. Ag–C(3)–F   | 113.9(2)   |
|               |          | av. F–C(1)–F    | 104.5(3)   |
|               |          | av. F–C(2)–F    | 105.9(3)   |
|               |          | av. F–C(3)–F    | 104.7(3)   |
|               |          |                 |            |

| formula                               | $C_{21}H_{15}AgF_{9}P \cdot \frac{1}{4}(CH_{2}Cl_{2})$ |
|---------------------------------------|--------------------------------------------------------|
| $M_t$ [g mol <sup>-1</sup> ]          | 598.40                                                 |
| <i>T</i> [K]                          | 100(2)                                                 |
| $\lambda$ [pm]                        | 71.073                                                 |
| crystal system                        | monoclinic                                             |
| space group                           | $P2_{1}/n$                                             |
| <i>a</i> [pm]                         | 1157.973(19)                                           |
| <i>b</i> [pm]                         | 958.956(15)                                            |
| <i>c</i> [pm]                         | 3955.58(6)                                             |
| $\beta$ [°]                           | 93.1699(14)                                            |
| V [nm <sup>3</sup> ]                  | 4.38573(12)                                            |
| Ζ                                     | 8                                                      |
| ho [g cm <sup>-3</sup> ]              | 1.813                                                  |
| $\mu [\mathrm{mm}^{-1}]$              | 1.136                                                  |
| <i>F</i> (000)                        | 2356                                                   |
| $2\theta$ range [°]                   | 5.6–56.7                                               |
| no. of reflns colltd                  | 43926                                                  |
| no. of unique reflns                  | 9756                                                   |
| R <sub>int</sub>                      | 0.0336                                                 |
| <i>R</i> indices $[I > 2\sigma(I)]^a$ |                                                        |
| $R_1$                                 | 0.0276                                                 |
| $wR_2$                                | 0.0565                                                 |
| R indices (all data)                  |                                                        |
| $R_1$                                 | 0.0348                                                 |
| $wR_2$                                | 0.0597                                                 |
| goodness-of-fit <sup>b</sup> on $F^2$ | 1.052                                                  |
| CCDC no.                              | 2226909                                                |

**Table S12.** Crystal data and structure refinement for compound<br/> $(CF_3)_3Ag(PPh_3)\cdot \frac{1}{4}CH_2Cl_2$  ( $4\cdot \frac{1}{4}CH_2Cl_2$ )



**Table S13.** Relevant interatomic distances [pm] and angles [°] averaged for the twoindependent molecules of  $(CF_3)_3Ag(PPh_3)$  found in crystals of 4.

|                  | Ag–P<br>(P)Ag–C<br>(C)Ag–C<br>C–F<br>P–C | 242.38(6)<br>211.2(2)<br>211.6(2)<br>135.3(3)<br>181.5(2) | <i>trans</i> -C–Ag–C'<br><i>cis</i> -C–Ag–C'<br><i>trans</i> -C–Ag–P<br><i>cis</i> -C–Ag–P<br>Ag–C–F<br>Ag–P–C | 172.39(9)<br>88.16(9)<br>177.50(7)<br>91.96(7)<br>113.41(16)<br>112.12(7) |
|------------------|------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| F–C–F 105.25(19) |                                          |                                                           | Ag–P–C<br>F–C–F                                                                                                | 112.12(7)<br>105.25(19)                                                   |

| formula                                |                            | C <sub>24</sub> H <sub>21</sub> AgAsF <sub>9</sub> O |
|----------------------------------------|----------------------------|------------------------------------------------------|
| $M_t [\mathrm{g} \ \mathrm{mol}^{-1}]$ |                            | 679.20                                               |
| <i>T</i> [K]                           |                            | 100(2)                                               |
| $\lambda$ [pm]                         |                            | 71.073                                               |
| crystal syste                          | m                          | monoclinic                                           |
| space group                            |                            | $P2_{1}/n$                                           |
| <i>a</i> [pm]                          |                            | 1495.873(16)                                         |
| <i>b</i> [pm]                          |                            | 933.507(10)                                          |
| <i>c</i> [pm]                          |                            | 1831.459(18)                                         |
| eta[°]                                 |                            | 91.3241(10)                                          |
| <i>V</i> [nm <sup>3</sup> ]            |                            | 2.55678(5)                                           |
| Ζ                                      |                            | 4                                                    |
| ho [g cm <sup>-3</sup> ]               |                            | 1.764                                                |
| $\mu[\mathrm{mm}^{-1}]$                |                            | 2.154                                                |
| <i>F</i> (000)                         |                            | 1336                                                 |
| $2\theta$ range [°]                    |                            | 5.6-56.8                                             |
| no. of reflns                          | colltd                     | 47400                                                |
| no. of uniqu                           | e reflns                   | 5899                                                 |
| $R_{ m int}$                           |                            | 0.0307                                               |
| R indices [I                           | $> 2\sigma(I)]^a$          |                                                      |
| $R_1$                                  |                            | 0.0201                                               |
| $wR_2$                                 |                            | 0.0475                                               |
| R indices (al                          | ll data)                   |                                                      |
| $R_1$                                  |                            | 0.0238                                               |
| $wR_2$                                 |                            | 0.0459                                               |
| goodness-of                            | -fit <sup>b</sup> on $F^2$ | 1.025                                                |
| CCDC no.                               |                            | 2226910                                              |

**Table S14.** Crystal data and structure refinement for compound<br/> $(CF_3)_3Ag(AsPh_3) \cdot Me_2CO$  (5·Me<sub>2</sub>CO)

<sup>*a*</sup>  $R_1 = \sum (|F_o| - |F_c|) / \sum |F_o|; wR_2 = [\sum w (F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2]^{1/2}.$ 

<sup>b</sup> Goodness-of-fit =  $[\sum w(F_0^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}$ .



**Table S15.** Interatomic distances [pm] and angles [°] for  $(CF_3)_3Ag(AsPh_3) \cdot Me_2CO$  as found in crystals of **5** · Me<sub>2</sub>CO with atom labelling as indicated above.<sup>*a*</sup>

| Ag-C(1)    | 211.56(17)  | C(1)–Ag–C(2)                 | 88.10(7)   |
|------------|-------------|------------------------------|------------|
| Ag-C(2)    | 210.14(17)  | C(1)-Ag- $C(3)$              | 170.64(7)  |
| Ag-C(3)    | 210.95(17)  | C(1)–Ag–As                   | 90.88(5)   |
| Ag–As      | 251.365(19) | C(2)–Ag–C(3)                 | 88.60(7)   |
| Ag–O       | 265.30(14)  | C(2)–Ag–As                   | 178.98(5)  |
| av. C(1)–F | 135.7(2)    | C(3)–Ag–As                   | 92.40(5)   |
| av. C(2)–F | 134.0(2)    |                              |            |
| av. C(3)–F | 135.1(2)    | av. Ag–C(1)–F                | 113.86(12) |
| av. As–C   | 193.22(16)  | av. Ag–C(2)–F                | 112.56(12) |
|            |             | av. Ag–C(3)–F                | 113.77(12) |
| Ag-O-C(22) | 148.1(1)    | $av \in C(1) \in C(1)$       | 104.73(14) |
|            |             | av. $\Gamma = C(1) = \Gamma$ | 104.73(14) |
|            |             | av. $F-C(2)-F$               | 106.21(15) |
|            |             | av. F–C(3)–F                 | 104.84(14) |
|            |             | av Ag-As-C                   | 114 73(5)  |
|            |             |                              | 103.76(7)  |
|            |             | av. U-AS-U                   | 103.70(7)  |

<sup>*a*</sup> The Ag–O line deviates just  $3.8(1)^{\circ}$  from the normal to the best basal plane.

### 4. Computational Details

Quantum mechanical calculations were performed with the Gaussian09 package<sup>S7</sup> at the DFT/M06 level of theory with an ultrafine grid option<sup>S8</sup> and supplemented with Grimme's dispersion correction D3.<sup>S9</sup> All elements (H, C, N, O, F, P, As, and Ag) have been described using a Ahlrichs' def2-TZVPD basis set,<sup>S10</sup> a Triple-Zeta-Valence basis set including Polarization and Diffuse basis functions, as obtained from the Basis Set Exchange webpage.<sup>S11,S12</sup> The geometries of the different complexes have been optimized in the gas phase with no symmetry restrictions. The optimized (CF<sub>3</sub>)<sub>3</sub>Ag(L) molecules were found to exhibit square-planar geometry (Fig. S8). The interaction of these metal complexes with an additional donor molecule L' was found to be stabilizing in all cases (Table S16); the optimized geometries of the resulting (CF<sub>3</sub>)<sub>3</sub>Ag(L)·L' molecules are shown in Fig. S9 (L' = MeCN) and Fig. S10 (L' = Me<sub>2</sub>CO). Frequency calculations were performed in all the collected stationary points in order to check their nature of minima. Atomic coordinates for all the optimized structures are included as a separate *xyz* file.



**Fig. S8**. Optimized structures of the (CF<sub>3</sub>)<sub>3</sub>Ag(L) molecules **1–5** with relevant calculated interatomic distances [pm] indicated. Slightly elongated Ag–E distances in comparison with the corresponding experimental values are consistently obtained.



**Fig. S9**. Optimized structures of the  $(CF_3)_3Ag(L)$ ·NCMe molecules. The additional interaction is freely located at the apical site and is stabilizing in all cases with the calculated Ag…N distances [pm] indicated. Slightly elongated Ag–E distances in comparison with the corresponding experimental values are consistently obtained.



**Fig. S10**. Optimized structures of the (CF<sub>3</sub>)<sub>3</sub>Ag(L)·OCMe<sub>2</sub> molecules. The additional interaction is freely located at the apical site and is stabilizing in all cases with the calculated Ag…O distances [pm] indicated. Slightly elongated Ag–E distances in comparison with the corresponding experimental values are consistently obtained.

|                                                        | $\Delta H$ [kcal mol <sup>-1</sup> ] |               |  |
|--------------------------------------------------------|--------------------------------------|---------------|--|
| Complex                                                | L' = MeCN                            | $L' = Me_2CO$ |  |
| (CF <sub>3</sub> ) <sub>3</sub> Ag(NCMe)               | -8.5                                 | _             |  |
| (CF <sub>3</sub> ) <sub>3</sub> Ag(py)                 | -11.4                                | -10.8         |  |
| (CF <sub>3</sub> ) <sub>3</sub> Ag(PPh <sub>3</sub> )  | -10.6                                | -11.4         |  |
| (CF <sub>3</sub> ) <sub>3</sub> Ag(AsPh <sub>3</sub> ) | -11.1                                | -12.0         |  |

**Table S16.** Energy involved in the non-assisted interaction of the given neutral complex  $(CF_3)_3Ag(L)$  with an additional L' ligand in the gas phase.<sup>*a*</sup>

<sup>*a*</sup> Values calculated at the DFT/M06-GD3/def2-TZVPD level of theory; the optimized geometries of the corresponding  $(CF_3)_3Ag(L)\cdot L'$  molecules are shown in Fig. S9 (L' = MeCN) and Fig. S10 (L' = Me<sub>2</sub>CO).

#### 6. References

- S1 D. Joven-Sancho, M. Baya, L. R. Falvello, A. Martín, J. Orduna and B. Menjón, *Chem. Eur. J.*, 2021, 27, 12796.
- S2 D. Naumann, W. Tyrra, F. Trinius, W. Wessel and T. Roy, *J. Fluorine Chem.*, 2000, 101, 131.
- S3 R. Eujen, B. Hoge and D. J. Brauer, *Inorg. Chem.*, 1997, **36**, 1464.
- S4 *CrysAlis Pro* 1.171.39.44a, Rigaku Oxford Diffraction 2018.
- S5 SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- S6 SHELXL Version 2014/8: G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox; *Gaussian 09, Revision D.01* Gaussian, Inc., Wallingford CT, 2013.
- S8 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.

- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, 132, 154104.
- S10 (a) D. Rappoport and F. Furche, *J. Chem. Phys.*, 2010, 133, 134105; (b) F.
  Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297; (c) K. A.
  Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, *J. Chem. Phys.*, 2003, 119, 11113; (d) D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123.
- S11 Basis Set Library obtained from: https://www.basissetexchange.org/
- S12 (a) D. Feller, *J. Comput. Chem.*, 1996, 17, 1571; (b) K. L. Schuchardt, B. T.
  Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, *J. Chem. Inf. Model.*, 2007, 47, 1045.