Remote Electronic Effect on the N-Heterocyclic Carbene-catalyzed Asymmetric Intramolecular Stetter Reaction and Structural Revision of Products

Tsubasa Inokuma,^{a,b} Kohei Iritani,^a Yuki Takahara,^a Chunzhao Sun,^a Yousuke Yamaoka,^c Satoru Kuwano,^c and Ken-ichi Yamada^{*,a,b}

^aGraduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan.

^bResearch Cluster on "Key Material Development", Tokushima University, Shomachi, Tokushima 770-8505, Japan.

^cGraduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.

yamak@tokushima-u.ac.jp

1. Copies of ¹H and ¹³C NMR spectra

¹³C NMR of S2

¹H NMR of *ent*-1c

ent-1c

¹³C NMR of *ent*-1c

¹³C NMR of S4

¹³C NMR of ent-1e

¹³C NMR of S6

HOCO₂Me

¹H NMR of S7

Br CO₂Me

¹³C NMR of S7

CHO N Ts 2b

¹³C NMR of 3a

¹³C NMR of 3b

¹³C NMR of 3c

2. Copies of HPLC charts

(±)-**3**a

R-3a in Table 1, Entry 1 (92% ee, ent-1c was used)

100.000

535766

8527517

R-3a in Table 1, Entry 3 (97% ee, ent-1a was used)

S-3a in Table 1, Entry 5 (98% ee)

(±)-**3b**

2	28.612	1865113	49.735	17150	
Totals		3750065	100.000	50698	
V					

R-3b in Table 1, Entry 6 (74% ee, ent-1c was used)

3699022

100.000

69713

R-3b in Table 1, Entry 10 (95% ee, ent-1e was used)

v

S-3c synthesized in the presence of 1a for 2 h (84% ee)

R-3c synthesized in the presence of *ent*-1e for 2 h (91% ee)

