This journal is © The Royal Society of Shempistrying23 finformation I

Remote Electronic Effect on the \mathbf{N}-Heterocyclic Carbene-catalyzed Asymmetric Intramolecular Stetter Reaction and Structural Revision of Products

Tsubasa Inokuma, ${ }^{a, b}$ Kohei Iritani, ${ }^{a}$ Yuki Takahara, ${ }^{a}$ Chunzhao Sun, ${ }^{a}$ Yousuke Yamaoka, ${ }^{c}$ Satoru Kuwano, ${ }^{c}$ and Ken-ichi Yamada ${ }^{*, a, b}$${ }^{a}$ Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505,Japan.${ }^{\mathrm{b}}$ Research Cluster on "Key Material Development", Tokushima University, Shomachi, Tokushima 770-8505,Japan.${ }^{\mathrm{c}}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.yamak@tokushima-u.ac.jp
Contents

1. General procedure S2
2. Preparation of the NHC precursors ent-1c and ent-1e S2-3
3. Preparation of the substrate $\mathbf{2 b}$ S4-5
4. Typical procedure for asymmetric intramolecular Stetter reaction of 2a S5
5. Typical procedure for asymmetric intramolecular Stetter reaction of $\mathbf{2 b}$ S6
6. Conversion of $\mathbf{3 a}$ into $\mathbf{7}$ S6-8
7. Typical procedure for asymmetric intramolecular Stetter reaction of $\mathbf{2 c}$ S8
8. X-ray diffraction S9-12
9. DFT calculation S13-30
10. References S31

Supporting Information I

1. General procedure

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware. Dehydrated solvents were purchased for the reactions and used without further desiccation. Reagents were purchased and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on Merck TLC silica gel $60 \mathrm{~F}_{254}$. Column chromatography was performed using Kanto Chem. Co. Silica Gel 60N (particle size $0.040-$ 0.050 mm). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV-400N instrument. The chemical shifts (δ) are reported in parts per million relative to tetramethylsilane (0 ppm) for ${ }^{1} \mathrm{H}$ and CDCl_{3} (77.0 ppm), DMSO- d_{6} (39.5 ppm), or acetone $-d_{6}$ (206.7 and 30.4 ppm) for ${ }^{13} \mathrm{C}$. The coupling constants (J) are presented in hertz. The following abbreviations were used to explain NMR peak multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Mass spectra were recorded on a Waters MICROMASS ${ }^{\circledR}$ LCT PREMIERTM (ESI-TOF). IR was measured using a JASCO FT-IR 6200, and the wavenumbers of maximum absorption peaks are reported in cm^{-1}. Optical rotations were measured using a JASCO P-2200 polarimeter (concentration in $\mathrm{g} \mathrm{dL}^{-1}$). High performance liquid chromatography (HPLC) analyses were performed on a SHIMADZU analytical system equipped with two LC-20AT pumps. The catalysts $\mathbf{1 a}, \mathbf{1}^{\mathbf{1}} \mathbf{b},{ }^{2} \mathbf{1} \mathbf{d}^{3}$ and the substrates $\mathbf{2 a}, \mathbf{2}^{\mathbf{2}} \mathbf{c}^{5}$ were prepared according to the literature procedures.

2. Preparation of the NHC precursors ent-1c and ent-1e

(4aS,9aR)-6-Methyl-4,4a,9,9a-tetrahydroindeno[2,1-b][1,4]oxazin-3(2H)-one (S2)
A stirring bar, $\mathbf{S 1}^{6}(885 \mathrm{mg}, 3.30 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(116 \mathrm{mg}, 0.165 \mathrm{mmol})$ were placed in a dried 200 mL flask. The flask was evacuated and filled with argon three times. Distilled THF (66 mL) was added, and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 30 min . A 1.07 M hexane solution of $\mathrm{AlMe}_{3}(5.0 \mathrm{~mL}, 1.6 \mathrm{mmol})$ was added and the mixture was heated under reflux in an oil-bath $\left(90^{\circ} \mathrm{C}\right)$ for 24 h . The mixture was then cooled in an ice-water bath and 2 M HCl was dropwise added until bubbling ceased. The mixture was extracted three times with CHCl_{3}. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc} 1: 3\right)$ gave pale brown solid, which was then recrystallized from hexane-acetone (5:1) to give $\mathbf{S 2}$ ($470 \mathrm{mg}, 70 \%$) as glossy white solid of mp 248-250 ${ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{28}+12.6\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H})$, $6.60(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=4.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{dd}, J=17.0,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.05 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8$ (C), 140.9 (C), 137.3 (C), 136.2 (C), 129.3 $(\mathrm{CH}), 125.0(\mathrm{CH}), 124.6(\mathrm{CH}), 76.5(\mathrm{CH}), 66.6\left(\mathrm{CH}_{2}\right), 58.7(\mathrm{CH}), 37.3\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) $\mathrm{m} / \mathrm{z} 226(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{2}$, 226.0844; found, 226.0833. IR (KBr): 2922, 1692, 1498, 1417, 1328, 1267, 1109, 1045, 802.
(5aS,10bR)-9-Methyl-2-(perfluorophenyl)-5a,10b-dihydro-4H,6H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-2ium tetrafluoroborate (ent-1c)
To a solution of $\mathbf{S} \mathbf{2}(102 \mathrm{mg}, 0.502 \mathrm{mmol})$ in distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added $\mathrm{Me}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}(77 \mathrm{mg}, 0.51 \mathrm{mmol})$, and the mixture was stirred at rt for $19.5 \mathrm{~h} . \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{NHNH}_{2}(103 \mathrm{mg}, 0.504 \mathrm{mmol})$ was then added, and the mixture was stirred for

Supporting Information I

another 10 h . The mixture was concentrated in vacuo, and the residue was dissolved in distilled $\mathrm{PhCl}(3.0 \mathrm{~mL})$ followed by addition of $(\mathrm{EtO})_{3} \mathrm{CH}(0.43 \mathrm{~mL}, 2.5 \mathrm{mmol})$. The mixture was heated at $110{ }^{\circ} \mathrm{C}$ and stirred for 12 h open to the atmosphere. The whole mixture was directly purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1\right)$ to give brown solid. The solid was dissolved in hot toluene. The mixture was cooled to rt followed by addition of hexane to give $\mathbf{1 c}(91 \mathrm{mg}, 38 \%)$ as pale brown solid of $\mathrm{mp} 117-119^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}+120\left(c 1.00, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.7(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $3 \mathrm{H}), 6.02(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=17.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , acetone- d_{6}): $\delta 152.5$ (C), 147.1 (CH), 138.5 (C), 138.0 (C), 136.1 (C), 131.2 (CH), 126.1 (CH), 125.5 $(\mathrm{CH}), 78.3(\mathrm{CH}), 63.3(\mathrm{CH}), 60.7\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) $m / z 394\left(\mathrm{M}-\mathrm{BF}_{4}\right)$. HRMS (ESI) $m / z[\mathrm{M}-$ $\left.\mathrm{BF}_{4}\right]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{3} \mathrm{O}, 394.0979$; found, 394.0982. IR (KBr): 2948, 1594, 1525, 1483, 1390, 1324, 1077, 1005, 861, 824, 801.

(4aR,9aS)-8-Bromo-6-nitro-4,4a,9,9a-tetrahydroindeno[2,1-b][1,4]0xazin-3(2H)-one (S4)
To a solution of $\mathbf{S 3}^{7}(468 \mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}(2.0 \mathrm{~mL})$ was added NBS $(360 \mathrm{mg}, 2.02 \mathrm{mmol})$ in three additions at 60 ${ }^{\circ} \mathrm{C}$. After attired for 2 h , the reaction mixture was poured into ice water. The resulting mixture was filtered, washed with cold water and hexane. Solvent was concentrated under reduced pressure to give the title compound $\mathbf{S 4}$ ($544 \mathrm{mg}, 1.74 \mathrm{mmol}$, $87 \%)$ as a light brown powder of mp $246-252{ }^{\circ} \mathrm{C}:[\alpha] \mathrm{D}^{29}+77.96\left(c 0.14, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.35(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (125 MHz , acetoned_{6} : $\delta 167.1(\mathrm{C}), 148.6(\mathrm{C}), 148.1(\mathrm{C}), 146.0(\mathrm{C}), 126.1(\mathrm{CH}), 119.5(\mathrm{C}), 118.6(\mathrm{CH}), 75.4(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right), 59.2(\mathrm{CH}), 39.0$ $\left(\mathrm{CH}_{2}\right)$. LRMS (ESI) $m / z 335(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{NaO}_{4}, 334.9643$; found, 334.9654.. IR (KBr): 3442, 3087, 2911, 1691, 1631, 1531, 1347.

(5aS,10bR)-7-Bromo-9-nitro-2-(perfluorophenyl)-5a,10b-dihydro-4H,6H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate (1e)

To a solution of $\mathbf{S} \mathbf{4}(157 \mathrm{mg}, 0.501 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Me}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}(84 \mathrm{mg}, 0.55 \mathrm{mmol})$, and the mixture was stirred at rt for $19.5 \mathrm{~h} . \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{NHNH}_{2}(112 \mathrm{~g}, 0.551 \mathrm{mmol})$ was then added, and the mixture was stirred for another 10 h . The mixture was concentrated in vacuo, and the residue was dissolved in distilled $\mathrm{PhCl}(3.0 \mathrm{~mL})$ followed by addition of $(\mathrm{EtO}))_{3} \mathrm{CH}(0.86 \mathrm{~mL}, 5.0 \mathrm{mmol})$. The mixture was heated at $110^{\circ} \mathrm{C}$ and stirred for 12 h open to the atmosphere. The whole mixture was directly purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1\right)$ to give brown solid. The solid was triturated in $\mathrm{Et}_{2} \mathrm{O}$ and collected by filtration to give $\mathbf{1 e}(212 \mathrm{mg}, 72 \%)$ as pale brown solid of $\mathrm{mp} 147-149{ }^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}{ }^{20}+135(c 1.00$, $\left.\mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.7(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=4.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=18.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.7$ $(\mathrm{C}), 148.5(\mathrm{C}), 148.2(\mathrm{C}), 146.2(\mathrm{CH}), 138.2(\mathrm{C}), 128.3(\mathrm{CH}), 120.9(\mathrm{C}), 119.2(\mathrm{CH}), 76.5(\mathrm{CH}), 62.8(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right)$, $39.1\left(\mathrm{CH}_{2}\right)$. LRMS (ESI) $m / z 503\left(\mathrm{M}-\mathrm{BF}_{4}\right)$. HRMS (ESI) $m / z\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{BrF}_{5} \mathrm{~N}_{4} \mathrm{O}_{3}$, 502.9778; found, 502.9780. IR (KBr): 2943, 1593, 1529, 1483, 1447, 1351, 1079, 1004, 893, 862, 843, 756.

Supporting Information I

3. Preparation of the substrate 2b

Methyl (\boldsymbol{E})-4-hydroxy-3-methylbut-2-enoate (S6)

To a solution of $\mathbf{S 5}(44.3 \mathrm{~g}, 132 \mathrm{mmol})$ in $\mathrm{MeCN}(235 \mathrm{~mL})$ was added hydroxyacetone $(7.7 \mathrm{~mL}, 0.11 \mathrm{~mol})$. The obtained solution was stirred at $80^{\circ} \mathrm{C}$ for 17 h . After this time solvent was evaporated and the residue was treated with diethyl ether (200 mL) and cooled down to $0^{\circ} \mathrm{C}$. Precipitated triphenylphosphine oxide was filtered off. The solvent was evaporated under reduced pressure. The crude product was distilled $\left(160^{\circ} \mathrm{C}\right.$ at 7 mmHg$)$ to give the title compound $\mathbf{S 6}(7.9 \mathrm{~g}, 61 \mathrm{mmol}$, 55%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.01-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=6.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5(\mathrm{C}), 158.1(\mathrm{C}), 113.0(\mathrm{CH}), 66.8\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) $m / z: 153(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NaO}_{3}, 153.0528$; found, 153.0522. IR (neat): 3443, 2952, 1719, 1659, 1438, 1227, 1151.

Methyl (\boldsymbol{E})-4-bromo-3-methylbut-2-enoate (S7)

To a solution of $\mathbf{S 6}(7.9 \mathrm{~g}, 61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{PBr}_{3}(6.9 \mathrm{~mL}, 73 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(64 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 3 h , the reaction was quenched with water, and the whole solution was extracted with ethyl acetate twice. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was purified by flash column chromatography (hexane/ethyl acetate 19:1) to give the title compound $\mathbf{S 7}(5.7 \mathrm{~g}, 26 \mathrm{mmol}, 42 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.97(\mathrm{~m} \mathrm{1H}), 3.95(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3(\mathrm{C}), 152.7(\mathrm{C}), 119.0(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 17.2$ $\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) $m / z: 215(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrNaO}_{2}, 214.9684$; found, 214.9691 . IR (neat): 1720, 1646, 1435, 1360, 1287, 1232, 1159, 1037.

N -(2-Formylphenyl)-4-methylbenzenesulfonamide (S9)

To a solution of $\mathbf{S 8}(1.2 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(33 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added pyridine $(1.0 \mathrm{~mL}, 13 \mathrm{mmol})$ and $\mathrm{TsCl}(2.3 \mathrm{~g}, 12$ mmol) and the reaction mixture was stirred under an argon atmosphere. After 22 h , the reaction mixture was diluted with ethyl acetate, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure and the obtained crude product was used to the next step without further purification.
The above-obtained crude product ($3.0 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL}) . \mathrm{MnO}_{2}(3.5 \mathrm{~g}, 40 \mathrm{mmol})$ was added under argon atmosphere and the solution was refluxed for 12 h . The progress of the reaction was monitored by TLC analysis. After completion, the reaction mixture was filtered off with Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane/ethyl acetate $3: 1$) to give the title compound $\mathbf{S 9}$ ($1.16 \mathrm{~g}, 4.21 \mathrm{mmol}, 2$ steps 42%). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.8(\mathrm{~s}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (td, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (td, $J=8.0$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{S} 9$ was in good agreement with that of the literature. ${ }^{8}$

Supporting Information I

Methyl (E)-4-((N-(2-formylphenyl)-4-methylphenyl)sulfonamido)-3-methylbut-2-enoate (2b)

A round bottom flask was charged with $\mathbf{S 9}(1.2 \mathrm{~g}, 4.2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}, 11 \mathrm{mmol})$ under argon atmosphere. To this flask was added acetone (28 mL). After $10 \mathrm{~min}, \mathbf{S} 7(0.69 \mathrm{~mL}, 5.0 \mathrm{mmol})$ was added, and the resulting solution was stirred at $60^{\circ} \mathrm{C}$ for 17 h . After this time, solvent was evaporated. The residue was diluted with ethyl acetate, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane/ethyl acetate $2: 1$ and then $1: 2$) to give the title compound 2b ($955 \mathrm{mg}, 2.5 \mathrm{mmol}, 59 \%$) as white solid of $\mathrm{mp} 108-118{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 80{ }^{\circ} \mathrm{C}\right): \delta 10.26$ (s, 1H), $7.87(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=9.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.3(\mathrm{CH})$, $165.9(\mathrm{C}), 151.2(\mathrm{C}), 144.6(\mathrm{C}), 140.8(\mathrm{C}), 135.7(\mathrm{C}), 134.0(\mathrm{CH}), 133.5(\mathrm{C}), 129.8(\mathrm{CH}), 129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 119.9(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) m/z: $410(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{5} \mathrm{~S}, 410.1038$; found, 410.1056. IR (KBr): 2952, 1722, 1690, 1597, 1347, 1227, 1159.

4. Typical procedure for asymmetric intramolecular Stetter reaction of $\mathbf{2 a}$ (Table 1, entry 2)

A flame-dried round bottom flask was charged with triazolium salt $1 \mathrm{a}(2.3 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$), proton sponge (1.1 mg , $5.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$, and a magnetic stirring bar under argon. To this flask was added $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(20 \mathrm{~mL})$ via syringe, and the mixture was stirred at ambient temperature for 1 h and then cooled in an ice-brine bath. After 15 min , the substrate 2a $(110 \mathrm{mg}, 0.50 \mathrm{mmol})$ was added, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 100 min . Acetic acid $(1.0 \mathrm{~mL})$ was added, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was diluted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ twice, saturated aqueous NaHCO_{3}, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. The mixture was purified by silica gel flash column chromatography (hexane/ethyl acetate $=5: 1$) to give the title compound 3a ($58.6 \mathrm{mg}, 53 \%$) with 96% ee as light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{19}-9.38\left(c 1.14, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=11.0,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=12.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{ddt}, J=12.0,8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=17.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{dd}, J=17.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.5(\mathrm{C}), 171.8(\mathrm{C}), 161.7(\mathrm{C}), 136.0(\mathrm{CH}), 127.4(\mathrm{CH})$, $121.5(\mathrm{CH}), 120.5(\mathrm{C}), 117.8(\mathrm{CH}), 70.2\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 42.5(\mathrm{CH}), 30.1\left(\mathrm{CH}_{2}\right)$. LRMS (ESI) $m / z: 243(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}, 243.0633$; found, 243.0645. IR (neat): 2952, 1738, 1692, 1606, 1480, 1325, 1301, 1216.
The ee was determined by HPLC analysis (Daicel Chiralcel AD-H; hexane $/ i-\operatorname{PrOH}$ 19:1; $1.0 \mathrm{~mL} / \mathrm{min} ; 254 \mathrm{~nm}$; (S) 12.2 min , (R) 15.3 min).

Supporting Information I

5. Typical procedure for asymmetric intramolecular Stetter reaction of 2b (Table 2, entry 2)

A flame-dried test tube was charged with triazolium salt $\mathbf{1 a}(4.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 20 \mathrm{~mol} \%$), proton sponge ($2.3 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 20 \mathrm{~mol} \%)$, and a magnetic stirring bar under argon. To this flask was added $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL})$ via syringe. After 1 h at rt , the substrate $\mathbf{2 b}(19 \mathrm{mg}, 0.050 \mathrm{mmol})$ was added, and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 7 h . Acetic acid $(0.5 \mathrm{~mL})$ was added, and the reaction mixture was stirred 10 min at rt . The reaction mixture was diluted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ twice, saturated aqueous NaHCO_{3}, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane/ethyl acetate $3: 1$) to give the title compound 3b ($10.1 \mathrm{mg}, 52 \%$) with 78% ee as a yellow solid of mp $99-103{ }^{\circ} \mathrm{C}$. $[\alpha]{ }_{\mathrm{D}}{ }^{16}-35.4\left(c=1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5, \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J$ $=8.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (ddd, $J=8.0,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=1.0,2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.04$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) 2.55(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 196.1(\mathrm{C}), 171.2$ (C), $144.4(\mathrm{C}), 142.3(\mathrm{C}), 137.3(\mathrm{C}), 134.5(\mathrm{CH}), 130.1(\mathrm{CH}), 129.2(\mathrm{CH}), 126.8(\mathrm{CH}), 123.6(\mathrm{CH}), 122.2(\mathrm{C}), 118.8(\mathrm{CH})$, $54.7\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{3}\right), 44.8(\mathrm{C}), 39.2\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) m/z: $410(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO} 5 \mathrm{~S}, 410.1038$; found, 410.1052 . IR (KBr) 1743, 1696, 1602, 1481, 1342, 1163. The ee was determined by HPLC analysis (Daicel Chiralcel OD-H; hexane $/$-PrOH 17:3; $1.0 \mathrm{~mL} / \mathrm{min} ; 254 \mathrm{~nm} ;(R) 13.8 \mathrm{~min},(S) 25.9$ min).

6. Conversion of $\mathbf{3 a}$ into 7

(3aS,9bS)-3a,9b-Dihydro-4H-furo[3,2-c]chromen-2(3H)-one
(4) and Methyl 2-((3S,4R)-4-hydroxychroman-3y) acetate (5)
To a solution of $\mathbf{3 a}(176 \mathrm{mg}, 0.80 \mathrm{mmol}, 96 \%$ ee $)$ in $\mathrm{MeOH}(4.0 \mathrm{~mL})$ was slowly added $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.80 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and then stirred for 10 min . The reaction mixture was diluted with ethyl acetate, washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. The crude mixture was diluted with $\mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$, and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{mg})$ was added. After stirred for 90 min at room temperature, the solvent was concentrated under reduced pressure. The resulting mixture was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $=20 / 1$ and then 10/1) to obtain the lactone $\mathbf{4}(59 \mathrm{mg}, 0.31 \mathrm{mmol}, 39 \%)$ as a white solid and the alcohol $5(91 \mathrm{mg}, 0.41 \mathrm{mmol}, 51 \%)$ as colorless oil.

Supporting Information I

(3aS,9bS)-3a,9b-Dihydro-4H-furo[3,2-c]chromen-2(3H)-one (4)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=8.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=6.5,1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.5,4.5,1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.5,9.5,1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.87(\mathrm{dd}, J=17.5,8.5,1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.5,4.0,1 \mathrm{H}) .[\alpha]_{\mathrm{D}}{ }^{28}+102.23\left(c 1.02, \mathrm{CHCl}_{3}\right)$.
The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{4}$ was in good agreement with that of the literature. ${ }^{9}$
Methyl 2-((3S,4R)-4-hydroxychroman-3-yl)acetate (5)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5$, $1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}$, $2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}) .[\alpha]_{\mathrm{D}}{ }^{20}=+37.70\left(c 1.06, \mathrm{CHCl}_{3}\right)$.
The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{5}$ was in good agreement with that of the literature. ${ }^{10}$

2-((6R,7aR)-8,8-Dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenzo[c]isothiazole-1-carbonyl)benzoic acid (6) To a solution of $\mathbf{S 1 0}(0.40 \mathrm{~g}, 1.8 \mathrm{mmol})$ and freshly distilled toluene $(6.0 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ in paraffin liquid (0.16 $\mathrm{g}, 4.0 \mathrm{mmol})$, and then the mixture was stirred at room temperature. After 30 min , phthalic anhydride ($0.27 \mathrm{~g}, 1.8 \mathrm{mmol}$) was added, and the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with 2 M HCl to $\mathrm{pH} 1-2$, and was decantated. The white solid was diluted with CHCl_{3} and washed with $\mathrm{H}_{2} \mathrm{O}$. The solvent was concentrated under reduced pressure. The resulting mixture was recrystallized from $\mathrm{CHCl}_{3} /$ hexane to obtain the title compound $6(0.32 \mathrm{~g}, 0.87 \mathrm{mmol}, 47 \%)$ as a white solid of $\mathrm{mp} 195-211{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.10(\mathrm{dd}, J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.41$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2(\mathrm{C}), 167.5(\mathrm{C}), 136.0(\mathrm{C}), 132.9(\mathrm{CH}), 130.6(\mathrm{CH}), 130.4(\mathrm{CH}), 129.3(\mathrm{CH}), 127.6(\mathrm{C})$, $65.7(\mathrm{CH}), 53.0\left(\mathrm{CH}_{2}\right), 48.4(\mathrm{C}), 47.8(\mathrm{C}), 44.7(\mathrm{CH}), 37.7\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) $m / z: 362(\mathrm{M}-\mathrm{H})$. HRMS (ESI) $m / z[\mathrm{M}-\mathrm{H}]$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}$, 362.1062; found, 362.1080. IR (KBr) 2950, 2687, 2554, 1684, 1333, 1315, 1302, 1255, 1169, 1154.
(3S,4R)-3-(2-Methoxy-2-oxoethyl)chroman-4-yl

2-((6R,7aR)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-

 methanobenzo[c]isothiazole-1-carbonyl)benzoate (7)To the mixture of alcohol $5(44 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}(58 \mathrm{mg}, 0.30 \mathrm{mmol})$, and DMAP ($59 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ was added the carboxylic acid $6(80 \mathrm{mg}, 0.22 \mathrm{mmol})$, and then the mixture was stirred at room temperature for 18 h. The resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ and 2 M HCl to $\mathrm{pH} 3-4$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. The mixture was purified by silica gel flash column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $=30: 1$ and then $\left.\mathrm{Hex} / \mathrm{EtOAc}=2 / 1\right)$ to obtain the title compound 7 as white solid of $\mathrm{mp} 83-98{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+16.95\left(c=0.89, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{dd}, J=$ $7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{ddd}, J=11.5,3.0,1.0$

Supporting Information I

$\mathrm{Hz}, 1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.18-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8(\mathrm{C}), 167.4(\mathrm{C})$, $164.3(\mathrm{C}), 155.0(\mathrm{C}), 135.5(\mathrm{C}), 132.2(\mathrm{CH}), 132.1(\mathrm{CH}), 131.7(\mathrm{CH}), 130.5(\mathrm{CH}), 130.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.3(\mathrm{C}), 120.8$ $(\mathrm{CH}), 118.1(\mathrm{C}), 116.8(\mathrm{CH}), 69.9(\mathrm{CH}), 65.5(\mathrm{CH}), 65.0\left(\mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 48.2(\mathrm{C}), 47.6(\mathrm{C}), 45.0(\mathrm{CH}), 37.9$ $\left(\mathrm{CH}_{2}\right)$, $34.1(\mathrm{CH})$, $32.8\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$, $20.0\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) m/z: $590(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NNaO}_{8} \mathrm{~S}, 590.1825$; found, 590.1828. IR (KBr) 2955, 1717, 1684, 1584, 1490, 1336, 1301, 1227, 1170, 1138, 1077.

The single crystal of 7 for X-ray crystallography analysis was obtained by slow evaporation from acetone/hexane. The Absolute stereochemistry was determined S by X-ray crystallography analysis.

7. Typical procedure for asymmetric intramolecular Stetter reaction of 2c (Scheme 3, entry 3)

A flame-dried round bottom flask was charged with triazolium salt ent-1e ($2.3 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), proton sponge (1.1 $\mathrm{mg}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), and a magnetic stirring bar under argon atmosphere. To this flask was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ via syringe, and the mixture was stirred at ambient temperature for 1 h and then cooled in an ice-brine bath. After 15 min , A solution of the substrate $2 \mathrm{c}(22 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}$ was added via cannula then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL) was also added via cannula. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was purified directly by silica gel flash column chromatography (hexane/ethyl acetate $=1: 1$) at $5^{\circ} \mathrm{C}$ to give the title compound ent- $\mathbf{3 c}$ (25 mg , quant) with 91% ee as yellow oil: $[\alpha]_{\mathrm{D}}{ }^{27}-60.83\left(c 2.06, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69$ (ddd, $J=7.5,1.5,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.5,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.08$ (dd, $J=4.0,17 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=8.0,17 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.3$ (C), $172.5(\mathrm{C}), 169.3(\mathrm{C}), 138.0(\mathrm{CH}), 124.3(\mathrm{CH}), 122.2(\mathrm{CH}), 120.9(\mathrm{C}), 113.5(\mathrm{CH}), 81.1(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 14.0$ $\left(\mathrm{CH}_{3}\right)$. LRMS (ESI) $m / z: 243(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}, 243.0633$; found, 243.0623. IR (neat) 3026, 1724, 1616, 1477, 1463.
The ee was determined by HPLC analysis (Daicel Chiralcel AS-3; hexane $/ i-\operatorname{PrOH} 19: 1 ; 1.0 \mathrm{~mL} / \mathrm{min} ; 254 \mathrm{~nm}$; (R) 21.2 min , (S) 36.6 min).

Supporting Information I

8. X-ray diffraction

Preparation of 3b for X-ray diffraction analysis: A flame-dried test tube was charged with triazolium salt $\mathbf{1 d}$ ($5.1 \mathbf{m g}$, 0.010 mmol), proton sponge $(2.2 \mathrm{mg}, 0.010 \mathrm{mmol})$, and a magnetic stirring bar under argon. To this flask was added $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL})$ via syringe. After 1 h at rt , the substrate $\mathbf{2 b}(19 \mathrm{mg}, 0.050 \mathrm{mmol})$ was added, and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . Acetic acid $(0.5 \mathrm{~mL})$ was added, and the reaction mixture was stirred 10 min at rt . The reaction mixture was diluted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ twice, saturated aqueous NaHCO_{3}, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane/ethyl acetate $3: 1$) to give the title compound $\mathbf{3 b}(19.8 \mathrm{mg}, 97 \%)$ with 94% ee. The single crystal of 3b for X-ray crystallography analysis was obtained by slow evaporation from $i-\mathrm{PrOH} / \mathrm{hexane}$. The Absolute stereochemistry was determined S by X-ray crystallography analysis.

Data collection and Structure solution details: Single crystal X-ray data for compounds 3b and $\mathbf{7}$ were collected on a Rigaku XtaLaB P200 diffractometer $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. Data collection, cell refinement, data reduction and analysis were carried out with the CrysAlisPro (Rigaku Oxford Diffraction). These structures were solved by intrinsic phasing methods with the SHELXT program and refines using SHELXL ${ }^{11}$ with anisotropic displacement parameters for non-H atoms. CCDC 2208224 (for 3b) and 2208225 (for 7) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

X-ray crystallographic data for compound 3b (CCDC 2208224).

Figure S1. ORTEP view of the compound 3b with thermal ellipsoids drawn at the 50% probability level

Supporting Information I

Table S1 Crystal data and structure refinement for 3b.
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c / \AA
$\alpha /^{\circ}$
$\beta /{ }^{\circ} \quad 100.6270(10)$
$\gamma{ }^{\circ} 90$
Volume $/ \AA^{3} \quad 1875.32(5)$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
1.372
μ / mm^{-1} 1.808
$\mathrm{F}(000) \quad 816.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.02 \times 0.01 \times 0.01$
Radiation
$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 8.382$ to 146.47
Index ranges $\quad-11 \leq h \leq 11,-9 \leq k \leq 11,-24 \leq 1 \leq 26$
Reflections collected 24711
Independent reflections $\quad 6656\left[\mathrm{R}_{\text {int }}=0.0906, \mathrm{R}_{\text {sigma }}=0.0517\right]$
Data/restraints/parameters 6656/1/493
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.040$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0416, \mathrm{wR}_{2}=0.1075$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0423, \mathrm{wR}_{2}=0.1079$
Largest diff. peak/hole / e $\AA^{-3} 0.49 /-0.50$
Flack parameter $\quad 0.033(10)$

Supporting Information I

X-ray crystallographic data for compound 7 (CCDC2208225).

Figure S2. ORTEP view of the compound 7 with thermal ellipsoids drawn at the 50% probability level

Supporting Information I

Table S2 Crystal data and structure refinement for 7.

Identification code	7
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{~S}$
Formula weight	567.63
Temperature/K	93.00
Crystal system	monoclinic
Space group	P 21
a/ \AA	12.4269(3)
b / \AA A	11.0986(2)
c / \AA	20.8157(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.341(2)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2740.44(11)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.376
μ / mm^{-1}	1.502
F(000)	1200.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 4.448$ to 144.112	
Index ranges	$-14 \leq \mathrm{h} \leq 15,-13 \leq \mathrm{k} \leq 12,-22 \leq 1 \leq 24$
Reflections collected	20845
Independent reflections	$8222\left[\mathrm{R}_{\text {int }}=0.0346, \mathrm{R}_{\text {sigma }}=0.0390\right]$
Data/restraints/parameters	8222/1/727
Goodness-of-fit on F^{2}	1.086
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0303, \mathrm{wR}_{2}=0.0782$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0330, \mathrm{wR}_{2}=0.0794$
Largest diff. peak/hole / e $\AA^{-3} 0.16 /-0.29$	
Flack parameter	0.034(10)

Supporting Information I

9. DFT calculation

The initial transition state (TS) search was conducted using Spartan'18W program at the B3LYP/6-31G(d) theoretical level. After conformational search, the geometry optimization of the conformers at the HF/3-21G theoretical level was performed with restriction of the forming $\mathrm{C}-\mathrm{C}$ bond lengths. Finally, TS search was performed at the B3LYP/6-31G(d) levels of theory using Gaussian 09W program ${ }^{11}$ to give the $\mathrm{TS}_{\text {major }}$ and $\mathrm{TS}_{\text {minor }}$. The TS geometries were verified by vibrational frequency analysis. Single-point-energy calculations were performed at the B3LYP-D3/6-311+G(2df,2p) theoretical level. The NCI plots ${ }^{12}$ were visualized using a Java application, Jmol, downloaded from http://www.jmol.org/.

$\mathrm{TS}_{\text {major }}$ that gives 3a by the catalysis of 1a

Energies $($ RB3LYP $)=$
Zero-point correction $=$
Thermal correction to Energy =
Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy = Energies (B3LYP-D3) =
Sum of electronic and zero-point Energies =
Sum of electronic and thermal Energies =
Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =


```
-2195.85217976
    0.479310 (Hartree/Particle)
    0.514386
    0.515330
    0.411694
-2196.69893438
-2196.219624
-2196.184548
-2196.183604
-2196.287240
```

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
H	0.523966	0.228996	3.211294
C	1.341831	0.733942	2.707550
C	3.411797	2.083198	1.402686
C	1.162197	1.141387	1.378463
C	2.546496	0.968888	3.368701
C	3.586943	1.632100	2.710551
C	2.201309	1.842904	0.749734
H	2.675721	0.634031	4.393978
H	4.527506	1.816406	3.222694
H	4.188171	2.632982	0.879281
O	2.035938	2.295114	-0.538169
C	0.879997	3.154002	-0.654521
H	0.973614	3.955006	0.089243
H	0.965454	3.597901	-1.650609
C	-0.466476	2.467679	-0.514691
C	-1.491573	3.225818	0.111334
H	-1.232827	4.041716	0.780054
C	-2.856760	3.133848	-0.321602
O	-3.334267	2.300810	-1.104017
C	-0.128058	0.877558	0.652382
C	-0.181969	-0.226184	-0.283474
N	0.833021	-0.810377	-0.992759
N	-1.319636	-0.753528	-0.850810

Supporting Information I

C	-0.926386	-1.562567	-1.893495
N	0.362918	-1.635896	-2.007915
C	2.225213	-0.844216	-0.743250
C	4.977882	-1.050890	-0.340488
C	2.729986	-1.520328	0.370267
C	3.115346	-0.302208	-1.673337
C	4.488781	-0.398318	-1.470879
C	4.100178	-1.607624	0.588353
C	-2.741493	-0.608712	-0.472950
H	-2.924385	0.449920	-0.284458
C	-1.933314	-2.153631	-2.838158
C	-3.651413	-1.033674	-1.653811
H	-3.709984	-0.250608	-2.420353
O	-1.239235	0.885333	1.481229
H	-1.624107	1.810829	1.355530
H	-0.786475	1.948355	-1.417923
F	1.888937	-2.071901	1.248878
F	4.577288	-2.240446	1.663427
F	6.293770	-1.138932	-0.143633
F	5.340111	0.130021	-2.354462
F	2.657440	0.316566	-2.757789
C	-3.238608	-1.488336	0.663499
C	-4.987699	-1.348894	-0.969164
H	-5.569878	-2.059332	-1.564407
H	-5.575914	-0.427024	-0.869266
C	-4.553897	-1.882565	0.380811
O	-3.198708	-2.265341	-2.232493
H	-1.618203	-3.153783	-3.145370
C	-2.618474	-1.872454	1.847955
H	-1.606031	-1.557025	2.073457
C	-5.266884	-2.660456	1.287829
H	-6.285938	-2.971343	1.070483
C	-3.331335	-2.667233	2.751699
H	-2.858031	-2.982336	3.677732
C	-4.645574	-3.054344	2.477224
H	-5.187076	-3.671006	3.189744
H	-1.977432	-1.516325	-3.738147
O	-3.646134	4.098781	0.246733
C	-5.024456	4.057709	-0.121135
H	-5.489080	3.115108	0.187250
H	-5.149630	4.168153	-1.202698
H	-5.493763	4.894251	0.400327
H	0.523966	0.228996	3.211294
C	1.341831	0.733942	2.707550
C	3.411797	2.083198	1.402686
C	1.162197	1.141387	1.378463
C	2.546496	0.968888	3.368701
C	3.586943	1.632100	2.710551
C	2.201309	1.842904	0.749734
H	2.675721	0.634031	4.393978
H	4.527506	1.816406	3.222694
H	4.188171	2.632982	0.879281
O	2.035938	2.295114	-0.538169
C	0.879997	3.154002	-0.654521
H	0.973614	3.955006	0.089243
H	0.965454	3.597901	-1.650609
C	-0.466476	2.467679	-0.514691
C	-1.491573	3.225818	0.111334
H	-1.232827	4.041716	0.780054
C	-2.856760	3.133848	-0.321602
O	-3.334267	2.300810	-1.104017
C	-0.128058	0.877558	0.652382
C	-0.181969	-0.226184	-0.283474

Supporting Information I

N	0.833021	-0.810377	-0.992759
N	-1.319636	-0.753528	-0.850810
C	-0.926386	-1.562567	-1.893495
N	0.362918	-1.635896	-2.007915
C	2.225213	-0.844216	-0.743250
C	4.977882	-1.050890	-0.340488
C	2.729986	-1.520328	0.370267
C	3.115346	-0.302208	-1.673337
C	4.488781	-0.398318	-1.470879
C	4.100178	-1.607624	0.588353
C	-2.741493	-0.608712	-0.472950
H	-2.924385	0.449920	-0.284458
C	-1.933314	-2.153631	-2.838158
C	-3.651413	-1.033674	-1.653811
H	-3.709984	-0.250608	-2.420353
O	-1.239235	0.885333	1.481229
H	-1.624107	1.810829	1.355530
H	-0.786475	1.948355	-1.417923
F	1.888937	-2.071901	1.248878
F	4.577288	-2.240446	1.663427
F	6.293770	-1.138932	-0.143633
F	5.340111	0.130021	-2.354462
F	2.657440	0.316566	-2.757789
C	-3.238608	-1.488336	0.663499
C	-4.987699	-1.348894	-0.969164
H	-5.569878	-2.059332	-1.564407
H	-5.575914	-0.427024	-0.869266
C	-4.553897	-1.882565	0.380811
O	-3.198708	-2.265341	-2.232493
H	-1.618203	-3.153783	-3.145370
C	-2.618474	-1.872454	1.847955
H	-1.606031	-1.557025	2.073457
C	-5.266884	-2.660456	1.287829
H	-6.285938	-2.971343	1.070483
C	-3.331335	-2.667233	2.751699
H	-2.858031	-2.982336	3.677732
C	-4.645574	-3.054344	2.477224
H	-5.187076	-3.671006	3.189744
H	-1.977432	-1.516325	-3.738147
O	-3.646134	4.098781	0.246733
C	-5.024456	4.057709	-0.121135
H	-5.489080	3.115108	0.187250
H	-5.149630	4.168153	-1.202698
H	-5.493763	4.894251	0.400327

Supporting Information I

$\mathbf{T S}_{\text {minor }}$ that gives 3a by the catalysis of 1a

Energies (RB3LYP) =
Zero-point correction =
Thermal correction to Energy =
Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy = Energies (B3LYP-D3) =
Sum of electronic and zero-point Energies = Sum of electronic and thermal Energies = Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =
-2195.84703001
0.479292 (Hartree/Particle)
0.514621
0.515565
0.412010
-2196.69577236
-2196.216480
-2196.181151
-2196.180207
-2196.283762

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
H	0.612860	-0.163271	3.402482
C	1.421335	0.405242	2.955536
C	3.450736	1.936170	1.805374
C	1.218986	0.962534	1.684266
C	2.628274	0.576857	3.629074
C	3.648017	1.336690	3.047136
C	2.237212	1.759094	1.133551
H	2.773218	0.123281	4.605374
H	4.591480	1.476543	3.567961
H	4.215174	2.552084	1.341737
O	2.118095	2.310705	-0.114323
C	0.907089	3.007649	-0.476611
H	0.786160	2.808786	-1.545112
H	1.102528	4.081428	-0.352717
C	-0.359054	2.663014	0.277668
C	-1.563273	2.894272	-0.423686
H	-1.564389	3.055389	-1.496763
C	-2.793123	2.985492	0.278783
O	-2.989745	2.634796	1.463050
C	-0.095439	0.821640	0.984097
C	-0.227721	0.025851	-0.200367
N	0.719012	-0.296371	-1.146940
N	-1.428397	-0.219364	-0.835387
C	-1.133467	-0.622763	-2.121744
N	0.139141	-0.690224	-2.351518
C	2.088264	-0.582201	-0.961182
C	4.798094	-1.210713	-0.675617
C	3.046680	0.022617	-1.779389
C	2.506828	-1.519178	-0.011879
C	3.855270	-1.820684	0.148889
C	4.394782	-0.289570	-1.641539
C	-2.781259	-0.410306	-0.268507
H	-2.992870	0.432204	0.387043
C	-2.236366	-0.822863	-3.116388

Supporting Information I

C	-3.841661
H	-4.091341
O	-1.163245
H	-1.744769
H	-0.361083
F	1.607007
F	4.243784
F	6.092027
F	5.306603
F	2.675861
O	-3.404682
H	-1.940781
C	-5.015787
H	-5.619860
H	-5.666741
C	-3.015626
C	-4.322503
C	-2.177609
H	-1.166143
C	-2.664404
H	-2.021608
C	-3.969152
H	-4.332445
C	-4.809234
H	-5.820675
H	-2.428265
O	-3.826930
C	-5.082064
H	-5.789502
H	-5.022052
H	-5.405602
H	0.612860
C	1.421335
C	3.450736
C	1.218986
C	2.628274
C	3.648017
C	2.237212
H	2.773218
H	4.591480
H	4.215174
O	2.118095
C	0.907089
H	0.786160
H	1.102528
C	-0.359054
C	-1.563273
H	-1.564389
C	-2.793123
O	-2.989745
C	-0.095439
C	-0.227721
N	0.719012
N	-1.428397
C	-1.133467
N	0.139141
C	2.088264
C	4.798094
C	3.046680
C	2.506828
C	3.855270
C	4.394782
C	-2.781259

-0.464443	-1.400491
0.538354	-1.773767
0.636913	1.867300
1.442608	1.878263
3.004633	1.314827
-2.130486	0.767361
-2.711501	1.065685
-1.504527	-0.537365
0.297428	-2.422474
0.918522	-2.692539
-1.296172	-2.480555
-1.560887	-3.864933
-1.210854	-0.747689
-1.714169	-1.509016
-0.500903	-0.218915
-1.718826	0.469615
-2.153739	0.215157
-2.424476	1.326511
-2.085380	1.525031
-3.591148	1.924907
-4.161684	2.589632
-4.027116	1.677716
-4.935966	2.150001
-3.308027	0.821446
-3.655032	0.624377
0.135520	-3.628851
3.470716	-0.473496
3.584492	0.201571
3.936039	-0.551936
4.302326	1.025190
2.620983	0.607946
-0.163271	3.402482
0.405242	2.955536
1.936170	1.805374
0.962534	1.684266
0.576857	3.629074
1.336690	3.047136
1.759094	1.133551
0.123281	4.605374
1.476543	3.567961
2.552084	1.341737
2.310705	-0.114323
3.007649	-0.476611
2.808786	-1.545112
4.081428	-0.352717
2.663014	0.277668
2.894272	-0.423686
3.055389	-1.496763
2.985492	0.278783
2.634796	1.463050
0.821640	0.984097
0.025851	-0.200367
-0.296371	-1.146940
-0.219364	-0.835387
-0.622763	-2.121744
-0.690224	-2.351518
-0.582201	-0.961182
-1.210713	-0.675617
0.022617	-1.779389
-1.519178	-0.011879
-1.820684	0.148889
-0.289570	-1.641539
-0.410306	-0.268507

Supporting Information I

H	-2.992870	0.432204	0.387043
C	-2.236366	-0.822863	-3.116388
C	-3.841661	-0.464443	-1.400491
H	-4.091341	0.538354	1.8673767
H	-1.163245	0.636913	1.878263
H	-1.744769	1.442608	1.314827
F	-0.361083	3.004633	0.767361
F	1.607007	-2.130486	1.065685
F	4.243784	-2.711501	-0.537365
F	6.092027	-1.504527	-2.422474
F	5.306603	0.297428	-2.692539
O	2.675861	-2.918522	-3.860555
H	-3.404682	-1.296172	-0.747689
C	-1.940781	-1.560887	-1.509016
H	-5.015787	-1.210854	-0.218915
H	-5.619860	-1.714169	0.469615
C	-5.666741	-0.500903	0.215157
C	-3.015626	-1.718826	1.326511
C	-4.322503	-2.153739	1.525031
H	-2.177609	-2.424476	1.924907
C	-1.166143	-2.085380	2.589632
H	-2.664404	-3.591148	1.677716
C	-2.021608	-4.161684	2.150001
H	-3.969152	-4.027116	0.821446
C	-4.332445	-4.935966	0.624377
H	-4.809234	-3.308027	-3.628851
H	-5.820675	-3.655032	-0.473496
C	-2.428265	0.135520	0.201571
H	-3.826930	3.470716	1.025190
H	-5.082064	3.584492	0.607946
H	-5.789502	3.936039	
	-5.022052	4.302326	2.620983

Supporting Information I

$\mathrm{TS}_{\text {major }}$ that gives 3a by the catalysis of 1c

Energies $($ RB3LYP $)=$
Thermal correction to Energy =
Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy =
Energies (B3LYP-D3) =
Sum of electronic and zero-point Energies =
Sum of electronic and thermal Energies =
Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =

```
-2235.17009109
```

-2235.17009109
0.506891 (Hartree/Particle)
0.506891 (Hartree/Particle)
0.543840
0.543840
0.544784
0.544784
0.436924
0.436924
-2236.03191394
-2236.03191394
-2235.525023
-2235.525023
-2235.488074
-2235.488074
-2235.487130
-2235.487130
-2235.594990

```
-2235.594990
```

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
H	0.502998	-0.453652	3.087627
C	1.349212	0.129493	2.739219
C	3.493279	1.681997	1.844757
C	1.217907	0.856213	1.547950
C	2.542405	0.151120	3.459888
C	3.619759	0.917579	3.004320
C	2.293889	1.653018	1.130431
H	2.633839	-0.429119	4.373682
H	4.551497	0.936757	3.563259
H	4.299649	2.315517	1.487842
O	2.174930	2.414535	-0.007958
C	1.046785	3.314057	0.072982
H	1.144297	3.902058	0.994026
H	1.169499	3.987961	-0.779794
C	-0.321289	2.659352	0.014462
C	-1.342098	3.274512	0.788169
H	-1.079788	3.893632	1.641241
C	-2.697441	3.331573	0.320485
O	-3.175278	2.727921	-0.649706
C	-0.060417	0.826667	0.755575
C	-0.121592	-0.008583	-0.426446
N	0.896622	-0.427584	-1.240689
N	-1.256847	-0.334977	-1.131528
C	-0.857478	-0.863768	-2.338608
N	0.431992	-0.950595	-2.442634
C	2.273197	-0.598931	-0.963906
C	4.991625	-1.054633	-0.530730
C	2.693526	-1.550147	-0.030658
C	3.230350	0.098764	-1.704133
C	4.586830	-0.123043	-1.485260
C	4.046138	-1.766075	0.206073
C	-2.682974	-0.271164	-0.745519
H	-2.855460	0.704768	-0.290249
C	-1.856461	-1.159212	-3.419870
C	-3.582874	-0.365677	-2.004908
H	-3.628801	0.590176	-2.542040
O	-1.190958	0.664702	1.541622
H	-1.546041	1.604804	1.645398
H	-0.631690	2.391700	-0.995496
F	1.786923	-2.247400	0.659660
F	4.441452	-2.664989	1.111378

Supporting Information I

F	6.291362
F	5.502587
F	2.854120
C	-3.199291
C	-4.929477
H	-5.507603
H	-5.514413
C	-4.513736
O	-3.132590
H	-1.550124
C	-2.592733
H	-1.578557
C	-5.232405
H	-6.253150
C	-3.301874
C	-4.619673
H	-5.175371
H	-1.877375
O	-3.477343
C	-4.846498
H	-5.338266
H	-4.942540
H	-5.311072
C	-2.642786
H	-2.062977
H	-1.949420
H	-3.382409
H	0.502998
C	1.349212
C	3.493279
C	1.217907
C	2.542405
C	3.619759
C	2.293889
H	2.633839
H	4.551497
H	4.299649
O	2.174930
C	1.046785
H	1.144297
H	1.169499
C	-0.321289
C	-1.342098
H	-1.079788
C	-2.697441
O	-3.175278
C	-0.060417
C	-0.121592
N	0.896622
N	-1.256847
C	-0.857478
N	0.431992
C	2.273197
C	4.991625
C	2.693526
C	3.230350
C	4.586830
C	4.046138
C	-2.682974
H	-2.855460
C	-1.856461
C	-3.582874
H	-3.628801

-1.262768	-0.317389
0.551757	-2.185682
0.985941	-2.620546
-1.410706	0.119212
-0.836065	-1.437689
-1.363377	-2.203102
0.033878	-1.110460
-1.704418	-0.268301
-1.408235	-2.881088
-2.044324	-3.982549
-2.091886	1.166428
-1.849721	1.467603
-2.683552	0.407512
-2.923288	0.119152
-3.095612	1.846428
-3.372215	1.459042
-4.144684	1.985855
-0.301294	-4.113878
4.152715	1.092196
4.242389	0.699968
3.265175	0.751105
4.625453	-0.320780
4.932854	1.406701
-3.869684	2.965498
-3.209888	3.620928
-4.626382	2.574646
-4.391069	3.581692
-0.453652	3.087627
0.129493	2.739219
1.681997	1.844757
0.856213	1.547950
0.151120	3.459888
0.917579	3.004320
1.653018	1.130431
-0.429119	4.373682
0.936757	3.563259
2.315517	1.487842
2.414535	-0.007958
3.314057	0.072982
3.902058	0.994026
3.987961	-0.779794
2.659352	0.014462
3.274512	0.788169
3.893632	1.641241
3.331573	0.320485
2.727921	-0.649706
0.826667	0.755575
-0.008583	-0.426446
-0.427584	-1.240689
-0.334977	-1.131528
-0.863768	-2.338608
-0.950595	-2.442634
-0.598931	-0.963906
-1.054633	-0.530730
-1.550147	-0.030658
0.098764	-1.704133
-0.123043	-1.485260
-1.766075	0.206073
-0.271164	-0.745519
0.704768	-0.290249
-1.159212	-3.419870
-0.365677	-2.004908
0.590176	-2.542040

Supporting Information I

O	-1.190958	0.664702	1.541622
H	-1.546041	1.604804	1.645398
H	-0.631690	2.391700	-0.995496
F	1.786923	-2.247400	1.659660
F	4.441452	-2.664989	-0.317378
F	6.291362	-1.262768	-2.185682
F	5.502587	0.551757	-2.620546
C	2.854120	0.985941	0.119212
C	-3.199291	-1.410706	-1.437689
H	-4.929477	-0.836065	-2.203102
H	-5.507603	-1.363377	-1.110460
C	-5.514413	0.033878	-0.268301
O	-4.513736	-1.704418	-3.881088
H	-3.132590	-1.408235	1.166428
C	-1.550124	-2.044324	1.467603
H	-2.592733	-2.091886	0.407512
C	-1.578557	-1.849721	0.119152
H	-5.232405	-2.683552	1.846428
C	-6.253150	-2.923288	1.459042
C	-3.301874	-3.095612	1.985855
H	-4.619673	-3.372215	-4.113878
H	-5.175371	-4.144684	1.092196
O	-1.877375	-0.301294	0.699968
C	-3.477343	4.152715	0.751105
H	-4.846498	4.242389	-0.320780
H	-5.338266	3.265175	1.406701
H	-4.942540	4.625453	2.965498
C	-5.311072	4.932854	3.620928
H	-2.642786	-3.869684	2.574646
H	-2.062977	-3.209888	3.581692
H	-1.949420	-4.626381	
	-3.382409		

Supporting Information I

$\mathrm{TS}_{\text {minor }}$ that gives 3a by the catalysis of 1 c

Energies $($ RB3LYP $)=$
Zero-point correction =
Thermal correction to Energy =
Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy = Energies (B3LYP-D3) =
Sum of electronic and zero-point Energies = Sum of electronic and thermal Energies = Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =

```
-2235.16498172
            0.506954 (Hartree/Particle)
            0.544140
            0.545084
            0.437042
-2236.02897405
-2235.522020
-2235.484834
-2235.483890
-2235.591932
```

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
H	-0.590653	0.757386	3.249298
C	-1.426153	0.140012	2.937252
C	-3.526403	-1.518226	2.149401
C	-1.263882	-0.676869	1.808445
C	-2.627239	0.158758	3.642061
C	-3.682411	-0.666543	3.240397
C	-2.318588	-1.531041	1.444521
H	-2.739972	0.810729	4.503524
H	-4.621444	-0.659772	3.787307
H	-4.319183	-2.188547	1.831756
O	-2.240800	-2.335009	0.338853
C	-1.061052	-3.136117	0.114771
H	-0.955295	-3.168230	-0.973105
H	-1.290094	-4.152588	0.462293
C	0.231382	-2.690277	0.764250
C	1.411535	-3.101258	0.105619
H	1.383784	-3.474868	-0.912782
C	2.652881	-3.094947	0.793297
O	2.887757	-2.518345	1.878085
C	0.044763	-0.735738	1.085860
C	0.189468	-0.204366	-0.237522
N	-0.758716	-0.052872	-1.225068
N	1.388753	-0.139457	-0.916528
C	1.090551	-0.003273	-2.257188
N	-0.181915	0.059579	-2.488836
C	-2.114974	0.312817	-1.093868
C	-4.800314	1.075288	-0.920761
C	-3.103953	-0.415684	-1.761194
C	-2.490732	1.439276	-0.356053
C	-3.826797	1.811036	-0.248709
C	-4.439753	-0.037873	-1.679088
C	2.751923	0.133735	-0.410024
H	2.951917	-0.557944	0.406525
C	2.187524	-0.054631	-3.276211
C	3.803548	-0.074492	-1.533527
H	4.032203	-1.138217	-1.687307
O	1.130689	-0.419939	1.907659
H	1.689373	-1.226396	2.065239
H	0.245854	-2.815184	1.848976
F	-1.561327	2.170906	0.270415
F	-4.173927	2.884523	0.467144

Supporting Information I

F	-6.082485	1.433660	-0.834459
F	-5.380552	-0.743901	-2.313367
F	-2.775025	-1.493608	-2.471257
O	3.372797	0.516540	-2.764481
H	1.902430	0.508323	-4.167384
C	4.997823	0.769009	-1.058824
H	5.603333	1.087844	-1.913131
H	5.640449	0.171590	-0.397225
C	3.019580	1.562401	0.035603
C	4.331044	1.906165	-0.311967
C	2.199994	2.448019	0.724310
H	1.182988	2.172218	0.987053
C	2.690289	3.715700	1.073802
C	4.006175	4.050795	0.722546
H	4.389165	5.034737	0.984089
C	4.832101	3.155977	0.036339
H	5.844666	3.445612	-0.234360
H	2.351181	-1.106891	-3.565887
O	3.651808	-3.763243	0.141216
C	4.918977	-3.779692	0.802815
H	5.592203	-4.318662	0.133388
H	4.853607	-4.294539	1.765948
H	5.290058	-2.765005	0.979207
C	1.821157	4.688131	1.838137
H	0.762108	4.555920	1.592282
H	2.092800	5.726702	1.621232
H	1.922742	4.544214	2.922175
H	-0.590653	0.757386	3.249298
C	-1.426153	0.140012	2.937252
C	-3.526403	-1.518226	2.149401
C	-1.263882	-0.676869	1.808445
C	-2.627239	0.158758	3.642061
C	-3.682411	-0.666543	3.240397
C	-2.318588	-1.531041	1.444521
H	-2.739972	0.810729	4.503524
H	-4.621444	-0.659772	3.787307
H	-4.319183	-2.188547	1.831756
O	-2.240800	-2.335009	0.338853
C	-1.061052	-3.136117	0.114771
H	-0.955295	-3.168230	-0.973105
H	-1.290094	-4.152588	0.462293
C	0.231382	-2.690277	0.764250
C	1.411535	-3.101258	0.105619
H	1.383784	-3.474868	-0.912782
C	2.652881	-3.094947	0.793297
O	2.887757	-2.518345	1.878085
C	0.044763	-0.735738	1.085860
C	0.189468	-0.204366	-0.237522
N	-0.758716	-0.052872	-1.225068
N	1.388753	-0.139457	-0.916528
C	1.090551	-0.003273	-2.257188
N	-0.181915	0.059579	-2.488836
C	-2.114974	0.312817	-1.093868
C	-4.800314	1.075288	-0.920761
C	-3.103953	-0.415684	-1.761194
C	-2.490732	1.439276	-0.356053
C	-3.826797	1.811036	-0.248709
C	-4.439753	-0.037873	-1.679088
C	2.751923	0.133735	-0.410024
H	2.951917	-0.557944	0.406525
C	2.187524	-0.054631	-3.276211
C	3.803548	-0.074492	-1.533527
H	4.032203	-1.138217	-1.687307

Supporting Information I

O	1.130689	-0.419939	1.907659
H	1.689373	-1.226396	2.065239
H	0.245854	-2.815184	1.848976
F	-1.561327	2.170906	0.270415
F	-4.173927	2.884523	-0.467144
F	-6.082485	1.433660	-2.313369
F	-5.380552	-0.743901	-2.471257
O	-2.775025	-1.493608	-2.764481
H	3.372797	0.516540	-4.167384
C	1.902430	0.508323	-1.058824
H	4.997823	0.769009	-1.913131
H	5.603333	1.087844	-0.397225
C	5.640449	0.171590	0.035603
C	3.019580	1.562401	-0.311967
C	4.331044	1.906165	0.724310
H	2.199994	2.448019	0.987053
C	1.182988	2.172218	1.073802
C	2.690289	3.715700	0.722546
H	4.006175	4.050795	0.984089
C	4.389165	5.034737	0.036339
H	4.832101	3.155977	-0.234360
H	5.844666	3.445612	-3.565887
O	2.351181	-1.106891	0.141216
C	3.651808	-3.763243	0.802815
H	4.918977	-3.779692	0.133388
H	5.592203	-4.318662	1.765948
H	4.853607	-4.294539	0.979207
C	5.290058	-2.765005	1.838137
H	1.821157	4.688131	1.592282
H	0.762108	4.555920	1.621232

Supporting Information I

$\mathrm{TS}_{\text {major }}$ that gives 3a by the catalysis of $\mathbf{1 d}$

Energies $($ RB3LYP $)=$
Zero-point correction = Thermal correction to Energy = Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy = Energies (B3LYP-D3) =
Sum of electronic and zero-point Energies = Sum of electronic and thermal Energies = Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =

```
-2400.35478873
    0.481955 (Hartree/Particle)
    0.519600
    0.520544
    0.410789
-2401.28033558
-2400.798381
-2400.760736
-2400.759791
-2400.869546
```

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
H	0.347398	1.426990	-2.603060
C	1.261427	0.844857	-2.539579
C	3.597727	-0.683355	-2.390701
C	1.292498	-0.281975	-1.705430
C	2.388426	1.220194	-3.269238
C	3.560506	0.462177	-3.185160
C	2.464398	-1.051200	-1.663265
H	2.353864	2.104525	-3.898806
H	4.440573	0.752950	-3.752437
H	4.483090	-1.309128	-2.331641
O	2.514026	-2.180383	-0.878922
C	1.466923	-3.113459	-1.216202
H	1.518496	-3.313706	-2.293683
H	1.731083	-4.031337	-0.682738
C	0.061572	-2.688542	-0.833124
C	-0.975098	-3.114524	-1.704873
H	-0.744480	-3.381750	-2.732107
C	-2.272393	-3.470599	-1.206657
O	-2.712712	-3.265874	-0.065904
C	0.086917	-0.682386	-0.899802
C	0.038143	-0.310864	0.496884
N	1.066456	-0.083838	1.371377
N	-1.075040	-0.342873	1.308204
C	-0.645923	-0.190697	2.608881
N	0.635781	-0.020810	2.691574
C	2.419214	0.256459	1.129577
C	5.089432	0.994172	0.816585
C	2.750530	1.507316	0.602798
C	3.439082	-0.609070	1.530521
C	4.772464	-0.245913	1.369003
C	4.080157	1.872331	0.424244
C	-2.506101	-0.449193	0.969108
H	-2.616884	-1.259766	0.246116
C	-1.597909	-0.337542	3.760486
C	-3.328739	-0.833676	2.226563
H	-3.252709	-1.906289	2.444279
O	-1.117302	-0.404281	-1.530583
H	-1.387044	-1.289608	-1.935111
H	-0.160490	-2.816931	0.226141
F	1.781934	2.353192	0.246753
F	4.393516	3.061410	-0.095077

Supporting Information I

F	6.366873
F	5.748692
F	3.142835
C	-3.188870
C	-4.747800
H	-5.324135
H	-5.270669
C	-4.497771
O	-2.921473
H	-1.335181
C	-2.721220
H	-1.724318
C	-5.362264
H	-6.374915
C	-3.600561
C	-4.908777
H	-5.543324
H	-1.510665
O	-3.043232
C	-4.358624
H	-4.941997
H	-4.328475
H	-4.817067
N	-3.126121
O	-1.968118
O	-3.913503
H	0.347398
C	1.261427
C	3.597727
C	1.292498
C	2.388426
C	3.560506
C	2.464398
H	2.353864
H	4.440573
H	4.483090
O	2.514026
C	1.466923
H	1.518496
H	1.731083
C	0.061572
C	-0.975098
H	-0.744480
C	-2.272393
O	-2.712712
C	0.086917
C	0.038143
N	1.066456
N	-1.075040
C	-0.645923
N	0.635781
C	2.419214
C	5.089432
C	2.750530
C	3.439082
C	4.772464
C	4.080157
C	-2.506101
H	-2.616884
C	-1.597909
C	-3.328739
H	-3.252709
O	-1.117302

1.340804	0.657699
-1.077447	1.742641
-1.790385	2.065716
0.826266	0.504347
-0.363983	1.876651
-0.153376	2.782578
-1.149537	1.315448
0.850770	1.009751
-0.060995	3.361254
0.362125	4.557230
1.843753	-0.314161
1.845186	-0.730560
1.897050	0.692895
1.920369	1.085618
2.887168	-0.608470
2.931599	-0.125054
3.768327	-0.389254
-1.362362	4.159184
-4.081941	-2.158345
-4.448446	-1.743159
-3.568456	-1.451642
-5.140974	-0.896350
-4.930592	-2.608607
3.981749	-1.469544
3.924544	-1.884888
4.893112	-1.725360
1.426990	-2.603060
0.844857	-2.539579
-0.683355	-2.390701
-0.281975	-1.705430
1.220194	-3.269238
0.462177	-3.185160
-1.051200	-1.663265
2.104525	-3.898806
0.752950	-3.752437
-1.309128	-2.331641
-2.180383	-0.878922
-3.113459	-1.216202
-3.313706	-2.293683
-4.031337	-0.682738
-2.688542	-0.833124
-3.114524	-1.704873
-3.381750	-2.732107
-3.470599	-1.206657
-3.265874	-0.065904
-0.682386	-0.899802
-0.310864	0.496884
-0.083838	1.371377
-0.342873	1.308204
-0.190697	2.608881
-0.020810	2.691574
0.256459	1.129577
0.994172	0.816585
1.507316	0.602798
-0.609070	1.530521
-0.245913	1.369003
1.872331	0.424244
-0.449193	0.969108
-1.259766	0.246116
-0.337542	3.760486
-0.833676	2.226563
-1.906289	2.444279
-0.404281	-1.530583

Supporting Information I

H	-1.387044	-1.289608	-1.935111
H	-0.160490	-2.816931	0.226141
F	1.781934	2.353192	0.246753
F	4.393516	3.061410	-0.095077
F	6.366873	1.340804	0.657699
F	5.748692	-1.077447	1.742641
C	3.142835	-1.790385	2.065716
C	-3.188870	0.826266	0.504347
H	-4.747800	-0.363983	1.876651
H	-5.324135	-0.153376	2.782578
C	-5.270669	-1.149537	1.315448
O	-4.497771	0.850770	1.009751
H	-2.921473	-0.060995	3.361254
C	-1.335181	0.362125	4.557230
H	-2.721220	1.843753	-0.314161
C	-1.724318	1.845186	-0.730560
H	-5.362264	1.897050	0.692895
C	-6.374915	1.920369	1.085618
C	-3.600561	2.887168	-0.608470
H	-4.908777	2.931599	-0.125054
H	-5.543324	3.768327	-0.389254
O	-1.510665	-1.362362	4.159184
C	-3.043232	-4.081941	-2.158345
H	-4.358624	-4.448446	-1.743159
H	-4.941997	-3.568456	-1.451642
H	-4.328475	-5.140974	-0.896350
O	-4.817067	-4.930592	-2.608607
O	-3.126121	3.981749	-1.469544
	-1.968118	3.924544	-1.884888

Supporting Information I

$\mathrm{TS}_{\text {minor }}$ that gives 3a by the catalysis of 1d

Energies $($ RB3LYP $)=$
Zero-point correction $=$
Thermal correction to Energy =
Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy = Energies (B3LYP-D3) =
Sum of electronic and zero-point Energies = Sum of electronic and thermal Energies = Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =

```
-2400.34808555
    0.481783 (Hartree/Particle)
    0.519761
    0.520706
    0.410041
-2401.27562592
-2400.793842
-2400.755865
-2400.754920
-2400.865584
```

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
H	-0.500261	1.273567	2.929991
C	-1.389093	0.668444	2.787148
C	-3.643902	-0.937251	2.434071
C	-1.339859	-0.385761	1.862544
C	-2.553676	0.940254	3.500698
C	-3.685037	0.138868	3.317327
C	-2.473037	-1.203507	1.717545
H	-2.579102	1.772878	4.197475
H	-4.596219	0.343507	3.872983
H	-4.500353	-1.588353	2.288543
O	-2.510207	-2.225287	0.805433
C	-1.411996	-3.155337	0.718848
H	-1.361066	-3.421810	-0.340576
H	-1.702410	-4.054214	1.279622
C	-0.057716	-2.701619	1.219479
C	1.051385	-3.344372	0.626860
H	0.940565	-3.923583	-0.284177
C	2.321803	-3.309359	1.257568
O	2.661742	-2.536145	2.180717
C	-0.073540	-0.707497	1.134298
C	0.059541	-0.467041	-0.270100
N	-0.906467	-0.426498	-1.249801
N	1.237084	-0.631231	-0.973991
C	0.904553	-0.715561	-2.311714
N	-0.366274	-0.592445	-2.522988
C	-2.229251	0.060694	-1.163717
C	-4.841740	1.047558	-1.095029
C	-3.290436	-0.712081	-1.642455
C	-2.492498	1.341474	-0.669229
C	-3.794042	1.830092	-0.613519
C	-4.591717	-0.223312	-1.611721
C	2.632577	-0.418666	-0.545220
H	2.799834	-0.981674	0.371596
C	1.958318	-1.027239	-3.329916
C	3.620289	-0.907121	-1.639436
H	3.742877	-1.998561	-1.618386
O	1.072416	-0.332006	1.844801
H	1.565206	-1.136726	2.155651
H	-0.001698	-2.595107	2.304727
F	-1.488352	2.106989	-0.231143
F	-4.038468	3.050562	-0.131388

Supporting Information I

F	-6.090558	1.514223	-1.057976
F	-5.603663	-0.969280	-2.064518
F	-3.063131	-1.934448	-2.121470
O	3.203190	-0.481619	-2.938699
H	1.692456	-0.592167	-4.295283
C	4.905445	-0.120997	-1.333837
H	5.509544	-0.001352	-2.238240
H	5.512286	-0.658354	-0.592493
C	3.055355	1.027267	-0.339509
C	4.382041	1.180979	-0.766618
C	2.355179	2.082098	0.227596
H	1.333531	1.990848	0.571371
C	3.024029	3.302061	0.343361
C	4.344114	3.482220	-0.071571
H	4.806509	4.454476	0.044638
C	5.032371	2.406068	-0.631377
H	6.058427	2.532895	-0.965036
H	2.031039	-2.121577	-3.447882
O	3.225253	-4.193376	0.736309
C	4.511859	-4.203843	1.359593
H	5.101787	-4.933849	0.802164
H	4.437723	-4.502145	2.409542
H	4.985682	-3.217896	1.315144
N	2.305819	4.444772	0.930985
O	1.142406	4.265513	1.290098
O	2.910469	5.512856	1.028320
H	-0.500261	1.273567	2.929991
C	-1.389093	0.668444	2.787148
C	-3.643902	-0.937251	2.434071
C	-1.339859	-0.385761	1.862544
C	-2.553676	0.940254	3.500698
C	-3.685037	0.138868	3.317327
C	-2.473037	-1.203507	1.717545
H	-2.579102	1.772878	4.197475
H	-4.596219	0.343507	3.872983
H	-4.500353	-1.588353	2.288543
O	-2.510207	-2.225287	0.805433
C	-1.411996	-3.155337	0.718848
H	-1.361066	-3.421810	-0.340576
H	-1.702410	-4.054214	1.279622
C	-0.057716	-2.701619	1.219479
C	1.051385	-3.344372	0.626860
H	0.940565	-3.923583	-0.284177
C	2.321803	-3.309359	1.257568
O	2.661742	-2.536145	2.180717
C	-0.073540	-0.707497	1.134298
C	0.059541	-0.467041	-0.270100
N	-0.906467	-0.426498	-1.249801
N	1.237084	-0.631231	-0.973991
C	0.904553	-0.715561	-2.311714
N	-0.366274	-0.592445	-2.522988
C	-2.229251	0.060694	-1.163717
C	-4.841740	1.047558	-1.095029
C	-3.290436	-0.712081	-1.642455
C	-2.492498	1.341474	-0.669229
C	-3.794042	1.830092	-0.613519
C	-4.591717	-0.223312	-1.611721
C	2.632577	-0.418666	-0.545220
H	2.799834	-0.981674	0.371596
C	1.958318	-1.027239	-3.329916
C	3.620289	-0.907121	-1.639436
H	3.742877	-1.998561	-1.618386
O	1.072416	-0.332006	1.844801

Supporting Information I

H	1.565206	-1.136726	2.155651
H	-0.001698	-2.595107	2.304727
F	-1.488352	2.106989	-0.231143
F	-4.038468	3.050562	-1.051388
F	-6.090558	1.514223	-2.064518
F	-5.603663	-0.969280	-2.121470
H	-3.063131	-1.934448	-2.938699
C	3.203190	-0.481619	-4.295283
H	1.692456	-0.592167	-1.333837
H	4.905445	-0.120997	-2.238240
C	5.509544	-0.001352	-0.592493
C	5.512286	-0.658354	-0.339509
C	3.055355	1.027267	-0.766618
H	4.382041	1.180979	0.227596
C	2.355179	2.082098	0.571371
C	1.333531	1.990848	0.343361
H	3.024029	3.302061	-0.071571
C	4.344114	3.482220	0.044638
H	4.806509	4.454476	-0.631377
H	5.032371	2.406068	-0.965036
O	6.058427	2.532895	-3.447882
C	2.031039	-2.121577	0.736309
H	3.225253	-4.193376	1.359593
H	4.511859	-4.203843	0.802164
H	5.101787	-4.933849	2.409542
N	4.437723	-4.502145	1.315144
O	4.985682	-3.217896	0.930985

Supporting Information I

9. References

1. Kerr, M. S.; Read de Alaniz, J.; Rovis, T. An Efficient Synthesis of Achiral and Chiral 1,2,4-Triazolium Salts: Bench Stable Precursors for N-Heterocyclic Carbenes. J. Org. Chem. 2005, 70, 5725-5728.
2. Carmine, G. D.; Ragno, D.; Bortolini, O.; Giovannini, P. P.; Mazzanti, A.; Massi, A.; Fogagnolo, M. Enantioselective Dearomatization of Alkylpyridiniums by N-Heterocyclic Carbene-Catalyzed Nucleophilic Acylation. J. Org. Chem. 2018, 83, 2050-2057.
3. Wang, Y.; Yamauchi, A.; Hashimoto, K.; Fujiwara, T.; Inokuma, T.; Mitani, Y.; Ute, K.; Kuwano, S.; Yamaoka, Y.; Takasu, K.; Yamada, K. Enhanced Molecular Recognition through Substrate-Additive Complex Formation in N-Heterocyclic-Carbene-Catalyzed Kinetic Resolution of α-Hydroxythioamides. ACS Catal. 2022, 12, 6100-6107.
4. Pospíšil, J.; Potáček, M. Microwave-assisted solvent-free intramolecular 1,3-dipolar cycloaddition reactions leading to hexahydrochromeno[4,3-b]-pyrroles: scope and limitations. Tetrahedron 2007, 63, 337-346.
5. Cui, S-L.; Wang, J.; Lin, X-F.; Wang, Y-G. Domino Reaction of 3-(2-Formylphenoxy)propenoates and Amines: A Novel Synthesis of 1,4-Dihydropyridines from Salicaldehydes, Ethyl Propiolate, and Amines. J. Org. Chem. 2007, 72, 77797782.
6. Heieh, S-Y.; Binanzer, M.; Kreituss, I.; Bode, J. W. Expanded substrate scope and catalyst optimization for the catalytic kinetic resolution of N-heterocycles. Chem. Соттип. 2012, 48, 8892-8894.
7. Kuwano, S.; Harada, S.; Kang, B.; Oriez, R.; Yamaoka, Y.; Takasu, K.; Yamada, K. Enhanced Rate and Selectivity by Carboxylate Salt as a Basic Cocatalyst in Chiral N-Heterocyclic Carbene-Catalyzed Asymmetric Acylation of Secondary Alcohols. J. Am. Chem. Soc. 2013, 135, 11485-11488.
8. Lee, Y-T.; Jang, Y-J.; Syu, S-e.; Chou, S-C.; Lee, C-J.; Lin, W. Preparation of functional benzofurans and indolesvia chemoselective intramolecular Wittig reactions. Chem. Commun. 2012, 48, 8135-8137.
9. Xiong, Z.; Tian, J.; Xue, P.; Zhang, X.; Lv, H. Enantioselective synthesis of chiral multicyclic γ-lactones via dynamic kinetic resolution of racemic γ-keto carboxylic acids. Org. Chem. Front. 2020, 7, 104-108.
10. Santoso, H.; Casana, M. I.; Donner, C. D. Exploring O-stannyl ketyl and acyl radical cyclizations for the synthesis of γ -lactone-fused benzopyrans and benzofurans. Org. Biomol. Chem. 2014, 12, 171-176.
11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
12. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498.
