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1. General Methods

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used
without further purification unless otherwise noted. Column chromatography was generally performed on silica gel (200
- 300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light
to visualize the course of reaction. *H NMR and 3C NMR data were recorded on a 400 MHz or 100 MHz spectrometer
using CDCls as solvent at room temperature. The chemical shifts (6) are reported in ppm and coupling constants (J) in Hz.
'H NMR chemical shifts were referenced to CDCls (7.26 ppm) and THF-ds. (3.58 ppm and 1.73 ppm). 3C NMR chemical
shifts were referenced to CDCl3 (77.00 ppm) and THF-ds. (67.40 ppm and 25.38 ppm). The following abbreviations were
used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. Cyclic voltammetry (CV) was performed
on a Chenhua 650D electrochemical using a three-electrode cell with a glassy carbon working electrode, a platinum wire
counter electrode, and an Ag/AgNOs or Ag/AgCl reference electrode in anhydrous solvents containing recrystallized tetra-
n-butyl-ammoniumhexafluorophosphate (TBAPFs, 0.1 M) as supporting electrolyte at 298 K. The potential was externally
calibrated against the ferrocene/ferrocenium couple. Steady-state UV-vis-NIR absorption spectra were recorded on a
Shimadzu UV-3600 plus spectrometer. HR MALDI-TOF mass spectra recorded on Finnigan MAT TSQ 7000 instrument.

Photothermal conversion behavior recorded by FLIR-1910581 thermal camera.
2. Synthetic Details

Synthesis of Compound 1b

~ ~

(@] (@] Br
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A solution of 1,5-dimethoxyanthracene? (2.38 g, 10 mmol, 1.0 equiv.) in anhydrous CH,Cl, (200 mL) was cooled to 0 °C
under an argon atmosphere. NBS (3.56 g, 20 mmol, 2.0 equiv.) was added in small portions over a 30 min period at 0 °C.
After the addition, the temperature was slowly allowed to rise to r.t. and the mixture was stirred for additional 3 hours.
After the reaction was completed, the product was separated in the reaction flask and filtered to obtain a yellow solid
(3.64 g, 92%) without further purification. *H NMR (400 MHz, CDCls): 6 9.14 (s, 2H), 7.70 (d, J = 7.6 Hz, 2H), 6.66 (d, J =
7.5 Hz, 2H), 4.09 (s, 6H). 13C NMR (100 MHz, CDCls) § 155.2, 130.2, 126.4, 121.6, 103.1, 55.8. MS (MALDI-TOF, m/z): caldc
for Ci6H12Br,0; [M]*, 395.9184; found 395.9175, (error = -2.2 ppm).

Synthesis of Compound 2a
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A mixture of 1,5-dibromoanthracene? (336 mg, 1 mmol) and NDI-Bpin3 (1.192 g, 2.5 mmol) and aqueous solution of
K2CO3 (252 mg in 1 mL), EtOH (5 ml) and Toluene (50 mL) was Argon bubbled to degas the oxygen for 30 min. Pd;(dba);
(91.5 mg, 0.1 mmol) and DPEphos (161 mg, 0.3 mmol) was then added and heated up to 85 °C for 8 h under Argon
atmosphere. Upon completion, the mixture was cooled down to room temperature and diluted with CH,Cl, (30 mL) and
water (10 mL). After removal of the solvents, the residue was purified by silica gel chromatography (petroleum
ether/dichloromethane = 2/1) to afford compound 2a (675 mg, 77%) as a pale yellow solid. *H NMR (400 MHz, CDCl3): &
8.78 (d, J = 6.8 Hz, 2H), 8.64 (d, J = 7.1 Hz, 2H), 8.03 (d, J = 7.4 Hz, 2H), 7.80 — 7.87 (m, 6H), 7.46-7.60 (m, 6H), 5.27 (m,
2H), 2.31 (m, 4H), 1.89 (m, 4H), 1.33 (m, 24H), 0.87 (m, 12H). 13C NMR (100 MHz, CDCl3) 6 165.26, 163.22, 144.55, 136.27,
132.47,131.85, 131.82, 131.27, 130.81, 130.25, 129.43, 129.10, 129.00. 128.71, 128.68, 127.92, 127.00, 125.55, 125.05,
125.01, 55.13, 32.87, 31.82, 26.16, 23.39, 14.61. MS (MALDI-TOF, m/z): caldc for CsoHesN.04 [M]*, 876.4866, found

876.4855, (error = -1.3 ppm).

Synthesis of Compound 2b

Toluene, K,CO3(aq), 85 °C, 8 h

Br
OOO + OO Pd,(dba)s, DPEPhos
O\
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Compound 2b was synthesized in 65% yield as a yellow solid, a similar synthetic process to that of 2a. 'H NMR (400
MHz, CDCls): & 8.72 (s, 2H), 8.63 (s, 2H), 8.51 (d, J = 8.0 Hz, 2H), 7.96 (m, 2H), 7.89 (d, J = 7.4 Hz, 2H), 7.59 (m, 2H), 7.36
(d,J=7.6 Hz, 2H), 6.83 (d, J = 7.7 Hz, 2H), 5.29 — 5.22 (m, 2H), 3.91 (s, 6H), 2.32 (m, 4H), 1.85 (m, 4H), 1.32 (m, 24H), 0.85
(m, 12H). *3C NMR (100 MHz, CDCls) & 165.27, 164.16, 155.82, 145.29, 132.70, 131.68, 131.03, 129.54, 129.44, 128.89,
128.87,128.30,128.27,126.72,125.24,123.49,122.80, 122.72,121.89, 119.68, 101.79, 55.56, 54.07, 32.42,31.81, 27.21,
22.13, 14.07. MS (MALDI-TOF, m/z): caldc for Cs;HesN20s [M]*, 936.5077, found 936.5076, (error = 0.1 ppm).

Synthesis of Compound 3
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To a solution of compound 2b (184 mg, 0.21 mmol) in CH,Cl, (100 mL) under Argon atmosphere in an ice bath,
anhydrous FeCls (680 mg, 4.2 mmol) dissolve in CH3NO; (3 mL) was slowly added. The mixture was then heated up to the
50 °C and stirred for 2 h. Upon reaction completion, the reaction was quenched by H,0 (15 mL). The organic layer was
collected, and the remaining aqueous solution was further extracted by dichloromethane. After removing the organic
solvents under reduced pressure, the residue was purified by silica gel chromatography (petroleum
ether/dichloromethane = 2/1) to afford compound 3 (149 mg, 75%) as a yellow solid. *H NMR (400 MHz, CDCls): & 8.62
(d, J = 9.6 Hz, 6H), 7.87 (d, J = 8.5 Hz, 1H), 7.76 — 7.73 (m, 1H), 7.68 — 7.53 (m, 8H), 5.25 (m, 2H), 2.32 (m, 4H), 1.94 (m,
4H), 1.41 (m, 24H), 0.91 (m, 12H). 3C NMR (100 MHz, CDCl3) 6 165.54, 165.28, 145.96, 135.85, 135.79. 132.82, 131.44,
129.15, 128.53, 127.97, 127.81, 126.94, 126.43, 126.36, 55.47, 32.43, 31.80, 26.68, 22.58, 14.76. MS (MALDI-TOF, m/z):
caldc for CeoHe2Cl2N204 [M]*, 944.4087, found 944.4085, (error = -0.21 ppm).

Synthesis of Compound ADA
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To a solution of compound 3 (100 mg, 0.11 mmol) in o-xylene (30 mL) under Argon atmosphere, KOH (1.23 g, 22 mmol)
was added under argon atmosphere. The reaction mixture was stirred at 140 °C for 8h. To confirm the consumption of
starting material, the reaction was monitored by TLC. Upon reaction completion, the mixture was diluted with
dichloromethane (40 mL) and water (10 mL), and washed with brine (30 mL). After removal of the solvents, the residue
was purified by silica gel chromatography (petroleum ether/dichloromethane = 1/1) to afford compound 7 (83.1 mg,
90%) as a green solid. *H NMR (400 MHz, CDCls): 6§ 8.62 (d, J = 8.7 Hz, 6H), 8.52 (m, 4H), 8.24 (d, J=7.9 Hz, 2H), 7.72 (t, J
= 8.0 Hz, 2H), 5.25 (m, 2H), 2.31 (m, 4H), 1.91 (m, 4H), 1.41 (m, 24H), 0.86 (m, 12H). 13C NMR (100 MHz, CDCl3) § 164.59,
164.31, 163.60, 163.09, 134.57, 134.16, 130.72, 130.00, 128.85, 128.26, 128.05, 127.55, 126.41, 124.30, 123.40, 121.70,
120.95, 120.42, 53.81, 32.32, 31.33, 26.78, 22.66, 14.10. MS (MALDI-TOF, m/z): caldc for CeoHeoN204 [M]*, 872.4553,
found 872.4558, (error = 0.53 ppm).

Synthesis of Compound 4
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To a solution of compound 2b (200 mg, 0.21 mmol) in CH,Cl, (100 mL) under Argon atmosphere in an ice bath,
anhydrous FeCls (680 mg, 4.2 mmol) soluted in CH3NO3 (3 mL) was slowly added.* The mixture was then heated up to
the 50 °C and stirred for 0.5 h. Upon reaction completion, the reaction was quenched by H,O (15 mL). The organic layer
was collected, and the remaining aqueous solution was further extracted by dichloromethane. After removing the
organic solvents under reduced pressure, the residue was purified by silica gel chromatography (petroleum
ether/dichloromethane = 1/2) to afford compound 4 (163 mg, 82%) as a purple solid. *H NMR (400 MHz, CDCl5/CS, = 5/1):
5 9.46 (s, 2H), 8.25 (s, 2H), 7.87 (s, 2H), 7.29 (m, 3H), 7.24 (m, 3H), 6.24 (d, J = 6.6 Hz, 2H), 5.28 — 5.21 (m, 2H), 4.13 (s,
6H), 2.38 (m, 4H), 2.02 (m, 4H), 1.47 (m, 24H), 0.98 (m, 12H). 13C NMR (100 MHz, CDCl3/CS; = 5/1) & 165.73, 165.25,
164.67, 155.87, 155.50, 147.39, 132.81, 131.78, 131.13, 129.64, 129.54, 128.98, 128.85, 128.39, 127.72, 127.60, 126.81,
125.35, 124.08, 123.32,123.17, 122.09, 119.78, 118.31, 101.76, 101.02, 56.91, 55.91, 54.92, 32.81, 32.21, 27.08, 22.33,
14.12. MS (MALDI-TOF, m/z): caldc for Cs2HesN20g [M]*, 934.4921, found 934.4899, (error = -2.4 ppm).

Synthesis of Compound O-ADA
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CsH11YCSH11

KZCO3 CUC', NMI, K2CO3
ethanolamine, 160 °C m-xylene, air, 120 °C
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To a solution of compound 4 (200 mg, 0.21 mmol) in ethanolamine (15 mL), K;CO3(2 g, 14.5 mmol) were added under
an argon atmosphere. The reaction mixture was stirred at 145 °C for 6h and continued 160 °C for overnight. To confirm
the consumption of starting material, the reaction was monitored by TLC. Upon reaction completion, the mixture was
diluted with dichloromethane and filterd out the residue. The solvent was removed under vacuum and then the
intermediate product used directly for the next reaction, which was soluted in 20mL m-xylene. To this mixture, CuCl (6.5
mg, 0.07 mmol), NMI (11 mg, 0.13 mmol), K,CO3 (110 mg, 0.88 mmol) were added in air The reaction mixture was stirred
at 120 °C.> To confirm the consumption of starting material, the reaction was monitored by TLC. Upon reaction
completion, the mixture was diluted with methylene dichloride (20 mL) and filterd out the residue. After removal of the
solvents, the residue was purified by silica gel chromatography (petroleum ether/ tetrahydrofuran = 4/1) to afford
compound O-ADA (48.2 mg, 25%) as a brown solid. *H NMR (400 MHz, THF-ds/CS, = 5/1): 6 8.69 (d, J = 9.2 Hz, 2H), 8.18
(d, J = 6.2 Hz, 2H), 7.65 (s, 2H), 7.01 (d, J = 7.0 Hz, 2H), 6.38 (d, J = 7.4 Hz, 2H), 5.29 (m, 2H), 2.36 (m, 4H), 1.90 (m, 4H),
1.39 (m, 24H), 0.92 (m, 12H). 13C NMR (100 MHz, THF-ds/CS, = 5/1) & 168.30, 155.92, 150.11, 132.66, 132.20, 131.47,
129.83, 129.73, 129.32, 128.92, 128.48, 127.14, 125.69, 124.08, 123.61, 54.18, 32.84, 32.42, 27.10, 22.82, 14.73.
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3. Theoretical Calculations of ADA and O-ADA
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Fig. S1 Calculated MOs profiles of ADA and O-ADA at the B3LYP/6-31G(d, p) level.

Fig. S2 DFT-calculated (a) NICS(1)z values and (b) ACID plots of ADA and O-ADA at the B3LYP/6-31G(d,p) level.
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Fig. S3 Simulated absorption spectrum of ADA calculated at the B3LYP/6-31G (d, p) level.

Table S1 Major transitions of ADA calculated by TD-DFT.

Excited state

Wavelength(nm)

Osc. Strength

Description

1

2

10

11

12

13

14

724.71

541.68

462.06

408.06

407.86

401.63

383.31

379.32

378.62

376.27

375.60

371.03

356.79

356.47

0.8043

0.0005

0.0174

0.0002

0.0001

0.0048

0.0307

0.0011

0.0016

0.0057

0.0011

0.0269

0.1127

0.0012
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HOMO->LUMO (102%)

H-1->LUMO (39%), HOMO->L+1
(61%)

H-1->LUMO (58%), HOMO->L+1
(37%)

H-2->LUMO (93%)

H-3->LUMO (93%)
H-6->LUMO (22%), H-4->LUMO
(61%)

H-7->LUMO (20%), HOMO->L+2
(67%)
H-11->LUMO (10%), H-6->LUMO
(34%), HOMO->L+3 (32%)

H-5->LUMO (84%)

H-9->LUMO (11%), H-6->LUMO
(31%), H-4->LUMO (16%),
HOMO->L+3 (32%)
H-8->LUMO (81%)

H-9->LUMO (19%), H-7->LUMO
(42%), HOMO->L+3 (17%),
HOMO->L+5 (15%)
H-1->L+1 (68%), HOMO->L+5 (19%)

H-10->LUMO (59%), HOMO->L+4
(23%)



H-12->LUMO (12%), H-10->LUMO

15 351.55 0.0046 (13%), HOMO->L+4 (64%)
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Fig. S4 Simulated absorption spectrum of O-ADA calculated at the B3LYP/6-31G (d, p) level.

Table S2 Major transitions of O-ADA calculated by TD-DFT.

Excited state Wavelength(nm) Osc. Strength Description
1 816.55 0.6261 HOMO->LUMO (102%)
2 669.82 0 HOMO->L+1 (96%)
3 449.30 0 H-1->LUMO (91%)
4 445.79 0.0773 HOMO->L+2 (85%), HOMO->L+3 (10%)
5 439.32 0.0038 HOMO_>LL2()(:/|2;A_’)>'L1?'(\2(3);)L+3 (42%),
6 41437 0.0391 HOMO->L+3 (45%), HOMO->L+4 (48%)
7 401.23 0 H-2->LUMO (12%), HOMO->L+5 (85%)
8 389.75 0 H-2->LUMO (79%)
9 389.29 0 H-3->LUMO (80%)
10 389.29 0.0001 H-4->LUMO (80%)
11 368.61 0.0793 H-5->LUMO (88%)
12 363.81 0.2251 H-1->L+1 (78%)
13 347.67 0.1491 H-6->LUMO (70%), H-1->L+1 (12%)
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H-10->LUMO (10%), H-7->LUMO (19%),
HOMO->L+6 (64%)
H-9->LUMO (15%), H-8->LUMO (16%),
HOMO->L+7 (47%)

14 347.61 0

15 339.29 0.0037

4. Additional UV-vis-NIR Absorption Spectra
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Fig. S5 (a, b) Long wavelength region of concentration-dependent absorption spectra recorded in CH,Cl, solution of ADA
and O-ADA at room temperature; (c) UV-vis-NIR absorption spectra (400-1600 nm) of ADA and O-ADA in film; (d) UV-

vis-NIR absorption spectra (400-1400 nm) of ADA and O-ADA in power.
5. OFETs Device Fabrication and Characterization

Bottom-gate/bottom-contact (BG-BC) OFET devices were fabricated using Si/SiO, substrates where Si and SiO; serve
as gate electrode and gate dielectric, respectively. The source and drain gold electrodes with a thickness of 50 nm using
2 nm of chromium as an adhesion layer were prepared by standard lithography procedures. Before the film depositions,
silicon wafers were cleaned with ultrapure water, acetone, and isopropanol for 3 times in sequence. Then, it was
conducted by oxygen plasma and passivated by trichloro(octadecyl)silane to reduce the surface traps. Lastly, both PAH
films were spin-coated from their pre-heated solutions (4 mg/mL in chlorobenzene, heated at 60 °C for overnight under
argon protection) at 1800 rpm for 1 min in an argon-filled glovebox, followed by a thermal annealing treatment at 80 °C

for ca. 10 min. In O-ADA-based OFETs, the channel lengths and widths were 40 um and 1000 um, respectively, while
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those for devices of ADA were 10/1000 um. The charge carrier mobilities of OFETs were calculated in the saturation

regime from a plot of the square root of the drain current vs. gate voltage using the following equation:

I —L(V-—V)2
Ds = 21LI~L G T

Ips is the drain source current, C; is the capacitance per unit area of the gate dielectric (10 nF/cm?), L is the channel

length, W is the channel width, V1 and Vg are the threshold and gate source voltage
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Fig. S6 (a) Output (b) Transfer characteristics of n-type mobility of ADA based thin-film OFETs.
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Fig. S7 XRD spectra of ADA and O-ADA.
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Fig. S8 Tapping-mode AFM image of ADA and O-ADA films.

6. Photothermal Effect and PCE Calculation

For the purpose of evaluating the photothermal ability of ADA and O-ADA, above all, we discussed the effect of
power density. ADA and O-ADA solid were irradiated by 808 nm laser at different power densities (0.1, 0.3, 0.5, 0.7 W
cm “2). The temperature change (AT) was recorded by FLIR-1910581 thermal camera. Then, we investigate the effect of
concentration on temperature. The photothermal conversion efficiencies (n) were measured according to the reported
method:

_ hSATye
- [(1 — 10_A808/1064)

U]

h is the heat transfer coefficient; s is the surface area of the container. | is the laser power and A is the absorbance at

808 nm. ATmaxis the maximum temperature change.

_ Zimicp,i
B hS

Ts
mi is the mass of solid; C,is the capacity of the carrier (Cpiezoid = 0.8 J/(g*°C)), and ts is the associated time constant.
t=—75In6

¢ is a dimensionless parameter, known as the driving force temperature.
0 = T - Tsurr

Tmax - Tsurr
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Fig. S9 (a) Photothermal conversion behaviours of ADA/O-ADA powders at different power densities (0.1-0.7

W cm) under

808 nm light irradiation; (b) photothermal cycle curves of ADA and O-ADA powders at 0.5 W cm~

2 under 808 nm light irradiation; Thermal images of (c) ADA and (d) O-ADA powders at different time under 808

nm light irradiation.
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Fig. S10 The time constant for (a) ADA (b) O-ADA calculated with the linear time data from the system cooling period

versus the negative natural logarithm of the system driving force temperature.

Table S3. Summary of physical and photoelectronic properties of ADA and O-ADA.

Cmpd Asolal AfiIma )\solida EHOMOb ELUMOC EgCVd Egopte l-l~ef th r’h
(nm) (nm) (nm) (eV) (eV) (eV) (eV) (cm2Vv-1s?) (cm2V-is?)

ADA 720 746 735 -5.29 -3.87 1.42 1.54 3.20x 10 - 21

O-ADA 882 943 944 -5.02 -3.83 1.19 1.12 7.60 x 10 1.07 x 103 35

a Absorption maxima. ® Eyomo = -4.8 V - Eonset™?. ¢ Etomo = -4.8 V - Eonset™?L. 9 Egap = Eromo - Enomo. & Eg°Pt= 1240/Aonset. f Electron motility. € Hole
mobility. " Photothermal conversion efficiency.
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Fig. S11*H NMR spectrum (400 MHz) of compound 1b in CDCls at 298 K.
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Fig. S15 *H NMR spectrum (400 MHz) of compound 2b in CDCls at 298 K.
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