# Supporting Information 

# Lewis/Brønsted Acid-Mediated <br> Cyclization/Amidation of 1,6-Enynes with Nitriles: Access to 3-Enamide Substituted Dihydrobenzofurans 

Zan Chen ${ }^{\text {a }}$, Wenting Huang ${ }^{\text {a }}$, Yu Su ${ }^{\text {a }}$, Huanfeng Jiang ${ }^{\text {a }}$, Wanqing Wu ${ }^{\text {a* }}$

${ }^{\text {a. State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional }}$ Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: cewuwq@scut.edu.cn.Fax and Tel.: (+86) 20-87112906

## List of Contents

General Information ..... S1
Condition Optimization ..... S1
General Experimental Procedure. ..... S4
Characterization Data for Substrates and All Products ..... S11
X-ray Crystallographic Data. ..... S38
References ..... S41
NMR Spectra for All the Compounds ..... S42

## General Information

Melting points were determined with a Buchi Melting Point B-545 instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker DRX-400 spectrometer with Dimethyl sulfoxide- $d_{6}\left(\mathrm{DMSO}-d_{6}\right)$ and chloroform- $d\left(\mathrm{CDCl}_{3}\right)$ as solvent. The peaks were internally referenced to residual solvent signal ( 2.5 and 39.5 ppm for dimethyl sulfoxide-d6) and TMS ( 0.00 ppm ) or residual solvent signal (7.26 and 77.0 ppm for chloroform-d). IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker TENSOR 27 spectrometer. The data of HRMS was carried out on a high-resolution mass spectrometer (LCMSIT-TOF). TLC was performed by using commercially prepared 100-400 mesh silica gel plates and visualization was affected at 254 nm . Data collections for crystal structure were performed at room temperature ( 170 K ) using MoK $\alpha$ radiation on a 'Bruker D8 VENTURE' diffractometer. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification.

## Condition Optimization

Table S1. Screening of Lewis Acid ${ }^{a}$


| 7 | $\mathrm{Fe}(\mathrm{OTf})_{3}$ | trace | -- |
| :---: | :---: | :---: | :---: |
| 8 | $\mathrm{FeCl}_{3}$ | n.d. | -- |
| 9 | $\mathrm{FeCl}_{2}$ | n.d. | -- |
| 10 | $\mathrm{Y}(\mathrm{OTf})_{3}$ | trace | -- |
| 11 | $\mathrm{SnCl}_{4}$ | trace | -- |
| 12 | $\mathrm{AlCl}_{3}$ | trace | -- |
| 13 | $\mathrm{BPh}_{3}$ | n.d. | -- |
| 14 | $\mathrm{~B}_{\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)_{3}}$ | n.d. | -- |
| 15 | $\mathrm{BCl}_{3}$ | trace | -- |
| 16 | $\mathrm{MeOTf}^{2}$ | trace | -- |

${ }^{a}$ Reaction conditions: 1a ( 0.1 mmol ), 2a (10 equiv), Lewis acid ( 1 equiv), HOAc ( 1 equiv), DCE $(0.5 \mathrm{~mL})$, under nitrogen at $50{ }^{\circ} \mathrm{C}$ for 12 h. n.d. $=$ not detected. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{c} Z / E$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S2. Screening of Brønsted Acid ${ }^{a}$

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Entry | Brønsted acid | Yield of 3a (\%) ${ }^{\text {b }}$ | $Z / E^{c}$ |
| 1 | Formic acid | 24 | 5:1 |
| 2 | Propionic acid | 72 | 5:1 |
| 3 | $n$-Butyric acid | 32 | 2:1 |
| 4 | $n$-Pentanoic acid | 57 | 2:1 |
| 5 | TfOH | 13 | 2:1 |
| 6 | $\mathrm{H}_{3} \mathrm{BO}_{3}$ | trace | -- |
| 7 | Malonic acid | trace | -- |
| 8 | Lactic acid | trace | -- |
| 9 | $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ | n.d. | -- |
| 10 | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}$ | 62 | 4:1 |


| 11 | $\mathrm{PhCO}_{2} \mathrm{H}$ | 53 | $4: 1$ |
| :---: | :---: | :---: | :---: |
| 12 | Tartaric acid | trace | -- |
| 13 | TsOH | n.d. | -- |
| 14 | Salicylic acid | n.d. | -- |

${ }^{a}$ Reaction conditions: 1a ( 0.1 mmol ), 2a ( 10 equiv), Lewis acid ( 1 equiv), Brønsted acid ( 1 equiv), DCE ( 0.5 mL ), under nitrogen at $50{ }^{\circ} \mathrm{C}$ for 12 h. n.d. $=$ not detected. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{c} Z / E$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S3. Screening of Solvent ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}$ ( 10 equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1 equiv), propionic acid (1 equiv), solvent $(0.5 \mathrm{~mL})$, under nitrogen at $50{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h} . \mathrm{n} . \mathrm{d}$. $=$ not detected; ${ }^{b}$ Detected by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{c} Z / E$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S4. Screening of Temperature ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}$ ( 0.1 mmol ), $\mathbf{2 a}$ ( 10 equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ( 1 equiv), propionic acid ( 1 equiv), DCE ( 0.5 mL ), under nitrogen for $12 \mathrm{~h} . \mathrm{n} . \mathrm{d}$. = not detected; ${ }^{b}$ Detected by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{c} Z / E$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S5. Screening of Equivalents of Lewis acid and Brønsted acid ${ }^{a}$


| Entry $^{a}$ | $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (x equiv) | Propionic Acid (x <br> equiv) | Yield of 3a <br> $(\%)^{b}$ | $Z / E^{c}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.5 | 1 | 36 | $3: 1$ |
| 2 | 1.5 | 1 | 72 | $6: 1$ |
| 3 | 2 | 1 | 80 | $6: 1$ |
| 4 | 2.5 | 1 | 81 | $6: 1$ |
| 5 | 2 | 1.5 | 68 | $6: 1$ |

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}\left(10\right.$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (x equiv), propionic acid (x equiv), DCE ( 0.5 mL ), under nitrogen at $50{ }^{\circ} \mathrm{C}$ for 12 h . n.d. $=$ not detected; ${ }^{b}$ Detected by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{c} Z / E$ Determined by ${ }^{1} \mathrm{H}$ NMR.

## General Experimental Procedure

## A. General Procedure for the Preparation of 1,6-Enynes ${ }^{[1-6]}$



Synthesis of S1: To a stirred solution of 2-iodophenol (1 equiv) and 1,2dibromoethane ( 10 equiv) in acetone ( 0.1 M ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv). After the reaction was finished, the reaction was quenched with water ( 10 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The organic layer was washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporator under reduced pressure. The residue was purified by silica gel column chromatography using a petroleum ether/ $\operatorname{AcOEt}(100 / 1)$ as the eluent to give product $\mathbf{S}$.

Synthesis of S2: A solution of $\mathbf{S 1}(2.9329 \mathrm{~g}, 9.0 \mathrm{mmol})$ in DMSO ( 50 mL ) was stirred at room temperature. Then $\mathrm{KO}^{t} \mathrm{Bu}(1.5124 \mathrm{~g}, 13.5 \mathrm{mmol})$ in portions was added. The resulting mixture was stirred at room temperature for 2 h . After the reaction was finished, The reaction was quenched with water $(10 \mathrm{~mL})$ and extracted with EtOAc ( $20 \mathrm{~mL} \times 3$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporator under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether as the eluent to give product $\mathbf{S 2}$.

Synthesis of 1: To a solution of $\mathbf{S 2}(1.4831 \mathrm{~g}, 6.03 \mathrm{mmol})$ and substituted phenylacetylene $(0.7099 \mathrm{~g}, 7.24 \mathrm{mmol})$ in trimethylamine ( 30 mL ) was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.0847 \mathrm{~g}, 0.12 \mathrm{mmol})$ and $\mathrm{CuI}(0.0458 \mathrm{~g}, 0.24 \mathrm{mmol})$ under nitrogen. The resulting mixture was stirred at room temperature for 12 h . Upon completion, the reaction mixture was filtered with a pad of Celite. The filtrate was then concentrated under vacuum. The residue was purified by silica gel column chromatography using a petroleum ether as the eluent to give product 1.

## B. General Procedure for the Preparation of 3-Enamide Substituted

 Dihydrobenzofurans

To a Schlenk tube was added enyne $\mathbf{1}(0.1 \mathrm{mmol}, 0.1 \mathrm{M})$, nitrile $\mathbf{2}(1 \mathrm{mmol}, 10$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(24.7 \mathrm{uL}, 2\right.$ equiv), propionic acid ( $7.5 \mathrm{uL}, 1$ equiv) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Then the tube was stirred at $50^{\circ} \mathrm{C}$ (oil bath temperature) in nitrogen atmosphere for 12 h until complete consumption of starting materials as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1 \sim 3 / 1$ ) to give product 3.


Scale-up reaction of 3aa: To a Schlenk tube was added enyne 1a ( $220 \mathrm{mg}, 1 \mathrm{mmol}$ ), nitrile 2a ( $522 \mathrm{uL}, 10$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ( $250 \mathrm{uL}, 2$ equiv), propionic acid ( $75 \mathrm{uL}, 1$ equiv) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Then the tube was stirred at $50{ }^{\circ} \mathrm{C}$ (oil bath temperature) in nitrogen atmosphere for 12 h until complete consumption of starting materials as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1 \sim 3 / 1$ ) to give the $Z / E$ mixted product 3aa (198.1 mg, 71\% yield, $Z / E=6: 1$ ).


Scale-up reaction of 3ya: To a Schlenk tube was added enynes $\mathbf{1 y}$ ( $297 \mathrm{mg}, 1 \mathrm{mmol}$ ), nitrile 2a ( $522 \mathrm{uL}, 10$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ( $250 \mathrm{uL}, 2$ equiv), propionic acid ( $75 \mathrm{uL}, 1$ equiv) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$ ). Then the tube was stirred at $50{ }^{\circ} \mathrm{C}$ (oil bath temperature) in nitrogen atmosphere for 12 h until complete consumption of starting materials as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1 \sim 3 / 1$ ) to give the $Z / E$ mixed product 3ya ( $214.2 \mathrm{mg}, 60 \%$ yield, $Z / E=4: 1$ ). Then $Z / E$ mixed product $3 y a$ was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ to give $\boldsymbol{Z}$-3ya $(171.4 \mathrm{mg}, 48 \%$ yield).

## C. Synthetic Utility



Synthesis of 4: To a Schlenk tube was added 3aa ( $27.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{HCl}(3.2 \mathrm{uL}$, 1 equiv) and $\mathrm{MeOH}(1 \mathrm{~mL})$. Then the tube was stirred at reflux for 12 h until complete consumption of starting materials as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography using a petroleum ether/ $\operatorname{AcOEt}(20 / 1)$ as the eluent to give product 4 ( $15.8 \mathrm{mg}, 67 \%$ yield).


Synthesis of 5: To a Schlenk tube was added 3aa ( 27.9 mg , 0.1 mmol ), TsOH (17.2 $\mathrm{mg}, 1$ equiv) and $\mathrm{MeOH}(1 \mathrm{~mL})$. Then the tube was stirred at reflux for 12 h until complete consumption of starting materials as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography using a petroleum ether/ $\operatorname{AcOEt}(20 / 1)$ as the eluent to give product 5 ( $14.3 \mathrm{mg}, 60 \%$ yield).


Synthesis of 6: To a Schlenk tube was added $\boldsymbol{Z}$-3ya ( $35.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), phenylacetylene ( $13.2 \mathrm{uL}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.4 \mathrm{mg}, 2 \mathrm{~mol} \%), \mathrm{CuI}(0.8 \mathrm{mg}, 4$ $\mathrm{mol} \%)$ and $\mathrm{E}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The reaction vessel was fitted with a rubber septum, and
evacuated and back-filled with nitrogen. Then the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h. After the reaction was cooled to room temperature, the resulting mixture was extracted with ethyl acetate and the combined organic layers were evaporated under vacuum. The residue was purified by silica gel column chromatography using a petroleum ether/ $\operatorname{AcOEt}(5 / 1)$ as the eluent to give product $6(22.0 \mathrm{mg}, 58 \%$ yield $)$.

## D. Control Experiments



Synthesis of 3aa- $\boldsymbol{d}_{\mathbf{3}}$ : To a Schlenk tube was added enyne 1a ( $22.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{CD}_{3} \mathrm{CN} 2 \mathrm{a}-\boldsymbol{d}_{3}$ ( $52 \mathrm{uL}, 10$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ( $25 \mathrm{uL}, 2$ equiv), propionic acid ( $7.5 \mathrm{uL}, 1$ equiv) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Then the tube was stirred at $50{ }^{\circ} \mathrm{C}$ (oil bath temperature) in nitrogen atmosphere for 12 h until complete consumption of starting material as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1 \sim 3 / 1)$ to give the $Z / E$ mixture product $\mathbf{3 a a}-\boldsymbol{d}_{3}(21.2 \mathrm{mg}, 75 \%$ yield, $Z / E=6: 1$ ). Then $Z / E$ mixture product $\mathbf{3 a a}-\boldsymbol{d}_{3}$ was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ to give $\boldsymbol{Z}-\mathbf{3 a a}-\boldsymbol{d}_{\mathbf{3}}$ ( $18.2 \mathrm{mg}, 64 \%$ yield, white solid).



Synthesis of 3aa-d: To a Schlenk tube was added enyne 1a ( $22.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{CH}_{3} \mathrm{CN} 2 \mathrm{a}$ ( $52 \mathrm{uL}, 10$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{uL}, 2$ equiv), acetic acid-D ( 5.8 uL , DOAc, 1 equiv) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Then the tube was stirred at $50{ }^{\circ} \mathrm{C}$ (oil bath temperature) in nitrogen atmosphere for 12 h until complete consumption of starting material as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1 \sim 3 / 1)$ to give the $Z / E$ mixture product $\mathbf{3 a a}-\boldsymbol{d}(19.9 \mathrm{mg}, 71 \%$ yield, $Z / E=6: 1$ ). The $Z / E$ mixture product 3aa-d was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ to give $\boldsymbol{Z}$-3aa- $\boldsymbol{d}$ ( $17.1 \mathrm{mg}, 61 \%$ yield, white solid).

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, d_{\sigma}\right.$-DMSO $)$



Synthesis of 3aa-O ${ }^{18}$ : To a Schlenk tube was added enyne $\mathbf{1 a}(22.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{CH}_{3} \mathrm{CN} 2 \mathrm{a}$ ( $52 \mathrm{uL}, 10$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{uL}, 2$ equiv), propionic acid ( $7.5 \mathrm{uL}, 1$ equiv), $\mathrm{H}_{2} \mathbf{O}^{18}$ (1.8 uL, 1 equiv) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Then the tube was stirred at $50{ }^{\circ} \mathrm{C}$ (oil bath temperature) in nitrogen atmosphere for 12 h until complete consumption of starting material as monitored by TLC. The mixture was cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1 \sim 3 / 1$ ) to give the $Z / E$ mixture product 3aa-O ${ }^{18}$ $(14.6 \mathrm{mg}, 52 \%$ yield, $Z / E=6: 1)$. The $Z / E$ mixture product $\mathbf{3 a a -} \mathbf{O}^{18}$ was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ to give $\boldsymbol{Z}$ -

3aa-O ${ }^{18}$ ( $12.5 \mathrm{mg}, 45 \%$, white solid). The ratio of ${ }^{16} \mathbf{O} /{ }^{18} \mathbf{O}=12 / 1$ was detected by HRMS


## Characterization Data for Substrates and All Products


(Z)-N-((2-Methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide

Following the general procedure B , the $Z / E$ mixed product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $22.3 \mathrm{mg}, 80 \%$ yield, $Z / E=6: 1$ ), then $\boldsymbol{Z}$-3aa was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 19.1 mg ; $69 \%$ yield; mp 165.2-165.7 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{dt}, J=7.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$
$(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.5,162.5,138.2,133.6,130.3$ 129.5, 129.2, 129.0, 126.5, 124.4, 122.9, 120.4, 110.6, 82.4, 23.4, 19.2; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320,2924,2855,2370,1702$, 1530, 1270, 1167, 947, 816, 751; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]$ - calcd for 278.1187, Found 278.1188.

(Z)-N-((2-Methylbenzofuran-3(2H)-ylidene)(p-tolyl)methyl)acetamide
(Z-3ba):

Following the general procedure B , the $Z / E$ mixed product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $24.0 \mathrm{mg}, 82 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$-3ba was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid (19.2 mg; 66\% yield; mp 180.3-180.8 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 4 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.5$, $162.4,138.4,135.2,133.2,130.2,129.7,129.4,126.5,124.5,122.9,120.4,110.5$, 82.4, 23.4, 21.5, 19.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3382,2924,2833,1608,1459,1361,1269$, 1069, 722; HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 292.1343, Found 292.1346.

(Z)- $N$-([1,1'-Biphenyl]-4-yl(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-3ca): Following the general procedure B , the $Z / E$ mixted product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $26.6 \mathrm{mg}, 75 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$ - $\mathbf{3 c a}$ was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 21.3 mg ; 60\% yield; mp 234.3-234. $9^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.44(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H})$, 7.11-7.07 (m, 1H), $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.59(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}$ $167.7,162.6,140.5,140.0,137.1,133.7,130.4,130.1,129.5,128.2,127.3,127.1$, 126.1, 124.3, 123.0, 120.5, 110.6, 82.4, 23.4, 19.3.; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3264,2920,2854$, 1702, 1659, 1515, 1327, 1275, 1159, 1056, 945, 841, 745; HRMS (ESI) $m / z$ : $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 354.1500 , Found 354.1501.


## (Z)-Methyl 4-(Acetamido(2-methylbenzofuran-3(2H)-ylidene)methyl)benzoate

(Z-3da): Following the general procedure B , the $Z / E$ mixted product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $24.9 \mathrm{mg}, 74 \%$ yield, $Z / E=3: 1$ ), then $\boldsymbol{Z}$ - $\mathbf{3 d a}$ was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 18.9 mg ; $56 \%$ yield; $\mathrm{mp} 215.6-216.3^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 168.1,166.5,162.8,142.9,134.9,130.9,130.1,129.9$, $129.8,125.6,123.7,123.0,120.7,110.8,82.4,52.8,23.4,19.3 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3154$, 2921, 2837, 1720, 1600, 1457, 1365, 1278, 1104, 750; HRMS (ESI) m/z: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}$ $[\mathrm{M}-\mathrm{H}]^{-}$calcd for 336.1241, Found 336.1244.

(Z)-N-((4-(tert-Butyl)phenyl)(2-methylbenzofuran-3(2H)-
ylidene)methyl)acetamide (Z-3ea): Following the general procedure B , the $Z / E$ mixted product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $23.8 \mathrm{mg}, 71 \%$ yield, $Z / E=$ 6:1), then $\boldsymbol{Z}$-3ea was obtained after purification by column chromatography
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(20.4 \mathrm{mg} ; 61 \%$ yield; $\mathrm{mp} 163.3-$ $163.8{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm} 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}$ 167.3, 162.4, $151.6,135.2,133.2,130.2,129.2,126.3,125.9,124.5,122.9,120.4,110.5,82.5,35.0$, 31.6, 23.4, 19.2; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2957,2857,1609,1517,1462,1361,1279,834,753 ;$ HRMS (ESI) $m / z: \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 334.1813, Found 334.1815.

(Z)- N -((4-Fluorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide
(Z-3fa): Following the general procedure B , the $Z / E$ mixted product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $19.3 \mathrm{mg}, 65 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$-3fa was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 15.4 mg ; 52\% yield; mp 181.1-181.7 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta$ ppm 167.7, 162.5 (d, $J=143.8 \mathrm{~Hz}), 162.5,134.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.8,131.7(\mathrm{~d}, J=$
$8.0 \mathrm{~Hz}), 130.4,125.5,124.2,122.8,120.5,116.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 110.6,82.3,23.4$, 19.2; ${ }^{19}$ F NMR (376 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}-112.95 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2926,2832$, 1601, 1510, 1461, 1363, 1227, 1151, 1064, 839, 766; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNO}_{2}$ [M - H] ${ }^{-}$calcd for 296.1092, Found 296.1093.

( Z )- N -((4-Chlorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide
(Z-3ga): Following the general procedure B , the $Z / E$ mixted product 3aa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $21.3 \mathrm{mg}, 68 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$-3ga was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 16.9 mg ; $54 \%$ yield; mp 232.3-233. $\mathrm{O}^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ ppm 167.9, 162.6, 137.0, 134.2, 133.4, 131.4, 130.6, 129.2, 125.4, 123.9, 122.9, 120.6, 110.7, 82.3, 23.4, 19.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2903,1635,1506,1311,741 ;$ HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 312.0797, Found 312.0799.

(Z)- N -((4-Bromophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide
(Z-3ha): Following the general procedure B , the $Z / E$ mixtured product 3ha was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $25.7 \mathrm{mg}, 72 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$ - $\mathbf{3}$ ha was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 20.7 mg ; $58 \%$ yield; mp 218.4-218.9 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta$ ppm 167.9, 162.6, 137.3, 134.1, 132.1, 131.7, 130.6, 125.5, 123.9, 122.8, 122.0, 120.6, 110.7, 82.3, 23.3, 19.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3124,2926,2832,1602,1362,769$; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 356.0292, Found 356.0293.

(Z)-N-((2-Methylbenzofuran-3(2H)-ylidene)(4-
(trifluoromethyl)phenyl)methyl)acetamide (Z-3ia): Following the general procedure B, the $Z / E$ mixted product 3ia was obtained after purification by column
chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid $(18.0 \mathrm{mg}$, $52 \%$ yield, $Z / E=2: 1$ ), then $\boldsymbol{Z}$-3ia was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(12.1 \mathrm{mg} ; 35 \%$ yield; mp 246.2-246.7 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.80$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}$ 168.2, $162.8,142.3,135.0,130.9,130.4,129.1(\mathrm{q}, J=31.5 \mathrm{~Hz}), 126.1(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.3$, 123.6, 123.4, 122.8, 120.7, 110.9, 82.3, 23.3, 19.3; ${ }^{19}$ F NMR ( 376 MHz, DMSO- $d_{6}$ ) $\delta$ ppm -60.32; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2922,2830,1612,1461,1360,1124,1068,763 ;$ HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 346.1060, Found 346.1062.

(E)-N-((2-Methylbenzofuran-3(2H)-ylidene)(4-
(trifluoromethyl)phenyl)methyl)acetamide (E-3ia): Following the general procedure B , the $Z / E$ mixted product 3ia was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $(18.0 \mathrm{mg}$, $52 \%$ yield, $Z / E=2: 1$ ), then $\boldsymbol{Z}$-3ia was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(6.0 \mathrm{mg} ; 17 \%$ yield; mp 246.3-246.8 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.70$
$(\mathrm{q}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}$ 168.7, 161.8, 142.9, 136.2, 130.8, 128.4, $127.6(\mathrm{q}, J=31.5 \mathrm{~Hz}), 125.4(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.1,125.0,124.4,122.9,120.7,110.1$, 80.2, 22.8, 19.8; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm}-61.00 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2912$, 2841, 1655, 1468, 1356, 1115, 1071, 772; HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$ calcd for 346.1060, Found 346.1061.

(Z)-N-((4-Cyanophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide
$(\boldsymbol{Z} \mathbf{- 3 j a} \mathbf{)}$ : Following the general procedure B , the $Z / E$ mixted product $\mathbf{3 j a}$ was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $14.9 \mathrm{mg}, 49 \%$ yield, $Z / E=2: 1$ ), then $\boldsymbol{Z}$ - $\mathbf{3} \mathbf{j} \mathbf{a}$ was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 10.0 mg ; 33\% yield; mp 202.3-202.8 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.48(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.11$ $(\mathrm{m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 168.3,162.9,142.9,135.4,133.1,131.1,130.5,125.1,123.4,122.9$, $120.8,119.3,111.2,110.9,82.3,23.3,19.3 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2924,2834,1611,1461$,

1361, 772; HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 303.1139, Found 303.1140 .

(Z)- N -((2-Methylbenzofuran-3(2H)-ylidene)(m-tolyl)methyl)acetamide
(Z-3ka):

Following the general procedure B , the $Z / E$ mixted product $\mathbf{3 k a}$ was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $22.3 \mathrm{mg}, 76 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$ - $\mathbf{3} \mathbf{k a}$ was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 17.9 mg ; 61\% yield; mp 165.5-166.0 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$\left.d_{6}\right) \delta \operatorname{ppm} 9.38(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.4,162.4,138.4,138.1$, 133.3, 130.2, 129.8, 129.6, 129.1, 126.6, 126.5, 124.5, 123.0, 120.4, 110.5, 82.4, 23.4, 21.4, 19.2; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2922, 1647, 1523, 1313, 748; HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 292.1343, Found 292.1345.


## (Z)-N-((3-Methoxyphenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide

(Z-3la): Following the general procedure B , the $Z / E$ mixted product 3la was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $21.0 \mathrm{mg}, 68 \%$ yield, $Z / E=4: 1$ ), then $Z$-3la was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 16.7 mg ; $54 \%$ yield; mp $141.6-142.1^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.38(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}$, 2H), $6.87(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.6,162.5,160.0,139.5,133.7,130.4$, $130.4,126.2,124.3,123.2,121.8,120.5,114.7,114.6,110.6,82.4,55.7,23.4,19.2 ;$ $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3487,2927,2849,2356,1654,1590,1464,1374,1283,1225,1046$, 754, 697; HRMS (ESI) m/z: : $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 308.1292, Found 308.1293.

(Z)-N-((3-Fluorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide
(Z-3ma): Following the general procedure B , the $Z / E$ mixted product 3ma was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $19.3 \mathrm{mg}, 65 \%$ yield, $Z / E=3.5: 1$ ), then $\boldsymbol{Z}$-3ma was
obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $=8: 1-$ 10:1) as a white solid ( 15.1 mg ; 51\% yield; mp 210.3-210.8 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta$ ppm 9.43 ( $\left.\mathrm{s}, 1 \mathrm{H}\right), 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}$, $1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta$ ppm $165.2(\mathrm{~d}, J=502.4 \mathrm{~Hz}), 162.8(\mathrm{~d}, J=242.9 \mathrm{~Hz}) 140.5$ (d, $J=7.6 \mathrm{~Hz}), 134.3,131.2(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.6,125.8(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 125.2(\mathrm{~d}, J$ $=2,2 \mathrm{~Hz}), 123.9,122.9,120.6,116.2,115.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 115.7,110.7,82.3,23.4$, 19.2; ${ }^{19}$ F NMR ( 376 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}-112.90 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3367,2924$, 2831, 1598, 1459, 1364, 769; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 296.1092, Found 296.1093.


## (Z)- N -((3-Chlorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide

(Z-3na): Following the general procedure B , the $Z / E$ mixted product 3na was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $21.9 \mathrm{mg}, 70 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$-3na was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 17.5 mg ; $56 \%$ yield; mp 198.3-198.8 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.44(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.81$
$(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{q}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta$ ppm 167.9, 162.7, 140.3, 134.5, 133.7, 131.1, 130.7, 129.1, 128.8, 128.3, 125.1, 123.8, $122.8,120.6,110.8,82.3,23.3,19.2 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3115,2924,2830,1601,1362$, 770; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 312.0797, Found 312.0800.

(Z)-N-((3-Bromophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-30a): Following the general procedure B , the $Z / E$ mixted product 3oa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $(20.3 \mathrm{mg}, 65 \%$ yield, $Z / E=4: 1)$, then $Z-3 \mathbf{3 o a}$ was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 16.3 mg ; $52 \%$ yield; $\mathrm{mp} 205.6-206.1^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \operatorname{ppm} 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta$ ppm 167.9, 162.7, 140.5, 134.6, 131.9, 131.7, 131.4, 130.7, 128.7, $125.0,123.8,122.8,122.2,120.6,110.8,82.3,23.3,19.2 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3167,2925$, 2831, 1598, 1364, 1070, 765; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 312.0797, Found 356.0294.


N-((2-Methylbenzofuran-3(2H)-ylidene)(0-tolyl)methyl)acetamide
(3pa):

Following the general procedure $B$, the $Z / E$ inseperable isomers product 3pa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $19.0 \mathrm{mg}, 65 \%$ yield, $\left.Z / E=1: 1, \mathrm{mp} 205.2-205.7^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $d_{6}$ ) $\delta$ pm $9.40(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-$ $5.60(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.41(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 166.8,166.0,161.7,161.5,137.4,136.9$, $136.7,136.6,132.3,132.2,130.6,130.4,130.0,129.7,129.3,128.8,128.3,126.7$, $126.2,125.8,124.6,124.3,124.0,122.4,121.8,120.3,120.0,109.9,109.8,81.5,22.9$, $18.9,18.6,18.3 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3239,2924,2853,2373,1777,1660,1520,1460$, 1382, 1272, 996, 751; HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 292.1343, Found 292.1345.


## $N$-((2-Bromophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide

(3qa): Following the general procedure B , the $Z / E$ inseperable isomer product 3pa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid (19.3 mg, $54 \%$ yield, $Z / E=1: 1.1, \mathrm{mp}$ 205.3-205.8 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.42(\mathrm{~s}, 0.9 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}$, $2.2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 3.4 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2.2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}$, $2.2 \mathrm{H}), 6.81(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.56-6.48(\mathrm{~m}, 2.2 \mathrm{H}), 5.86$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1.1 \mathrm{H}), 5.73(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1.1 \mathrm{H}), 5.64(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 6.2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 166.8,166.6,161.8,161.7,138.2,137$. $6,133.4,133.2,133.1,132.8,132.5,130.6,130.5,130.2,129.8,129.7,128.7,127.9$, 125.6, 124.2, 124.0, 123.8, 123.5, 122.5, 122.3, 122.2, 120.3, 120.2, 110.0, 110.0, 81.6, 81.4, 22.9, 18.4, 18.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3439,2923,2863,2361,2252,1668,1524$, 1464, 1292, 1015, 826, 757; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 352.0292, Found 356.0292.


## (Z)-N-((2-Methylbenzofuran-3(2H)-ylidene)(naphthalen-2-yl)methyl)acetamide

(Z-3ra): Following the general procedure B, the $Z / E$ mixted product 3ra was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ )
as a white solid ( $22.3 \mathrm{mg}, 68 \%$ yield, $Z / E=3: 1$ ), then $\boldsymbol{Z}$-3ra was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 16.8 mg ; 51\% yield; mp 171.2-171.7 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$\left.d_{6}\right) \delta \operatorname{ppm} 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{dt}, J=6.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=$ $8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.7,162.6,135.5,133.8,133.5$, $133.3,130.4,128.6,128.4,128.1,127.5,127.7,127.0,126.5,124.4,122.8,120.5$, $110.6,82.5,23.5,19.3 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3441,2922,2850,1651,1516,1459,1372$, 1231, 1060, 817, 749; HRMS (ESI) $m / z: \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 328.1343, Found 328.1344.

$N$-((2-Methylbenzofuran-3(2H)-ylidene)(thiophen-2-yl)methyl)acetamide

Following the general procedure B , the $Z / E$ inseperable isomers product 3sa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $22.2 \mathrm{mg}, 78 \%$ yield, $Z / E=4: 1, \mathrm{mp} 205.3-205.8^{\circ} \mathrm{C}$ ); $\boldsymbol{Z}$ 3sa: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO$\left.d_{6}\right) \delta \operatorname{ppm} 167.0,162.2,139.7,136.2,130.4,128.1,127.5,127.3,123.5,122.7,120.2$,
$118.3,110.2,81.9,22.8,18.6 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3444,2926,1656,1517,1460,1369$, 1319, 1264, 996, 841, 750; HRMS (ESI) $m / z: \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 284.0751, Found 284.0752.

(Z)-N-((2,5-Dimethylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide

3va): Following the general procedure B , the $Z / E$ mixted product 3va was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $18.5 \mathrm{mg}, 63 \%$ yield, $Z / E=5: 1$ ), then $\boldsymbol{Z}$-3va was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 15.5 mg ; $53 \%$ yield; mp 185.2-185.6 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.67$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.6,160.7,138.2$, $133.9,130.9,129.5,129.1,129.0,128.8,126.3,124.3,123.4,110.2,82.4,23.4,21.1$, 19.4; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3259,2924,2857,1665,1487,1271,1051,963,751,701 ;$ HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M} \mathrm{-} \mathrm{H]} \mathrm{calcd} \mathrm{for} \mathrm{292.1343} ,\mathrm{Found} \mathrm{292.1345}$.


## (Z)- N -((5-Fluoro-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide

(Z-3wa): Following the general procedure B , the $Z / E$ mixted product 3wa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid ( $16.0 \mathrm{mg}, 54 \%$ yield, $Z / E=3: 1$ ), then $\boldsymbol{Z}$-3wa was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( $12.2 \mathrm{mg} ; 41 \%$ yield; mp 175.1-175.5 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H})$, 6.79-6.76 (m, 1H), $5.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 163.0(\mathrm{~d}, J=883.6$ $\mathrm{Hz}), 156.4(\mathrm{~d}, J=232.2 \mathrm{~Hz}), 137.6,132.4,129.5,129.4,129.3,128.0,125.8(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}), 116.5(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 111.0(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 109.1,108.9,83.3,23.4,19.0 ;$ ${ }^{19}$ F NMR ( 376 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}-123.86 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2928,2828,1612$, 1472, 1360, 771, 529; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 296.1092, Found 296.1093.


## (Z)-N-((5-Chloro-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide

( $\boldsymbol{Z} \mathbf{- 3 x a}$ ): Following the general procedure B , the $Z / E$ mixted product 3xa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $24.1 \mathrm{mg}, 77 \%$ yield, $Z / E=3: 1$ ), then $\boldsymbol{Z}$ - $\mathbf{3 x a}$ was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 18.2 mg ; $58 \%$ yield; mp 202.2-202.5 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.48(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=$ 6.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.4,161.1,137.6,131.6$, $129.5,129.4(2 \mathrm{C}), 129.4,128.3,126.7,124.0,122.3,111.8,83.4,23.4,19.0$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2923, 2833, 1624, 1532, 1363, 773, 699; HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 312.0797, Found 312.0800 .

(Z)-N-((5-Bromo-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (Z-3ya): Following the general procedure B , the $Z / E$ mixted product 3ya was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $23.2 \mathrm{mg}, 65 \%$ yield, $Z / E=4: 1$ ), then $\boldsymbol{Z}$-3ya was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 18.6 mg ; $52 \%$ yield; mp 182.3-182.6 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-
$\left.d_{6}\right) \delta \operatorname{ppm} 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.76$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=$ 6.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.4,161.4,137.6,132.3$, 131.4, 129.4, 129.4 (2C), 128.3, 127.3, 125.3, 112.4, 111.6, 83.3, 23.4, 19.0; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2925,2831,1607,1457,1362,1065,772 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 356.0292, Found 356.0294.


## (Z)- N -((2-Methyl-5-(trifluoromethyl)benzofuran-3(2H)-

ylidene)(phenyl)methyl)acetamide (Z-3za): Following the general procedure B, the $Z / E$ mixted product 3za was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $(17.4 \mathrm{mg}, 50 \%$ yield, $Z / E=$ 3:1), then $\boldsymbol{Z}$-3za was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(13.2 \mathrm{mg} ; 38 \%$ yield; $\mathrm{mp} 209.1-$ $209.5{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H})$, 7.40-7.38 (m, 3H), $6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 166.1$ $(\mathrm{d}, J=270.4 \mathrm{~Hz}), 137.4(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 130.6,129.5,129.5,129.4,128.9,127.3(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}), 126.1,125.8,123.4,121.3(\mathrm{q}, J=31.5 \mathrm{~Hz}), 119.8(\mathrm{q}, J=4.1 \mathrm{~Hz}), 111.0$, 84.0, 23.5, 18.8; ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm}-60.32 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3237$,

3023, 2918, 1648, 1500, 1449, 1333, 1277, 1159, 1107, 1001, 901, 822, 764, 708; HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]$ - calcd for 346.1060 , Found 346.1063.

(Z)-N-((2,6-Dimethylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide

3aaa): Following the general procedure B , the $Z / E$ mixted product 3aaa was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $15.2 \mathrm{mg}, 52 \%$ yield, $Z / E=3: 1$ ), then $\boldsymbol{Z}$-3aaa was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid (11.4 mg; 39\% yield; mp 165.1-165.5 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.37(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 167.5,162.8$, $140.5,138.3,133.8,129.5,129.1,128.9,125.3,122.6,121.6,121.3,111.0,82.5,23.4$, 21.6, 19.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3485,3262,2923,2854,1657,1521,1442,1376,1278$, 1129, 1055, 1003, 755, 707; HRMS (ESI) $m / z: \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]$ calcd for 292.1343, Found 292.1344.

(Z)-N-((6-Chloro-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide
(Z-3aba): Following the general procedure B, the $Z / E$ mixted product 3aba was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1$ ) as a white solid ( $21.9 \mathrm{mg}, 70 \%$ yield, $Z / E=3: 1$ ), then $\boldsymbol{Z}$-3aba was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid ( 16.6 mg ; $53 \%$ yield; $\mathrm{mp} 217.4-217.8^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 9.46(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m} 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.61-6.59 (m, 1H), $6.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.5,163.1,137.8$, $134.1,131.7,129.5,129.4,129.3,127.4,123.9,123.6,120.6,110.8,83.7,23.4,19.0$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2924,2832,1599,1363,1070,770$; HRMS (ESI) $m / z: \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{2}$ [ $\mathrm{M}-\mathrm{H}]^{-}$calcd for 312.0797, Found 312.0799.

(Z)-N-((5-Bromo-2-methylbenzofuran-3(2H)-ylidene)(4-
bromophenyl)methyl)acetamide (Z-3aca): Following the general procedure B, the $Z / E$ mixted product 3aca was obtained after purification by column chromatography
(petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $(26.5 \mathrm{mg}, 61 \%$ yield, $Z / E=$ 3:1), then $\boldsymbol{Z}$-3aca was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(20.4 \mathrm{mg} ; 46 \%$ yield; $\mathrm{mp} 201.1-$ $201.5{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm} 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.4,161.1,136.2,132.2,131.8,131.5,131.2,126.8$, 126.4, 124.6, 121.9, 112.2, 111.3, 82.8, 22.9, 18.5; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440,3225,2927$, 2844, 2349, 1645, 1514, 1459, 1368, 1268, 1134, 1065, 826, 753; HRMS (ESI) $m / z$ : $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 433.9397, Found 433.9400.


N -((2-Methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)butyramide
(3ab):

Following the general procedure B , the $Z / E$ inseperable isomer product $\mathbf{3 a b}$ was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $\left(16.0 \mathrm{mg}, 52 \%\right.$ yield, $\left.Z / E=2.5: 1, \mathrm{mp} 215.3-215.8^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.59$ (s, 0.4 H ), 9.38 (s, 1H), 7.54 (d, $J=7.6 \mathrm{~Hz}$, 0.4H), 7.48-7.41 (m, 3.8H), 7.39-7.37 (m, 2.8H), 7.31-7.27 (m, 0.5H), 7.22-7.18 (m, $0.5 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 0.4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{q}, J=6.4 \mathrm{~Hz}$,
$0.4 \mathrm{H}), 5.58(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.63-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.2 \mathrm{H}), 0.92-0.87(\mathrm{~m}$, $4.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}$ 171.1, 169.9, 162.0, 161.5, 138.8, 137.7, 134.5, 133.1, 130.1, 129.8, 129.0, 128.7, 128.5, 128.5, 127.7, 127.6, 126.4, $126.0,124.8,123.8,122.39,120.4,119.9,110.1,109.9,81.9,80.4,19.6,18.8,18.6$, 18.4, 13.8, 13.7; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3248,2962,2866,1764,1657,1596,1513,1462$, 1374, 1320, 1278, 1208, 1150, 1055, 958, 883, 749, 701; HRMS (ESI) m/z: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 306.1500, Found 306.1502.

(Z)-3-Methyl- N -((2-methylbenzofuran-3(2H)-
ylidene)(phenyl)methyl)butanamide (Z-3ac): Following the general procedure B, the $Z / E$ mixted product 3ac was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $(18.9 \mathrm{mg}$, $59 \%$ yield, $Z / E=1.3: 1$ ), then $\boldsymbol{Z}$-3ac was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(10.7 \mathrm{mg} ; 33 \%$ yield; mp 201.1-201.5 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm} 9.37(\mathrm{~s}, 1 \mathrm{H}), 7.48-$ 7.42 (m, 3H), 7.37 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{dd}, J=6.5,2.1$
$\mathrm{Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm} 169.4,162.0,137.7,133.3,129.8$, 129.0, 128.7, 126.7, 126.0, 123.8, 122.4, 119.9, 110.1, 81.8, 44.6, 25.6, 22.4, 22.3, $18.9 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3371,3251,2930,2340,2250,1652,1510,1459,1280,1014$, 827, 756, 689; HRMS (ESI) $m / z: \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 320.1656, Found 320.1657

(E)-3-Methoxy- N -((Z)-(2-methylbenzofuran-3(2H)-
ylidene)(phenyl)methyl)acrylamide (Z-3ae): Following the general procedure B, the $Z / E$ mixted product 3ae was obtained after purification by column chromatography (petroleum ether/ethyl acetate $=5: 1-3: 1)$ as a white solid $(18.6 \mathrm{mg}, 58 \%$ yield, $Z / E=$ 3:1), then $\boldsymbol{Z}$-3ae was obtained after purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=8: 1-10: 1\right)$ as a white solid $(14.1 \mathrm{mg} ; 44 \%$ yield; $\mathrm{mp} 165.1-$ $165.4{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta \mathrm{ppm} 9.23$ (s, 1H), 7.49- 7.42 (m, 4H), 7.39-7.36 (m, 2H), 7.09-7.05 (m, 1H), $6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.51(\mathrm{~m}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 161.9,160.3$, 137.8, 129.6 (2C), 129.1 (2C), 128.7, 128.5, 126.1, 124.1, 122.4, 119.9, 110.0, 98.6, 82.0, 57.4, 18.6; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3256,2093,2385,1774,1704,1499,1336,1161$,

1039, 935, 750, 701, 616; HRMS (ESI) $m / z: \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 320.1292, Found 320.1293.

(2-Methylbenzofuran-3-yl)(phenyl)methanone (4) ${ }^{[4]}$ : Yield: $15.8 \mathrm{mg}, 67 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 7.842-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 191.9,161.9,153.6,139.3,132.6,129.1$, 128.5, 126.9, 124.4, 123.5, 121.3, 116.9, 110.8, 14.7; HRMS (ESI) $m / z: \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+}$calcd for 237.0910, Found 237.0907.

(2-Methyl-2,3-dihydrobenzofuran-3-yl)(phenyl)methanone (5) ${ }^{[7]}$ : Yield: 14.3 mg , $60 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74$ (td, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (d, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 196.5,159.4$, 136.5, 133.7, 129.3, 129.1, 128.9, 125.4, 124.8, 120.3, 110.1, 81.2, 56.9, 21.1; HRMS (ESI) $m / z: \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$calcd for 237.0921, Found 237.0918.

(Z)-N-((2-Methyl-5-(phenylethynyl)benzofuran-3(2H)-
ylidene)(phenyl)methyl)acetamide (6): Yield: 22.0 mg , $58 \%$; yellow solid; mp 200.1-200.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 9.49$ (s, 1H), 7.52-7.46 (m, $3 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 5 \mathrm{H}), 7.28(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 167.5,162.7,137.8,133.8,131.7,131.6$, $129.5,129.4,129.3,129.2,129.0,128.0,125.9,125.3,122.9,114.1,111.1,90.1,87.7$, 83.4, 23.4, 19.1; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3495,2929,2852,2358,1648,1590,1392,1267$, 1112, 994, 754, 701; HRMS (ESI) $m / z: \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{-}$calcd for 380.1645, Found 380.1639 .

## X-ray Crystallographic Data of Products E-3ia and Z-3aca

Compound $\boldsymbol{E}$-3ia was dissolved in a mixed solvent (ethyl acetate: petroleum ether $=$ 1:20), and the corresponding single crystals for X-ray diffraction were obtained by
slowly natural volatilization crystallization. Data collections for this crystal structure were performed at 170 K using $\mathrm{MoK} \alpha$ radiation on a 'Bruker D8 VENTURE' diffractometer. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. Displacement ellipsoids are drawn at the $50 \%$ probability level. Crystallographic data of $\boldsymbol{E}$-3ia is shown in Table S6. Selected bond lengths and bond angles are listed in Table S6. CCDC reference number for $\boldsymbol{E}$ 3ia: 2222311.


E-3ia


CCDC: 2222311

| Table S6 Crystal data and structure refinement for $\boldsymbol{E}$-3ia |  |
| :--- | :--- |
| Identification code | $\boldsymbol{E}-3 i a$ |
| Empirical formula | $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}$ |
| Formula weight | 347.33 |
| Temperature $/ \mathrm{K}$ | 170 |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 2_{1} / \mathrm{c}$ |
| a $/ \AA$ | $18.843(7)$ |
| b $/ \AA$ | $9.345(4)$ |
| c $/ \AA$ | $9.737(4)$ |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | $95.050(11)$ |
| $\gamma /{ }^{\circ}$ | 90 |
| Volume $/ \AA^{3}$ | $1707.9(12)$ |
| Z | 4 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.351 |
|  |  |


| $\mu / \mathrm{mm}^{-1}$ | 0.110 |
| :--- | :--- |
| $\mathrm{~F}(000)$ | 720.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.12 \times 0.08 \times 0.05$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 4.34 to 50.21 |
| Index ranges | $-22 \leq \mathrm{h} \leq 22,-11 \leq \mathrm{k} \leq 9,-11 \leq 1 \leq 11$ |
| Reflections collected | 13067 |
| Independent reflections | $2960\left[\mathrm{R}_{\mathrm{int}}=0.0871, \mathrm{R}_{\text {sigma }}=0.0722\right]$ |
| Data/restraints/parameters | $2960 / 334 / 255$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.029 |
| Final R indexes [I>=2 $\sigma$ (I)] | $\mathrm{R}_{1}=0.0613, \mathrm{wR}_{2}=0.1247$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.1248, \mathrm{wR}_{2}=0.1570$ |
| Largest diff. peak/hole /e $\AA \AA^{-3}$ | $0.23 /-0.22$ |

Compound Z-3aca was dissolved in a mixed solvent (ethyl acetate: petroleum ether $=$ 1:20), and the corresponding single crystals for X-ray diffraction were obtained by slowly natural volatilization crystallization. Data collections for this crystal structure were performed at 170 K using $\mathrm{MoK} \alpha$ radiation on a 'Bruker D8 VENTURE' diffractometer. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. Displacement ellipsoids are drawn at the $50 \%$ probability level. Crystallographic data of $\boldsymbol{Z}$-3aca is shown in Table S7. Selected bond lengths and bond angles are listed in Table S7. CCDC reference numbers for $\boldsymbol{Z}$ 3aca: 2222312.


| Table S7 Crystal data and structure refinement for $\boldsymbol{Z}$-3aca |  |
| :---: | :---: |
| Identification code | Z-3aca |
| Empirical formula | $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO}_{2}$ |
| Formula weight | 437.13 |
| Temperature/K | 170.0 |
| Crystal system | monoclinic |
| Space group | Pc |
| $\mathrm{a} / \AA$ | 9.1676(10) |
| b/ $\AA$ | 4.8980(6) |
| c/ $\AA$ | 19.342(2) |
| $\alpha{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | 92.437(3) |
| $\gamma /{ }^{\circ}$ | 90 |
| Volume/ $\AA^{3}$ | 867.74(17) |
| Z | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.673 |
| $\mu / \mathrm{mm}^{-1}$ | 4.679 |
| $F(000)$ | 432.0 |
| Crystal size/mm ${ }^{3}$ | $0.19 \times 0.08 \times 0.05$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 4.216 to 52.73 |
| Index ranges | $-9 \leq \mathrm{h} \leq 11,-6 \leq \mathrm{k} \leq 5,-23 \leq 1 \leq 24$ |
| Reflections collected | 4773 |
| Independent reflections | $2713\left[\mathrm{R}_{\text {int }}=0.0360, \mathrm{R}_{\text {sigma }}=0.0752\right]$ |
| Data/restraints/parameters | 2713/2/210 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.978 |
| Final R indexes [ $\mathrm{I}>=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0359, \mathrm{wR}_{2}=0.0714$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0518, \mathrm{wR}_{2}=0.0793$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 0.33/-0.53 |

## References

[1] Hu, M.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2015, 53, 608-612.
[2] Wu, W.; Yi, S.; Huang, W.; Luo, D.; Jiang, H. Org. Lett. 2017, 19, 2825-2828.
[3] Jana, S.; Verma, A; Kadu, R; Kumar, S. Chem. Sci. 2017, 8, 6633-6644.
[4] Xia, X.-F.; He, W.; Zhang, G.-W.; Wang, D.-W. Org. Chem. Front. 2019, 6, $342-$ 346.
[5] Zhao, M.-M.; He, W.; Zou, L.-H.; Wang, D.-W.; Sun, T.-Y.; Xia, X.-F. Org. Chem. Front. 2021, 8, 643-652.
[6] Zhang, P.-B.; Wang, C.; Cui, M.-C.; Du, M.-S.; Li, W.-W.; Jia, Z.-X.; Zhao, Q. Org. Lett. 2020, 22, 1149-1154.
[7] Meng, Q.-Y.; Lezius, L.; Studer, A. Nat Commun 2021, 12, 2068-2075.

## NMR Spectra for All the Compounds

(Z)-N-((2-Methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (Z-3aa)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, d_{\sigma}\right.$-DMSO)


## (Z)-N-((2-Methylbenzofuran-3(2H)-ylidene)(p-tolyl)methyl)acetamide (Z-3ba)



## (Z)-N-([1,1'-Biphenyl]-4-yl(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-3ca)


$-81.950$


${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO )


[^0]
## (Z)-Methyl 4-(Acetamido(2-methylbenzofuran-3(2H)-ylidene)methyl)benzoate ( $Z$-3da)



## (Z)-N-((4-(tert-Butyl)phenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-3ea)



## (Z)-N-((4-Fluorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-3fa)



$\stackrel{0}{\stackrel{0}{i}}$





## ( $Z$ )- $N$-((4-Chlorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-3ga)





## ( $Z$ )- $N$-((4-Bromophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide ( $Z$-3ha)





${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, d_{\sigma}\right.$-DMSO)

##  


40.147
39.938
39.729
39.520
39.313
39.103
38.894
-22.809
-18.825

${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, d_{6}$-DMSO)

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$


## (E)-N-((2-Methylbenzofuran-3(2H)-ylidene)(4-(trifluoromethyl)phenyl)methyl)acetamide (E-3ia)



${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{d}_{\sigma}$-DMSO)


$-80.188$


${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO)





## （Z）－N－（（3－Methoxyphenyl）（2－methylbenzofuran－3（2H）－ylidene）methyl）acetamide（Z－3la）



H NMR（ $400 \mathrm{MHz}, d_{f}$－DMSO）



| $\underset{S}{N} \overbrace{1}^{\infty}$ | 号必会为声 |
| :---: | :---: |
| To is |  |
| なくった | J |

${ }^{7} 68^{\text {I }} 18$－


${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$－DMSO $)$

## (Z)-N-((3-Fluorophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide ( $Z$-3ma)



${ }^{3} \mathrm{C}$ NMR ( $100 \mathrm{M} \mathrm{Hz}, \mathrm{d}_{6}$-DMSO)


${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, d_{6}\right.$-DMSO)



## (Z)-N-((3-Bromophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (Z-3oa)





3pa, $Z / E=1: 1$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO $)$

$$
\begin{array}{lllllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10
\end{array}
$$

## N -((2-Bromophenyl)(2-methylbenzofuran-3(2H)-ylidene)methyl)acetamide (3qa)






## N -((2-Methylbenzofuran-3(2H)-ylidene)(thiophen-2-yl)methyl)acetamide (3sa)





## (Z)-N-((5-Fluoro-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (Z-3wa)







[^1]
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, d_{6}\right.$-DMSO)


## (Z)-N-((5-Chloro-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide ( $Z$-3xa)




## (Z)-N-((5-Bromo-2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (Z-3ya)



${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO)





${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO $)$


## (Z)-N-((2-Methyl-5-(trifluoromethyl)benzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (Z-3za)

## 



(30

## (Z)-N-((2,6-Dimethylbenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (Z-3aaa)



## （ $Z$ ）－ N －（（6－Chloro－2－methylbenzofuran－3（2H）－ylidene）（phenyl）methyl）acetamide（Z－3aba）




${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{d}_{\sigma}$－DMSO）


s0でと8－


${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$－DMSO）





|  |
| :---: |
|  |
| $i$ |



${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO)

$\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$



(Z)-3-Methyl- $N$-((2-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)butanamide (Z-3ac)


$\left.\begin{array}{lllllllllllllllllllll} & 70 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO)


## (2-Methylbenzofuran-3-yl)(phenyl)methanone (4)

##  <br> 



4
$\stackrel{7}{9}$
$\stackrel{\rightharpoonup}{1}$


我
$N$
$\underset{1}{N}$
+






${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO)



[^0]:    $\begin{array}{lllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]:    $\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

