Supplementary Material

F-doped NiCo₂O₄@CoMoO₄ as an advanced electrode for aqueous Zn-ion batteries

Ze Cen^a, Fang Yang^{a*}, Jie Wan^a, Kaibing Xu^b

^a College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

^b Research Center for Analysis and Measurement, Donghua University, Shanghai,

201620, China

E-mail: yfang@sues.edu.cn

1. Experimental Section

1. 1 Material characterization

Scanning electron microscopy (SEM; Hitachi, S-4800), transmission electron microscopy (TEM; FEI, Talos F200S) including energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD, Rigaku, D/max-2550 PC), X-ray photoelectron spectroscopy (XPS; Thermo Fisher, Escalab 250Xi), Electron paramagnetic resonance (EPR; Bruker, A300-10/12).

1. 2. Electrochemical measurements

On the electrochemical workstation (PGSTAT302N, The Netherlands), the threeelectrode system was used to investigate the electrochemical performance of the obtained sample electrode. In 1 M KOH solution, the obtained sample, platinum (Pt), and saturated calomel electrode (SCE) were respectively used as working electrode, counter electrode, and reference electrode. The Zn-ion battery was constructed with a Zn plate (1 \times 1 cm²) and the mixed solution with 1 M KOH and 20 mM Zn(CH₃COO)₂.

2. Calculation

For the NiCo₂O₄@F-CoMoO₄//Zn battery, NiCo₂O₄@CoMoO₄//Zn battery and three-electrode system, we calculated the electrode's mass specific capacity (mA h g^{-1}) based on this equation:

$$C = \frac{I \bigtriangleup t}{3.6m}$$

Where, C is the specific capacity (mA h g⁻¹), I is the discharging current (A), m is the total mass of active materials (g) and Δt is discharge time (s).

The energy density (E) and power density (P) of the two electrodes in the $NiCo_2O_4@F-CoMoO_4//Zn$ battery, $NiCo_2O_4//Zn$ battery are calculated based on the following equations:

$$E = \frac{l}{3.6m} \int V dt$$
$$P = \frac{E}{\Delta t}$$

Where I is the discharging current (A), V is the discharging voltage (V), dt is the time differential, m is the total mass of the active electrode materials (g), and Δt is the discharging time (s).

3. Figures

Fig. S1. SEM images of NiCo₂O₄@CoMoO₄ nanosheets.

Fig. S2. Contact angles of NiCo₂O₄@CoMoO₄/Ni foam (upper image) and NiCo₂O₄@F-CoMoO₄/Ni foam (lower images).

Fig. S3. EPR spectra of NiCo₂O₄@CoMoO₄ and NiCo₂O₄@F-CoMoO₄ samples.

Fig. S4. (a) CV curves and (b) CD curves of NiCo₂O₄@CoMoO₄ electrode.

Fig. S5. Cycle performance of the $NiCo_2O_4$ ($OcoMoO_4$)/Zn battery.

Fig. S6. The Ragone plot of NiCo₂O₄@F-CoMoO₄//Zn battery.