Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Ru(II)-Catalyzed Synthesis of Poly-Substituted Furans via Intramolecular Oxidative Annulation Reaction of Ethyl 3-oxo-3-phenylpropanoates with Diaryl alkynes/ Heteroaryl alkynes

Mohit Chourasiya, Amrendra Kumar, Vikrant Nawal Vikram and Narender Tadigoppula

Medicinal and Process Chemistry Division, CSIR-Central Drug Research, Institute, Lucknow-226031, India

Table of Contents

1. General Information2
2. General Procedure for the Preparation of Alkynes2
3. General Procedure for the Preparation of Substituted Furan2
4. Spectral data of Internal Alkynes3-4
5. References4
6. Spectral data of the Obtained Compound5-14
7. Copies of NMR Spectra15-89
8. Control experiments90

1. General Information

All reagents and solvents were purchased from commercial sources and used as received. The progress of the reaction was monitored by analytical TLC on silica gel G/GF 254 plates. The column chromatography was performed with silica gel 100-200 mesh. ¹H and ¹³C NMR spectra were recorded on a 300 MHz or 400 MHz or 100MHz instrument respectively using TMS as an internal standard and chemical shifts are presented in δ ppm. Melting points are uncorrected were determined in capillary tubes on a hot stage melting point apparatus containing silicon oil. High resolution mass spectra were taken with a 3000 mass spectrometer and Q-TOF Analyzer. IR spectra were recorded using FTIR spectrophotometer.

2. General Procedure for the Preparation of Alkynes

 $[Pd(PPh_3)Cl_2]_2$ (2 mol%), CuI (4 mol%), Et₃N (2 equiv.) and iodobenzene (1.1 equiv.) were dissolved in 10.0 mL NEt₃ at room temperature. Subsequently, phenylacetylene (1.0 equiv.) was added to the resulting mixture by syringe, and the reaction was stirred under argon atmosphere for 10 h. After the solvent was removed and extracted with $CH_2Cl_2(4\times50 \text{ mL})$. The combined organic layer was washed with brine, dried over Na₂SO₄, concentrated under reduced pressure to give crude alkyne¹. The residue was purified by silica gel flash chromatography using petroleum ether to afford the desired product.

3. General Procedure for the Preparation of Substituted Furans

In an oven dried 50 ml R.B. flask charged with stir bar, Ethyl 3-(4-methoxyphenyl)-3-oxopropionate (1.0 equiv.), diarylalkyne (1.0 equiv.), $[RuCl_2(pcymene)]_2$ (5 mol%), $Cu(OAc)_2.H_2O$ (1.0 equiv.) and AgSbF₆ (20 mol%) in 2 ml DCE, resulting mixture was stirred at 120 °C with oil bath for 6 h. Completion of reaction was monitored by TLC (1:20 Ethyl acetate and Hexane). Reaction mixture was cooled down to room temperature and diluted with 10 mL of H₂O. The resultant mixture was extracted with DCM (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (100-200 mesh) by using hexane/ethyl acetate solvent system to give the desired product tetrasubstituted furan compounds.

4. Spectral data of Internal Alkynes

1,2-di-p-tolylethyne (2b)

Yield 88% (181 mg); White solid; (KBr) cm⁻¹: ¹H NMR (400 MHz, CDCl₃): δ7.40 (d, J = 8.0Hz, 4H), 7.12 (d, J = 7.8Hz, 4H), 2.34(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 132.4, 129.1, 120.4, 88.9, 21.5; mass ESI-MS(m/z) = 207.20 (M+H)⁺; HRMS (ESI) m/z $[M+H]^+$ calcd for $C_{16}H_{15}207.1174$ Found 207.1179

1,2-bis(4-methoxyphenyl)ethyne (2c)

Yield 89% (212 mg); White solid; (KBr) cm⁻¹: ¹H NMR (400 MHz, CDCl₃): δ7.46-MeO 7.44 (d, J = 8.8Hz, 4H), 6.88-6.86 (d, J = 8.8Hz, 4H), 3.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ159.4, 132.8, 115.7, 113.9, 87.9, 55.3; mass ESI-MS(m/z) = 239.10 (M+H)⁺; HRMS(ESI) m/z $[M+H]^+$ calcd for $C_{16}H_{15}$ 239.1072 Found 207.1179.

1,2-bis(4-fluorophenyl)ethyne (2d)

Yield 72% (154 mg); White solid; ¹H NMR (400 MHz, CDCl₃): δ7.51-7.48 (m, 4H), 7.06-7.02 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 162.8 (d, C-F, ¹JC-F = 253.0Hz), 134.4 (d, C-F, ³JC-F = 8.6Hz), 133.4, (d, C-F, ³JC-F = 8.7Hz) 119.2 (d, C-F, ⁴JC-F = 3.4 Hz), 115.5(d, C-F, ${}^{2}JC$ -F = 22.5 Hz), 88.0; ${}^{19}F$ NMR (376 MHz, CDCl3): δ 112.3 (s), 115.2 (s); mass ESI-MS(m/z) = 215.03 $(M+H)^+$; HRMS (ESI) m/z $[M+H]^+$ calcd for $C_{14}H_9F_2215.0720$ Found 215.0687.

1,2-bis(4-(tert-butyl)phenyl)ethyne (2e)

Yield 89% (258 mg); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.43 (m, 4H), 7.36-7.32 (m, 4H),1.31 (s, 9H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 151.3, 137.1, 132.2, 127.6, 125.5, 120.5, 88.9, 34.9, 34.8, 31.2; mass ESI-MS(m/z) = 291.2 (M+H)⁺; HRMS (ESI) m/z [M+H]⁺calcd for C₂₂H₂₇291.2113; Found 291.2108

1,2-bis(4-bromophenyl)ethyne (2f)

Yield 81% (270 mg); White solid;¹H NMR (400 MHz, CDCl₃): δ7.49- 7.47 (d, J = 8.5Hz, 4H), 7.38-7.36 (d, J = 8.58 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 132.4, 129.1, 120.4, 88.9, 21.5; mass ESI-MS(m/z) = 334.90 (M+H)⁺;

HRMS (ESI) m/z [M+H]⁺calcd for C₁₄H₉Br₂ 334.9071 Found 334.1179

1,2-di-m-tolylethyne (2g)

Yield 84% (173 mg); White solid; (KBr) cm⁻¹: ¹H NMR (400 MHz, CDCl₃): δ 7.39 (s, 2H), 7.38-7.36 (d, J = 8.1Hz, 2H), 7.28-7.25 (t, J = 7.5Hz, 2H), 7.18-7.16 (d, J = 7.5Hz, 2H); 13 C NMR (100 MHz, CDCl₃): δ 138.0, 132.2, 129.1, 128.6, 128.2, 123.2, 89.2, 21.2; mass ESI-MS(m/z) = 207.20 (M+H)⁺; HRMS (ESI) m/z

 $[M+H]^+$ calcd for $C_{16}H_{15}$ 207.1174 Found 207.1179.

1-fluoro-4-(p-tolylethynyl)benzene (2h)

Yield 79% (166 mg); white solid; mp 123-128°C; (KBr) cm⁻¹:¹H NMR (400 MHz, CDCl₃): δ 7.48-7.51 (m, 2H), 7.40-7.43 (d, J = 8.16Hz. 2H), 7.15-7.17 (d, J =7.98 Hz, 2H), 7.01-7.06 (t, J = 8.84 Hz, 2H), 2.37 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 162.40 (d, C-F ¹JC-F=248.9 Hz), 138.49, 133.40 (d, C-F ³JC-F=8.21 Hz), 131.45, 129.15, 120.01,

119.59 (d, C-F 4 JC-F=3.66 Hz), 115.59 (d, C-F 2 JC-F=22.14 Hz), 89.22, 87.64, 21.50 ; mass (ES+) m/z = 211.09.

1-chloro-4-((4-methoxyphenyl)ethynyl)benzene (2i)

Yield 83% (200 mg); white solid; mp 123-128 °C; (KBr) cm⁻¹.¹H NMR (400 MHz, CDCl₃): δ 7.44-7.46 (d, *J* = 8.86 Hz, 2H), 7.41-7.43 (d, *J* = 8.60Hz. 2H), 7.29-7.31 (d, J = 8.60 Hz, 2H), 7.25 (s), 6.86-6.88 (d, J = 8.81 Hz, 2H), 3.82 (s,

3H) ;¹³C NMR (100 MHz, CDCl₃): δ 159.80, 133.88, 133.08, 132.64, 128.64, 122.15, 115.04, 114.07, 90.37, 87.00, 55.32; mass (ES+) m/z = 243.05.

1,2-di(thiophen-3-yl)ethyne (2k)

Yield 78% (147 mg); White solid; (KBr) cm⁻¹: ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.56 (m, 2H), 7.35-7.33 (dd, J = 3.0 Hz, 2H), 7.25-7.24 (d, J=5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 129.7, 128.4, 125.3, 122.1, 84.0; mass ESI-MS(m/z) = 190.9

 $(M+H)^+$; HRMS (ESI) m/z [M+H] +calcd for $C_{10}H_6S_2190.9989$ Found 190.1179.

1. References

- 1. Doucet, H.; Hierso, J. C.; Angew. Chem., Int. Ed., 2007, 46, 834.
- 2. 2.Stuart, D.R.; Laperle, M. B.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc., 2008, 130, 16474.

4.Spectral data of the Obtained Compound

Ethyl 2,4,5-triphenylfuran-3-carboxylate (3aa)

Eluent: Hexane/EA = 95:05, R_f = 0.63; Yield 67% (246 mg); light yellow oil; (KBr) cm⁻¹: 816, 1082, 1222, 1340, 1451,1498, 1556, 1657, 1702, 2919, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, *J*= 8.5 Hz, *J* = 1.5 Hz, 2H), 7.38-7.34 (m, 5H), 7.33-7.29 (m, 5H), 7.19-7.13 (m,3H), 3.99 (q, *J* = 7.2 Hz, 2H), 0.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 154.8, 147.9, 139.3, 133.5, 130.3, 130.0, 1289., 128.4, 127.8, 127.7,164.2, 154.2, 148.2, 133.2, 130.1, 130.0, 129.8, 129.0, 128.8, 128.3,

128.2, 127.7, 127.6, 123.6, 60.5, 13.05; mass (ES+) m/z = 369.14 (M+H)⁺; HRMS (ESI-TOF) calcd for $C_{25}H_{21}O_3$ 369.1491 Found369.1480.

Ethyl 4,5-bis(4-methoxyphenyl)-2-phenylfuran-3-carboxylate (3ac)

Eluent: Hexane/EA = 80:20, $R_f = 0.61$; Yield 74% (316 mg); light yellow oil. (KBr) cm⁻¹: 769, 836, 1030, 1113, 1248, 1331, 1462, 1514, 1603, 1717, 2958 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.8 (d, J = 7.5 Hz, 2H), 7.46-7.37 (m, 5H), 7.28 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 4.11 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 3.78 (s, 3H), 1.0 (t, J = 1.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 159.2, 159.0, 153.6, 148.6, 135.3, 131.3, 130.0, 128.9, 128.3, 127.7, 125.5, 125.0,

123.0, 121.9, 116.9, 113.9, 60.6, 55.3, 55.3, 13.8; mass (ES+) m/z = 429.18 (M+H)⁺; HRMS (ESI-TOF) calcd for $C_{27}H_{25}O_5429.1697$ Found 429.1693.

Ethyl 4,5-bis(4-fluorophenyl)-2-phenylfuran-3-carboxylate (3ad)

Eluent: Hexane/EA = 80:20, $R_f = 0.51$; Yield 63% (254 mg); light yellow oil. (KBr) cm⁻¹: 747, 845, 1015, 1160, 1233, 1471, 1585, 1730, 3022 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.48 -7.88 (m, 2H), 7.48-7.33 (m, 7H), 7.11 (t, *J* = 8.8 Hz, 2H), 6.95 (t, *J* = 8.8 Hz, 2H), 4.11-4.06 (q, *J* = 7.1 Hz, 2H), 1.01-0.97 (t, *J* = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 162.6 (d, C-F ¹*J*C-F = 248.1 Hz), 162.4 (d, C-F ¹*J*C-F = 249.4 Hz), 154.8, 147.9, 131.9 (d, C-F ³*J*C-F = 8.1 Hz), 129.8, 129.4, 129.1 (d, C-F

 ${}^{4}JC-F = 3.3 \text{ Hz}$), 128.4, 128.0, 127.8 (d, C-F ${}^{3}JC-F = 8.1 \text{ Hz}$), 127.7, 126.3 (d, C-F ${}^{4}JC-F = 3.5 \text{ Hz}$), 122.4, 115.7 (d, C-F ${}^{2}JC-F = 21.8 \text{ Hz}$), 115.7 (d, C-F ${}^{2}JC-F = 21.8 \text{ Hz}$), 60.7, 13.7; mass (ES+) m/z = 405.13 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₅H₁₉F₂O₃ 405.1302 Found 405.1303.

Ethyl 4,5-diphenyl-2-(o-tolyl)furan-3-carboxylate (3ba)

Eluent: Hexane/EA = 95:05, $R_f = 0.53$; Yield 70% (267 mg); light yellow solid. mp 125-130 °C; (KBr) cm⁻¹: 698, 732, 1022, 1102, 1263, 1329, 1714, 2925 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.61 (d, J = 7.5 Hz, 1H), 7.47-7.51 (m, 6H), 7.28-7.45 (m, 7H), 4.03-4.08 (q, J = 7.1 Hz, 2H), 2.50 (s, 3H) 0.93-0.97 (t, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 156.7, 148.6, 137.8, 133.3, 130.8, 130.2, 130.1, 129.5, 128.3, 127.6, 127.6, 125.6, 125.2, 122.7, 117.6, 60.1, 20.3, 13.4; mass (ES+)

 $m/z = 383.16 (M+H)^+$; HRMS (ESI-TOF) calcd for $C_{26}H_{23}O_3 383.1647$ Found 383.1637.

Ethyl 2-(2-fluorophenyl)-4,5-diphenylfuran-3-carboxylate (3ca)

Eluent: Hexane/EA = 90:10, $R_f = 0.51$; Yield 61% (235 mg); light yellow solid. mp 130-135 °C; (KBr) cm⁻¹: 759, 843, 949,1088, 1175, 1227, 1332, 1446, 1598, 1721, 2960 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.72 (td, J = 7.4 Hz, J = 1.7 Hz, 1H), 7.43-7.38 (m, 7H), 7.29-7.14 (m, 6H), 4.09-4.03 (q, J = 7.1 Hz, 2H), 0.98-0.94 (t, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 159.7 (d, C-F ¹*J*C-F = 251.3 Hz), 149.3, 132.7, 131.0 (d, C-F ³*J*C-F = 8.2 Hz), 130.5, 130.2, 130.0, 128.3, 127.8,

127.7, 125.8, 123.9 (d, C-F ${}^{4}JC$ -F = 3.6 Hz), 123.2, 119.1, 118.5, 116.0, 115.9 (d,C-F ${}^{2}JC$ -F = 21.9), 60.4, 13.5,; mass (ES+) m/z = 387.13 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₅H₂₀FO₃ 387.1396 Found 387.1395.

Ethyl 4,5-diphenyl-2-(m-tolyl)furan-3-carboxylate (3da)

Eluent: Hexane/EA = 95:05, $R_f = 0.61$; Yield 69% (263 mg); light yellow solid; (KBr) cm⁻¹: 791, 827, 949, 1069, 1161, 1230, 1329, 1498, 1592, 1675, 1715, 2924 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.66 (d, J = 7.2, Hz, 2H), 7.28-7.38 (m, 8H), 7.13-7.19 (m, 4H), 3.98-4.03 (q, J = 7.1Hz, 2H), 2.36 (s, 3H), 0.87-0.91 (t, J = 7.2 Hz, 2H),; ¹³C NMR (100MHz, CDCl₃): δ 164.3, 154.4, 148.1, 137.8, 133.3, 130.1, 130.0, 129.9, 129.7, 128.4, 128.3, 128.3, 128.2, 127.7, 127.6, 125.8, 125.0, 123.7, 116.8, 60.5, 21.5,

13.5; mass (ES+) $m/z = 383.16 (M+H)^+$; HRMS (ESI-TOF) calcd for $C_{26}H_{23}O_3 383.1647$ Found 383.1643.

Ethyl 4,5-bis(4-methoxyphenyl)-2-(m-tolyl)furan-3-carboxylate (3dc)

Eluent: Hexane/EA = 90:10, $R_f = 0.42$; Yield 75% (331 mg); light orange oil. (KBr) cm⁻¹: 701, 1031, 1175, 1262, 1515, 1607, 1712, 3355 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$): δ 7.66-7.68 (m, 2H), 7.25-7.39 (m, 5H), 7.18-7.21 (m, 1H), 6.92-6.94 (d, J =8.7 Hz, 2H), 6.77-6.80 (d, J = 9.0, 2H), 4.07-4.12 (q, J = 7.1 Hz, 2H), 3.8 (s, 3H), 3.7 (s, 3H), 2.42 (s, 3H), 1.00-1.03 (t, J = 7.2 Hz, 2H), ; ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 159.1, 159.0, 150.7, 148.4, 137.8, 131.2, 130.2, 129.9, 129.6, 128.2, 128.1, 127.2, 125.5, 124.9, 123.1,

121.7, 116.8, 113.8, 60.5, 55.2, 21.5, 13.7; mass (ES+) m/z = 443.18 (M+H)+; HRMS (ESI-TOF) calcd for C₂₈H₂₇O₅443.1858 Found 443.1848.

Ethyl 4,5-bis(4-(tert-butyl)phenyl)-2-(m-tolyl)furan-3-carboxylate (3de)

Eluent: Hexane/EA = 95:05, $R_f = 0.56$; Yield 71% (350 mg); light yellow solid. mp 102-125 °C; (KBr) cm⁻¹: 737, 835, 1035, 1113, 1230, 1267, 1330, 1405, 1517, 1657, 1718, 2960 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.71-7.73 (d, J = 7.22 Hz, 2H), 7.74-7.44 (m, 4H), 7.27-7.36 (m, 5H), 7.21-7.23 (d, J=7.75 Hz, 1H), 4.04-4.09 (q, J=7.1 Hz, 2H),2.4 (s, 3H), 1.39 (s, 9H), 1.30 (s, 9H), 0.08-0.93 (t, J = 6.99 Hz, 2H),; ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 153.9, 150.6, 150.4, 148.1, 137.8, 130.3, 129.9,

129.7, 129.5, 128.2, 128.1, 127.5, 125.3, 125.3, 125.2, 124.8, 123.0, 117.1, 60.4, 34.6, 31.4, 31.2, 21.5, 13.4 mass (ES+) m/z = 495.28 (M+H)⁺; HRMS (ESI-TOF) calcd for C₃₄H₃₉O₃ 495.2899 Found 495.2891.

Ethyl 2-(4-bromophenyl)-4,5-bis(4-methoxyphenyl)furan-3-carboxylate (3dd)

Eluent: Hexane/EA = 90:10, $R_f = 0.51$; Yield 64% (267 mg); light yellow solid. (KBr) cm⁻¹: 705, 845, 950, 1021, 1130.3, 1232, 1335, 1448, 1600, 1721, 2995 cm⁻¹;¹H NMR (400 MHz, CDCl₃): 7.67-7.69 (d, J = 6.5 Hz, 2H), 7.31-7.39 (m, 5H), 7.22-7.24 (d, J= 7.5 Hz, 1H), 7.09-7.13 (t, J = 8.8 Hz, 2H), 6.93-6.97 (t, J = 8.8 Hz, 2H), 4.06-4.11 (q, J = 7.2 Hz), 2.43 (s, 3H), 1.55 (s, 3H), 0.99-1.02 (t, J = 7.16 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 162.4 (d, C-F ¹J C-F= 246.5 Hz), 162.2 (d, C-F ¹J C-F= 248.7 Hz), 154.8, 147.6, 137.9, 131.7 (d, C-F ³*J* C-F = 8.1 Hz), 130.1, 129.5, 129.0 (d, C-F ⁴*J* C-F

= 3.2 Hz), 128.4, 128.1, 127.6 (d, C-F ${}^{3}J$ C-F = 8.1 Hz), 126.2 (d, C-F ${}^{4}J$ C-F = 3.1 Hz), 125.1, 122.2, 116.6 (d, C-F ²J C-F = 21.7 Hz), 60.6, 21.5, 13.6; mass (ES+) m/z = 419.14 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₆H₂₁F₂O₃ 419.1459 Found 419.1450.

Ethyl 4,5-diphenyl-2-(p-tolyl)furan-3-carboxylate (3ea)

Eluent: Hexane/EA = 95:05, $R_f = 0.39$; Yield 69% (263 mg); light yellow oil. (KBr) cm⁻¹; (KBr) cm⁻¹: 819, 1085, 1232, 1365, 1460, 1504, 1604, 1715, 2923, cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.0 Hz, 2H), 7.43-7.35 (m, 7H), 7.27-7.21 (m, 6H), 4.05 (q, J = 7.2 Hz, 2H), 2.41 (s, 3H), 0.93 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): *δ* 164.4, 154.8, 147.9, 139.3, 133.5, 130.3, 130.0, 1289., 128.4, 127.8, 127.7,

127.6, 127.0, 125.8, 123.7, 116.5, 60.5, 21.5, 13.6; mass (ES+) m/z = 383.11 (M+H)⁺; HRMS(ESI-TOF) calcd for C₂₆H₂₃O₃383.1642 Found 383.1662.

Ethyl 2,4,5-tri-p-tolylfuran-3-carboxylate (3eb)

Eluent: Hexane/EA = 95:05, $R_f = 0.27$; Yield 72% (295 mg); light yellow oil. (KBr) cm⁻¹: 758, 818, 923, 1012, 1114, 1219, 1367, 1460, 1507, 1716, 2924 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 7.25-7.23 (m, 4H), 7.19 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 7.9 Hz, 2H), 4.08 (q, J = 7.2 Hz, 2H),2.40 (s, 6H), 2.29 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 154.2, 148.2, 139.0, 137.5, 137.0, 130.3, 129.9, 129.0, 128.9, 127.8, 127.7, 127.3, 125.8, 122.9, 116.5, 115.9, 60.5, 21.4, 21.3, 21.2, 13.7; mass(ES+) $m/z = 411.19 (M+H)^+$; HRMS (ESI-TOF) calcd for $C_{28}H_{27}O_3$

411.1955 Found 411.1970.

Ethyl 4,5-bis(4-methoxyphenyl)-2-(p-tolyl)furan-3-carboxylate (3ec)

Eluent: Hexane/EA = 80:20, $R_f = 0.46$; Yield 73% (322 mg); light red oil. (KBr) cm⁻ ¹: 634, 831, 951, 1031, 1111, 1178, 1247, 1330, 1461, 1507, 1716, 2926 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 9.0 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 7.6 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 6.78 (d, J = 9.0 Hz, 2H), 4.09 (q, J = 7.3 Hz, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 2.40 (s, 3H), 0.91

(t, *J* = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 159.0, 159.0, 153.9, 148.2, 138.9, 131.3, 128.9, 127.7, 127.4, 127.2, 125.7, 123.2, 121.8, 116.4, 113.9, 113.9, 60.5, 55.3, 55.3, 21.5, 13.8; mass (ES+) m/z = 443.19 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₈H₂₇O₅443.1853Found 443.1867.

Ethyl 2-(4-methoxyphenyl)-4,5-diphenylfuran-3-carboxylate (3fa)

Eluent: Hexane/EA = 90:10, $R_f = 0.43$; Yield 69% (274 mg); light green oil. (KBr) cm⁻¹: 759, 956, 1101, 1220, 1399, 1469, 1615, 2960, 3020, 3582 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.9 Hz, 2H), 7.45-7.39 (m, 7H), 7.26-7.22 (m, 3H), 7.01 (d, *J* = 8.9 Hz, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 3.89 (s, 3H), 0.95 (t, *J* = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 159.4, 159.2, 152.5, 148.9, 134.8, 131.3, 128.9,

128.6, 127.4, 125.4, 122.9, 121.9, 117.4, 113.9, 113.9, 60.7, 55.3, 13.7; mass (ES+) m/z = 399.15 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₆H₂₃O₄399.1591 Found 399.1598.

Ethyl 2-(4-fluorophenyl)-4,5-diphenylfuran-3-carboxylate (3ga)

Eluent: Hexane/EA = 90:10, $R_f = 0.62$; Yield 63% (243 mg); light yellow solid. mp 118-125 °C; (KBr) cm⁻¹: 841, 1025, 1117, 1218, 1329, 1445, 2925 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.97-7.93 (m, 2H), 7.42-7.34 (m, 7H), 7.25-7.21 (m, 3H), 7.15 (t, J = 7.1 Hz, 2H), 4.06 (q, J = 7.0 Hz, 2H), 0.92 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 163.1 (d, C-F ¹*J*C-F = 249.7 Hz), 153.7, 148.2, 133.3, 129.9 (d, C-F

³JC-F = 8.7 Hz), 128.4, 127.8, 127.6, 126.1 (d, C-F ⁴JC-F = 3.1 Hz), 125.7, 123.6, 116.7, 115.3 (d, C-F ²JC-F = 21.8 Hz), 60.5, 13.5; mass (ES+) $m/z = 386.13 (M+H)^+$; HRMS (ESI-TOF) calcd for C₂₅H₂₀FO₃ 387.1391 Found 387.1411.

Ethyl 2-(4-fluorophenyl)-4,5-bis(4-methoxyphenyl)furan-3-carboxylate (3gc)

Eluent: Hexane/EA = 90:10, $R_f = 0.29$; Yield 65% (289 mg); light yellow oil. (KBr) cm⁻¹: 733, 834, 950, 1029, 1081, 1113, 1230, 1331, 1462, 1500, 1712, 2935 cm⁻¹;¹H NMR (400 MHz, CDCl₃): *δ* 7.92-7.89 (m, 2H), 7.37-7.35 (m, 2H), 7.27-7.26 (m, 2H), 7.15-7.10 (m, 2H), 6.95-6.92 (m, 2H), 6.79-6.77 (m, 2H), 4.08 (q, J = 7.4 Hz, 2H), 3.85 (s, 3H), 3.77 (s, 3H), 1.00 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3,

163.0 (d, C-F ¹JC-F = 249.6 Hz), 159.2, 159.0, 152.9, 148.5, 131.2, 129.8 (d, C-F ³JC-F = 8.2 Hz), 127.2, 126.3 (d, C-F⁴JC-F = 3.3 Hz), 125.4, 122.9, 121.7, 116.7, 115.3 (d, C-F²JC-F = 21.6 Hz), 113.8, 60.5, 55.2, 55.2, 13.6; mass (ES+) m/z = 447.02 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₇H₂₄FO₅ 447.1602 Found 447.1620.

Ethyl 4,5-bis(4-bromophenyl)-2-(4-fluorophenyl)furan-3-carboxylate (3gf)

Eluent: Hexane/EA = 90:10, $R_f = 0.62$; Yield 59% (319 mg); light yellow oil. (KBr) cm⁻¹: 791, 827, 1009, 1115, 1230, 1329, 1498, 1592, 1675, 1715, 2924 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.93 -7.90 (m, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.7Hz, 2H), 7.24-7.21 (m, 4H), 7.14 (t, J = 7.1 Hz, 2H), 4.07 (q, J = 7.1 Hz, 2H), 0.99 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 163.3 (d, C-F ¹JC-F = 250.4 Hz), 154.5, 147.5, 132.0, 131.7, 131.6, 130.1 (d, C-F ³JC-F = 8.4 Hz), 128.5, 127.2, 125.7 (d, C-F ⁴JC-F = 3.3

Hz), 122.9, 122.1 (d, C-F ${}^{3}JC$ -F = 8.5 Hz), 116.4, 115.4 (d, C-F ${}^{2}JC$ -F = 21.9 Hz), 60.8, 13.7; mass (ES+) m/z = 542.17 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₅H₁₈Br₂FO₃ 542.9601 Found 542.9615.

Ethyl 2-(4-chlorophenyl)-4,5-diphenylfuran-3-carboxylate (3ha)

Eluent: Hexane/EA = 90:10, $R_f = 0.51$; Yield 59% (237 mg); light green oil. (KBr) cm⁻¹: 836, 1021, 1217, 1485, 1602, 1714, 2926 cm^{-1,1}H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.0 Hz, 2H), 7.44-7.34 (m, 7H), 7.36-7.34 (m, 2H), 7.24-7.23 (m, 3H), 4.05 (q, J = 6.8 Hz, 2H), 0.93 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 153.2, 148.6, 135.0, 133.2, 129.9, 129.9, 129.0, 128.6, 128.5, 128.4, 127.9,

127.9, 125.9, 123.9, 117.4, 60.7, 13.6; mass (ES+) m/z = 403.07 (M+H)+; HRMS (ESI-TOF) calcd for C₂₅H₂₀ClO₃403.1095 Found 403.1093.

Ethyl 2-(4-chlorophenyl)-4,5-bis(4-methoxyphenyl)furan-3-carboxylate (3hc)

Eluent: Hexane/EA = 90:10, $R_f = 0.23$; Yield 68% (314 mg); light green oil; (KBr) cm⁻¹: 759, 835, 951, 1030, 1114, 1247, 1329, 1500, 1603, 1713, 2847 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 7.85 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 7.36 (d, J =8.9 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 4.09 (q, J = 7.3 Hz, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 0.95 (t, J = 0.9 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃): δ 164.3, 152.9, 148.7, 138.0, 137.9, 134.9, 133.0, 130.6, 129.9, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 127.4, 126.4, 123.9, 123.0, 117.4, 60.7, 13.6;mass (ES+) m/z = 463.21 (M+H)+; HRMS (ESI-TOF) calcd for C₂₇H₂₄ClO₅463.1307 Found 463.1308.

Ethyl 2-(4-chlorophenyl)-4,5-bis(4-fluorophenyl)furan-3-carboxylate (3hd)

Eluent: Hexane/EA = 90:10, $R_f = 0.61$; Yield 53% (232 mg); light green oil; (KBr) cm⁻¹: 760, 836, 952, 1018, 1160, 1228, 1330, 1369, 1501, 1598, 1715, 2927 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.44-7.42 (m, 2H), 7.38-7.29 (m, 4H), 7.21 (t, J = 7.1 Hz, 2H), 6.95 (t, J = 6.9 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 1.00 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 162.5 (d, C-F ¹*J*C-F = 246.6 Hz),

162.3 (d, C-F ¹JC-F = 248.5 Hz), 153.5, 148.0, 135.2, 131.7 (d, C-F ³JC-F = 8.1 Hz), 129.1, 128.9 (d, C-F ⁴JC-F = 3.6 Hz), 128.5, 128.4, 127.7 (d, C-F³JC-F = 8.1 Hz), 126.0 (d, C-F⁴JC-F = 3.3 Hz), 122.3, 117.0, 115.6 (d, C-F²JC-F = 21.8 Hz), 115.5 (d, C-F²JC-F = 21.6 Hz), 60.8, 13.7; mass (ES+) m/z = 439.19 (M+H)⁺; HRMS(ESI-TOF) calcd for C₂₅H₁₈ClF₂O₃ 439.0907 Found 439.0901.

Ethyl 2-(4-bromophenyl)-4,5-bis(4-methoxyphenyl)furan-3-carboxylate (3ic)

Eluent: Hexane/EA = 80:20, $R_f = 0.46$; Yield 58% (293 mg); light green oil; (KBr) cm⁻¹: 760, 835, 1031, 1217, 1411, 1507, 1604, 1714, 2926 759, 956, 1101, 1220, 1399, 1469, 1615, 2960, 3020, 3582 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.7Hz, 2H), 7.56 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.9 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.9 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 1.00 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4,

159.4, 159.2, 152.5, 148.9, 131.5, 131.3, 129.2, 128.9, 127.4, 125.4, 123.2, 122.9, 121.9, 117.5, 113.9, 113.9,

60.7, 55.3, 55.2, 13.8; mass (ES+) m/z = 507.20 (M+H)⁺; HRMS(ESI-TOF) calcd for C₂₇H₂₄BrO₅507.0802 Found 507.0810.

Ethyl 2-(3,4-dimethoxyphenyl)-4,5-diphenylfuran-3-carboxylate (3ja)

Eluent: Hexane/EA = 80:20, $R_f = 0.53$; Yield 71% (303 mg); colurless oil; (KBr) cm⁻¹: 758, 1026, 1172, 1227, 1326, 1461, 1507, 1602, 1712, 2927 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.0 Hz, 1H), 7.57 (dd, J = 2.1, 2.1 Hz, 1H), 7.43-7.34 (m, 8H), 7.24-7.20 (m, 3H), 6.95 (d, 8.4 Hz, 1H), 4.05 (q, J = 7.0 Hz, 2H), 3.97 (s, 3H), 3.94 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 154.6, 149.9, 148.7, 147.7, 133.6, 130.2, 129.9, 128.4, 127.7, 127.6, 125.8, 123.8,

122.8, 121.1, 116.1, 11.2, 110.9, 60.5, 55.9, 13.6; mass (ES+) $m/z = 429.17 (M+H)^+$; HRMS (ESI-TOF) calcd for $C_{27}H_{25}O_5429.1702$ Found 429.1737.

Ethyl 2-(3,4-dimethoxyphenyl)-4,5-di-p-tolylfuran-3-carboxylate (3jb)

Eluent: Hexane/EA = 80:20, $R_f = 0.48$; Yield 74% (337 mg); light green oil; (KBr) cm⁻¹: 758, 817, 1025, 1148, 1219, 1265, 1460, 1511, 1716, 2927 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 1.9 Hz, 1H), 7.53 (dd, J = 2.1, 1.9 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.23-7.18 (m, 4H), 7.05 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.5 Hz, 1H), 4.06 (q, J = 6.9 Hz, 2H), 3.96 (s, 3H), 3.94 (s, 3H), 2.40 (s, 3H), 2.29 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 154.0, 149.9, 148.7, 147.9,

137.5, 137.0, 130.5, 129.9, 127.6, 125.8, 123.0, 122.9, 120.9, 116.2, 111.1, 110.9, 60.5, 56.0, 55.9, 21.4, 21.3, 13.7; mass (ES+) m/z = 457.23 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₉H₂₉O₅457.2020Found 457.2031.

Ethyl 2-(3,4-dimethoxyphenyl)-4,5-bis(4-methoxyphenyl)furan-3-carboxylate (3jc)

Eluent: Hexane/EA = 80:20, $R_f = 0.48$; Yield 75% (366 mg); light green oil; (KBr) cm⁻¹: 768, 848, 1050, 1175, 1230, 1475, 1560, 1765, 2930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 1.9 Hz, 1H), 7.52 (dd, J = 2.0, 2.0 Hz, 1H), 7.36 (d, J = 9.1 Hz, 2H), 7.27-7.25 (m, 2H), 6.94 (dd, J = 2.4, 2.6 Hz, 3H), 6.79 (d, J = 9.1 Hz, 2H), 4.07 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 3.94 (s, 3H), 3.86 (s, 3H), 3.78 (s, 3H), 1.00 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 155.5, 150.3, 148.7, 146.9,

132.4, 131.7, 128.8, 127.2, 123.0, 122.3, 121.9, 115.8, 111.4, 110.9, 60.7, 56.0, 55.9, 55.3, 55.3, 13.9; mass (ES+) m/z =489.14 (M+H)⁺; HRMS (ESI-TOF) calcd for $C_{29}H_{29}O_7$ 489.1908 Found 489.1906.

Ethyl 2-(3,4-dimethoxyphenyl)-4,5-bis(4-fluorophenyl)furan-3-carboxylate (3jd)

Eluent: Hexane/EA = 80:20, $R_f = 0.39$; Yield 69% (320 mg); light green oil; (KBr) cm⁻¹: 812, 1023, 1113, 1263, 1327, 1462, 1509, 1713, 2925, cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 2.0 Hz, 1H), 7.53 (dd, J = 2.0, 2.0 Hz, 1H), 7.38-7.30 (m, 4H), 7.12 (t, J = 7.1 Hz, 2H), 6.97-6.93 (m, 3H), 4.05 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 3.95 (s, 3H), 0.93 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 162.4 (d, C-F ¹JC-F = 246.0 Hz), 162.2 (d, C-F ¹JC-F = 248.6 Hz), 154.9, 150.1,

148.6, 147.1, 131.7 (d, C-F ${}^{3}JC$ -F = 8.0 Hz), 129.3 (d, C-F ${}^{4}JC$ -F = 3.8 Hz), 127.5 (d, C-F ${}^{3}JC$ -F = 8.0 Hz), 126.2 (d, C-F ${}^{4}JC$ -F = 3.0 Hz), 122.4, 122.2, 121.2, 115.8, 115.5 (d, C-F ${}^{2}JC$ -F = 21.7 Hz), 115.5(d, C-F ${}^{2}JC$ -F = 21.4 Hz), 115.5, 115.5, 112.3, 110.9, 60.6, 56.1, 55.9, 13.7; mass (ES+) m/z = 465.06 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₇H₂₃F₂O₅ 465.1505 Found 465.1501.

Ethyl 4,5-bis(4-bromophenyl)-2-(3,4-dimethoxyphenyl)furan-3-carboxylate (3jf)

Eluent: Hexane/EA = 80:20, $R_f = 0.47$; Yield 71% (413 mg); light green oil; (KBr) cm⁻¹: 735, 827, 1011, 1113, 1227, 1460, 1507, 1713, 2957 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.51 (m, 4H), 7.39 (d, J = 8.8 Hz, 2H), 7.25-7.21 (m, 4H), 6.95 (d, J = 8.3 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 3.94 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 155.5, 150.3, 148.7, 146.9, 132.4,

131.7, 128.8, 127.3, 123.0, 122.3, 121.9, 115.8, 111.4, 110.9, 60.7, 56.0, 55.9, 13.9; mass (ES+) m/z = 584.19 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₇H₂₃Br₂O₅584.9907 Found 584.9932.

Ethyl 4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3ka)

Eluent: Hexane/EA = 80:20, $R_f = 0.47$; Yield 73% (334 mg); light yellow oil; (KBr) cm⁻¹: 767, 948, 1003, 1178, 1234, 1335, 1415, 1501, 1677, 1717, 2930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.43 -7.34 (m, 8H), 7.27-7.23 (4H), 4.07 (q, J = 7.1 Hz, 2H), 3.95 (s, 6H), 3.91 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 153.9, 153.0, 147.9, 139.3, 139.2, 133.4, 130.0, 129.9, 128.5, 127.7, 127.6, 125.8, 125.2, 123.8, 116.9, 114.0, 105.4, 60.9, 60.6, 56.3, 13.6; mass (ES+) m/z = 459.13 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₈H₂₇O₆459.1802 Found 459.1807.

Ethyl 4,5-di-p-tolyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3kb)

Eluent: Hexane/EA = 80:20, $R_f = 0.41$; Yield 81% (393 mg); light yellow oil; (KBr) cm⁻¹: 791, 827, 949, 1069, 1161, 1230, 1329, 1498, 1592, 1715, 2924 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 8.4 Hz, 2H), 7.25-18 (m, 6H), 7.05 (d, J = 8.1 Hz, 2H), 4.06 (q, J = 7.6 Hz, 2H), 3.97 (s, 6H), 3.91 (s, 3H), 2.40 (s, 3H), 2.30 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 153.9, 153.0, 147.9, 139.3, 139.2, 133.4, 130.0, 129.9, 128.5, 127.7, 127.6, 125.8, 125.2, 123.8, 116.9,

114.0, 105.4, 60.9, 60.6, 56.3, 13.6; mass (ES+) m/z = 487.21 (M+H)⁺; HRMS (ESI-TOF) calcd for $C_{28}H_{27}O_6$ 487.2121 Found 487.2109.

Ethyl 4,5-bis(4-fluorophenyl)-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3kd)

Eluent: Hexane/EA = 80:20, $R_f = 0.31$; Yield 69% (340 mg); light yellow oil; (KBr) cm⁻¹: 746, 838, 1001, 1126, 1214, 1461, 1585, 1711, 3020 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38 -7.29 (m, 4H), 7.23 (s, 2H), 7.10 (t, *J* = 7.1 Hz, 2H), 6.95 (t, *J* = 6.9 Hz, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 6H), 3.91 (s, 3H), 0.98 (t, *J* = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 162.6 (d, C-F ¹*J*C-F = 246.5 Hz), 162.4 (d, C-F¹JC-F = 249.0 Hz), 154.5, 153.2, 147.5, 139.5, 131.8 (d, C-F³JC-F = 8.0 Hz), 129.2

(d, C-F⁴JC-F = 3.8 Hz), 127.8 (d, C-F³JC-F = 8.1 Hz), 126.2 (d, C-F⁴JC-F = 2.8 Hz), 125.1, 122.4, 116.8, 115.7 $(d, C-F^2JC-F = 21.8 \text{ Hz}), 115.7 (d, C-F^2JC-F = 21.6 \text{ Hz}), 105.7, 61.1, 60.8, 56.4, 13.8; mass (ES+) m/z = 495.16$ (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₈H₂₅F₂O₆ 495.1619Found 495.1621.

1-(2-phenyl-4,5-di-m-tolylfuran-3-yl)propan-1-one (3ag)

Eluent: Hexane/EA = 95:05, $R_f = 0.39$; Yield 70% (277 mg); light yellow oil; (KBr) cm⁻¹: 759, 832, 1033, 1118, 1217, 1331, 1461, 1605, 1710, 2926 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): *δ* 7.93-7.91 (m, 2H), 7.47-7.43 (m, 2H), 7.41-7.39 (m, 1H), 7.33 (s, 1H), 7.30-7.26 (m, 1H), 7.18-7.14 (m, 3H), 7.10 (t, *J* = 7.1 Hz, 1H), 7.03 (d, *J* = 7.3 Hz, 1H), 4.07 (q, J = 6.1 Hz, 2H), 2.36 (s, 6H), 2.27 (s, 3H), 0.91 (t, J = 0.9 Hz, 3H); ^{13}C NMR (100 MHz, CDCl₃): δ 164.5, 153.9, 148.4, 137.9, 137.9, 133.2, 130.6,

130.2, 129.9, 129.0, 128.5, 128.3, 127.8, 127.1, 126.4, 123.7, 122.9,117.0, 60.6, 21.6, 21.4, 13.6; mass (ES+) m/z $= 397.18 (M+H)^+$; HRMS (ESI-TOF) calcd for C₂₇H₂₅O₂ 397.1804 Found 397.1807.

Ethyl 2-(4-fluorophenyl)-4,5-di-m-tolylfuran-3-carboxylate (3gg)

Eluent: Hexane/EA = 90:10, $R_f = 0.53$; Yield 63% (260 mg); light yellow oil; (KBr) cm⁻¹: 789, 840, 1031, 1114, 1234, 1330, 1500, 1604, 2925 cm⁻¹;¹H NMR (400 MHz, CDCl₃): *δ* 7.96-7.92 (m, 2H), 7.31-7.25 (m, 2H), 7.19-7.08 (m, 7H), 7.03 (d, *J* = 7.1 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 2.27 (s, 3H), 0.91 (t, *J* = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 163.3 (d, C-F¹JC-F = 249.4 Hz), 153.4, 148.3,

137.9, 137.8, 133.1, 130.5, 129.9, 129.8 (d, C-F ³JC-F = 8.5 Hz), 128.5, 128.3, 128.2, 127.0, 126.3, 126.2 (d, C-

 $F^{4}JC-F = 3.5 Hz$), 123.7, 122.9,116.7, 115.3 (d, C- $F^{2}JC-F = 21.8 Hz$), 60.5, 21.4, 21.3, 13.5; mass (ES+) m/z = 415.19 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₇H₂₄FO₃ 415.1704 Found 415.1710.

Ethyl 2-(4-chlorophenyl)-4,5-di-m-tolylfuran-3-carboxylate (3hg)

Eluent: Hexane/EA = 90:10, $R_f = 0.41$; Yield 59% (253 mg); light green oil; (KBr) cm⁻¹: 759, 835, 1025, 1217, 1329, 1485, 1603, 1712, 2926 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.31-7.26 (m, 2H), 7.19-7.08 (m, 5H), 7.02 (d, J = 7.3 Hz, 1H), 4.07 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 2.27 (s, 3H), 0.95 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 152.9, 148.7,

138.0, 137.9, 134.9, 133.0, 130.6, 129.9, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 127.4, 126.4, 123.9, 123.0, 117.4, 60.7, 21.5, 21.4, 13.6; mass (ES+) m/z = 431.21 (M+H)⁺; HRMS (ESI-TOF) calcd for $C_{27}H_{24}ClO_3$ 431.1408 Found 431.1407.

Ethyl 2,5-bis(4-fluorophenyl)-4-(p-tolyl)furan-3-carboxylate (3gh)

Eluent: Hexane/EA = 90:10, R_f = 0.54; Yield 62% (65:35, 259 mg); light yellow oil; (KBr) cm⁻¹: 745, 835, 956, 1035, 1138, 1216, 1336, 1482, 1670, 1730, 2927, 3018, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.95 -7.89 (m, 2H), 7.41-7.38 (m, 1H), 7.16-7.05 (m, 4H), 6.96-6.91 (t, *J* = 8.5 Hz, 1H), 4.09-4.04 (q, *J* = 7.1 Hz, 2H),

2.41 (s, 2H), 3.91 (s, 3H), 0.98 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 164.0, 163.2 (d, C-F ¹JC-F = 250.0 Hz), 163.1 (d, C-F, ¹JC-F = 250.0 Hz), 162.4 (d, C-F ¹JC-F = 247.3 Hz), 162.2 (d, C-F ¹JC-F = 247.3 Hz), 153.7, 153.4, 148.8, 147.5, 138.0, 137.4, 131.8 (d, C-F ³JC-F = 8.1 Hz), 130.0 (d, C-F ³JC-F = 8.1 Hz), 129.9 (d, C-F ³JC-F = 8.1 Hz), 129.7 (d, C-F ⁴JC-F = 3.4 Hz), 129.2, 129.1, 128.9, 127.6 (d, C-F ³JC-F = 7.7 Hz), 127.0, 126.3 (d, C-F ⁴JC-F = 3.4 Hz), 126.1 (d, C-F ⁴JC-F = 3.4 Hz), 125.7, 123.3, 121.8, 116.8, 116.4, 115.9, 115.4 (d, C-F ²JC-F = 21.8 Hz), 115.3 (d, C-F ²JC-F = 21.8 Hz), 115.3 (d, C-F ²JC-F = 21.8 Hz), 60.6, 60.5, 21.3, 21.2, 13.6, 13.5; mass (ES+) m/z = 419.14 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₆H₂₁F₂O₃ 419.1459 Found 419.1448.

Ethyl 4-(4-fluorophenyl)-5-(p-tolyl)-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3kh)

Eluent: Hexane/EA = 80:20, $R_f = 0.37$; Yield 79% (60:40, 387 mg); light yellow oil; (KBr) cm⁻¹: 766, 838, 959, 1006, 1125, 1229, 1348, 1417, 1663, 1726, 2848, 2936, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.45-7.41 (m, 1H), 7.36-7.32 (m, 1H), 7.32-7.30 (d, *J* = 8.3Hz), 7.28 (s, 0.3H), 7.27 (s, 1H), 7.24 (s, 1H), 7.24 (s, 2H), 7.14-7.09 (m, 2H), 6.99-6.95 (t, *J* = 8.5Hz, 1H), 4.08 (q, *J*

= 7.1 Hz, 2H), 3.96 (s, 6H), 3.94 (s, 3H), 2.44, (s, 2H), 2.34 (s, 1H), 0.97 (t, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 164.3, 162.8 (d, C-F ¹JC-F = 246.3 Hz), 162.1 (d, C-F ¹JC-F = 248.6 Hz), 154.0, 153.7, 153.0, 153.0, 148.5, 147.1, 139.1, 137.9, 137.4, 131.7 (d, C-F ³JC-F = 8.4 Hz), 129.9, 129.7, 129.4 (d, C-F ⁴JC-F = 3.6 Hz), 129.2, 129.1, 127.6 (d, ³JC-F = 7.9 Hz), 127.0, 126.4 (d, C-F ⁴JC-F = 3.3 Hz), 125.8, 125.1, 123.4, 121.9, 116.9, 116.4, 115.4 (d, C-F ²JC-F = 21.8 Hz), 105.4 (d, C-F ²JC-F = 21.3 Hz), 105.3, 60.9, 60.6, 60.6, 56.2, 21.3, 21.2, 13.6, 13.6 ; mass (ES+) m/z = 491.18 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₉H₂₈F₂O₆ 491.1870 Found 491.1875.

Ethyl 5-(4-chlorophenyl)-4-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3ki)

Eluent: Hexane/EA = 80:20, R_f = 0.47; Yield 73% (63:37, 381 mg); light yellow oil; (KBr) cm⁻¹: 747, 850, 962, 1062, 1129, 1214, 1333, 1465, 1664, 1728, 2925, 3020, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.14 (m, 9H), 6.89-6.86 (d, *J* = 8.8Hz, 1H), 6.75-6.73 (d, *J* = 8.8Hz, 1H), 4.02-3.96 (q, *J* = 7.1 Hz, 2H), 3.86 (s,

6H), 3.84 (s, 3H), 3.79 (s, 2.2H), 3.71 (s, 1.1H), 0.92-0.88 (t, J = 7.0Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 159.4, 159.3, 154.0, 153.0, 153.0, 148.4, 147.0, 139.2, 133.4, 132.1, 131.5, 130.9, 129.3, 129.1, 128.6, 127.4, 126.9, 125.1, 125.0, 125.0, 123.8, 122.4, 117.1, 114.0, 105.4, 105.3, 60.9, 60.6, 56.2, 56.2, 55.2, 13.7, 13.6; mass (ES+) m/z = 523.15 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₉H₂₈ClO₇523.1524 Found 523.1526.

ethyl 4-methyl-2,5-diphenylfuran-3-carboxylate (3aj)

Eluent: Hexane/EA = 95:05, $R_f = 0.63$; Yield 47% (86:14, 143 mg); light yellow oil; (KBr) cm⁻¹: 759, 843, 949,1088, 1175, 1227, 1332, 1446, 1598, 1721, 2960 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (dd, J = 8.2 Hz, J = 1.6 Hz, 2H),7.67 (d, J = 8.4 Hz, 2H), 7.46-7.36(m, 5H), 7.35-7.31 (m, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.44 (s, 3H), 1.31 (t, J = 7.1

Hz, 2H), ; ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 156.0, 135.8, 130.7, 128.9, 128.5, 128.3, 128.0, 127.5, 126.6, 118.1, 116.3, 60.5, 14.1, 11.0; mass (ES+) m/z = 307.13 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₀H₁₉O₃ 307.1334 Found 307.1334.

ethyl 4-methyl-5-phenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3kj)

Eluent: Hexane/EA = 80:20, $R_f = 0.56$; Yield 54% (90:10, 213 mg); green oil; (KBr) cm⁻¹: 758, 845, 943,1085, 1180, 1230, 1350, 1446, 1632, 1721, 2960 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 7.1 Hz, 2H), 7.46 (t, J = 7.5 Hz, 3H), 7.41-7.28 (m, 3H), 7.20 (s, 0.4H),

7.16 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.92 (s, 6H), 3.91 (s, 3H), 1.35 (t, J = 7.1 Hz, 2H), ; ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 155.2, 153.8, 150.8, 149.7, 140.0, 130.4, 127.5, 127.1, 118.0, 114.6, 106.2, 60.9, 60.5, 56.2, 14.2, 11.1; mass (ES+) m/z = 397.16 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₀H₁₉O₃ 397.1651 Found 397.1653.

Ethyl 4,5-di(thiophen-3-yl)-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (3kk)

Eluent: Hexane/EA = 90:10, $R_f = 0.51$; Yield 56% (263 mg); light green oil; mp 182-185 °C; (KBr) cm⁻¹: 734, 1054, 1125, 1262.3, 1416, 1462, 1501, 1732, 2853, 2923, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.42 (dd, J = 3.0, J = 2.9 Hz, 1H), 7.30-7.31 (dd, J = 1.2 Hz, J = 1.3 Hz, 1H), 7.27-7.28 (dd, J = 1.2 Hz, J = 1.1 Hz, 1H), 7.23-7.24 (m, 3H), 7.10-7.11 (dd, J = 1.3 Hz, J = 1.1 Hz, 1H), 7.04-7.05 (dd, J = 1.2 Hz, J = 1.3 Hz, 1H), 4.07-4.12 (q, J = 7.1 Hz, 2H), 3.93 (s, 6H), 3.91 (s, 3H), 0.99-1.03 (t, J = 7.2

Hz,); 13 C NMR (100 MHz, CDCl₃): δ 164.2, 153.7, 153.0, 146.2, 139.1, 132.6, 131.0, 130.2, 129.4, 125.7, 125.3, 125.2, 125.1, 124.3, 121.3, 117.4, 116.4, 105.4, 60.9, 60.6, 56.2, 13.6,; mass (ES+) m/z = 471.09 (M+H)⁺; HRMS (ESI-TOF) calcd for C₂₄H₂₃O₆S₂471.0936 Found 471.0929.

ethyl 2-methyl-4,5-diphenylfuran-3-carboxylate (3la)

Eluent: Hexane/EA = 95:05, $R_f = 0.62$; Yield 58% (177 mg); light yellow solid; mp 130-135 °C; (KBr) cm⁻¹: 759, 843, 949,1088, 1175, 1227, 1332, 1446, 1598, 1721, 2960 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.19 (m, 7H), 7.08-7.04 (m, 2H), 3.98 (q, *J* = 7.1 Hz, 2H), 2.58 (s, 3H), 0.92 (t, *J* = 7.01 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 158.2, 147.4, 133.8, 130.3, 130.2, 128.3, 128.1, 127.3, 125.4, 122.3, 115.7, 59.8, 14.2,

13.8; mass (ES+) $m/z = 307.13 (M+H)^+$; HRMS (ESI-TOF) calcd for $C_{20}H_{19}O_3 307.1334$ Found 307.1332.

methyl 2-(3-chlorophenyl)-4,5-diphenylfuran-3-carboxylate (3ma)

Yield 53% (205 mg); light yellow oil; (KBr) cm⁻¹: 696, 750, 832, 1015, 1119, 1259, 1334, 1487, 1602, 1720, 2851, 2922 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.7 Hz, 2H), 7.44-7.38 (m, 7H), 7.36-7.34 (m, 2H), 7.25-7.23 (m, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 135.1, 132.8, 129.9, 129.0, 128.6, 128.4, 128.3, 127.9, 127.7, 125.9, 57.5.

4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylic acid (4)

Potassium hydroxide (0.152 g, 2.71 mmol) was added to a stirred solution of the Ethyl 4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (**3ka**) (0.500 g, 1.08 mmol) in ethanol (10.0 mL) and water (5.0 mL) under N₂. The reaction was heated to reflux for 7 h and monitored via TLC. On completion, the reaction mixture was cooled to room temperature and then concentrated in vacuum. The remaining solid was dissolved in

water, and the solution was acidified with 1N HCl until a precipitate formed. The solid was filtered and dried to afford 0.427 g (92%) of the desired product. 4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylic acid, yield 0.427 g (92%); Colourless oil; (KBr) cm⁻¹: 663, 748, 823, 998, 1024, 1216, 1354, 1650, 1721, 2129, 2257, 2995 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.47 – 7.27 (m, 10H), 7.24 (s, 1H), 3.84 (s, 6H), 3.74(s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 165.8, 160.5, 153.3, 147.7, 138.8, 137.0, 133.0, 130.1, 130.0, 129.0, 128.5, 128.2, 126.0, 125.2, 123.8, 105.2, 60.6, 56.4; mass (ES+) m/z = 431.14 (M+H)⁺; ESMS (ESI-TOF) calcd for C₂₈H₂₇O₆ 431.1 Found 431.4.

N-benzyl-4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxamide (5)

To a stirred solution of benzylamine (0.074 g, 0.691 mmol, 1.0 equiv.) in DCM (5 mL) was added 4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylic acid (4) (0.200 g, 0.581 mmol, 1.0 equiv.), EDC (0.111 g, 0.581 mmol, 1.0 eq), HOBt (0.078 g, 0.577 mmol, 1 equiv.) and 4-DMAP (0.035 g, 0.286 mmol, 0.4 equiv) at rt for 8 h. The reaction was monitored via TLC (eluent phase = Hexane/EA = 70:30, $R_f = 0.41$). After completion of the reaction, its solvent was evaporated by rotary and concentrated under

reduced pressure. Then, the reaction mixture was diluted with EtOAc, quenched with saturated NaHCO₃ solution, extracted with EtOAc (2x100 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude compound was purified by column chromatography over silica gel (20% EA/hexanes) to afford the desired product, Yield 0.274 g (91% mg); light green oil; (KBr) cm⁻¹: 696.6, 742.8, 872.1, 999.3, 1027.6, 1124.0, 1214.7, 1383.6, 1449.4, 1558.0, 1645.3, 2929.2 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (dd, *J* = 1.8 Hz, *J* = 8.2 Hz, 2H), 7.39 (s, 5H), 7.34-7.24 (m, 5H), 7.19-7.16 (m, 3H), 6.90-6.88 (m, 2H), 5.6 (t, *J* = 5.2 Hz, N-H), 4.36 (d, *J* = 5.6 Hz, 2H), 3.9 (s, 3H), 3.8 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 153.3, 147.7, 138.7, 137.4, 132.3, 130.0, 129.8, 129.1, 128.5, 128.4, 128.2, 127.8, 127.5, 127.3, 125.9, 125.2, 122.5, 120.2, 104.1, 60.9, 56.2, 43.8; mass (ES+) m/z = 520.2 (M+H)⁺; ESMS (ESI-TOF) calcd for C₂₈H₂₇O₆ 520.2 Found 521.5.

(4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-yl)methanol (6)

To a solution of Ethyl 4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carboxylate (**3ka**) (0.250 g, .543 mmol) in Et₂O (8 mL), LiAlH₄ (0.042 g, 1.08 mmol) was added in portions wise at 0 °C. After that reaction mixture was stirred at rt for 1h, followed by quenching with H₂O (0.3 mL), NaOH 1 M (0.2 mL) and H2O (6 mL) at 0 °C. The resulting white precipitate was filtered off and the solvent was removed under reduced pressure affording compound **6** (0.212 g, 94%) as a colourless oil. Rf = 0.2 (eluent

phase = Hexane/EA = 60:40, $R_f = 0.28$) Yield 0.212 g (94%); (KBr) cm⁻¹: 646.6, 755.5, 895.6, 1067.6, 1168.0, 1210.7, 1370.2, 1410.1, 1532.4, 1655.3, 1785.2, 2905.8, 3352 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.51-7.41 (m, 7H), 7.31 (t, J = 7.1 Hz, 2H), 7.27 (s, 2H), 7.26-7.22 (m, 1H), 5.1 (t, J = 4.1 Hz, 1H), 4.26 (d, J = 3.9 Hz),

3.88 (s, 6H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): *δ* 153.7, 150.8, 146.8, 138.1, 133.0, 130.7, 130.4, 129.3, 129.0, 128.2, 127.9, 126.0, 125.7, 122.9, 104.0, 60.6, 56.4, 53.6.

4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-carbaldehyde (7)

In a round bottom flask equipped with a condenser the 4,5-diphenyl-2-(3,4,5-trimethoxyphenyl)furan-3-yl)methanol was dissolved in the toluene (8 ml) and MnO_2 was added. The mixture vigorously stirred under reflux for 12 h until most of the starting material was consumed monitored *via* TLC (eluent phase = Hexane/EA = 80:20, $R_f = 0.41$). After cooling to room temperature, the suspension is filtered over

celite with a glass frit. The crude compound was purified by column chromatography over silica gel (10% EA/hexanes) to afford the desired product Yield 92% (0.228 g); yellow oil; (KBr) cm⁻¹: 642.3, 720.8, 852.7. 965.2, 1024.2, 1253.8, 1358.7, 1485.2, 1507.5, 1640.5, 1725.6, 2980.7, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.83 (s, 1H), 7.49 (s, 2H), 7.48-7.40 (m, 7H), 7.29-7.26 (m, 3H), 3.99 (s, 6H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 157.6, 153.3, 148.2, 140.1, 131.4, 130.3, 129.6, 128.9, 128.5, 128.3, 128.1, 125.5, 124.2, 124.0, 122.2, 105.5, 61.0, 56.4 mass (ES+) m/z = 415.1 (M+H)⁺; ESMS (ESI-TOF) calcd for C₂₈H₂₇O₆ 415.1 Found 415.4.

7. Copies of NMR Spectra

¹H NMR spectrum of compound- 2b (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 2b (100 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR spectrum of compound- 2i (400 MHz, CDCl₃)

¹H NMR spectrum of compound- 2j (400 MHz, CDCl₃)

¹³C NMR Spectrum of compound- 2j (100 MHz, CDCl₃)

¹H NMR Spectrum of compound- 3aa (400 MHz, CDCl₃); X= wax impurity

¹³C NMR Spectrum of compound- 3aa (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3aa

¹H NMR Spectrum of compound- 3ac (400 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3ac

¹H NMR spectrum of compound- 3ad (400 MHz, CDCl₃); X= wax impurity

¹³C NMR spectrum of compound- 3ad (100 MHz, CDCl₃); X= wax impurity

¹H NMR spectrum of compound- 3ba (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 3ba (100 MHz, CDCl₃)

HRMS spectrum of compound-3ba

¹H NMR spectrum of compound- 3ca (400 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3ca

SAIF [HRMS Report]

¹H NMR spectrum of compound- 3da (400 MHz, CDCl₃);

¹³C NMR spectrum of compound- 3da (100 MHz, CDCl₃)

HRMS spectrum of compound -3da

SAIF [HRMS Report]

¹³C NMR spectrum of compound- dc (100 MHz, CDCl₃)

HRMS spectrum of compound-3dc

HRMS spectrum of compound-3de

¹H NMR spectrum of compound- 3dd (400 MHz, CDCl₃); X= wax impurity

¹³C NMR spectrum of compound- 3dd (100 MHz, CDCl₃)

HRMS spectrum of compound-3dd

35

¹H NMR spectrum of compound- 3ea (400 MHz, CDCl₃); X= wax impurity

¹³C NMR spectrum of compound- 3ea (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3ea

¹H NMR spectrum of compound- 3eb (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 3eb (100 MHz, CDCl₃)

HRMS spectrum of compound-3eb

¹³C NMR spectrum of compound- 3ec (100 MHz, CDCl₃)

HRMS spectrum of compound-3ec

¹H NMR spectrum of compound- 3fa (400 MHz, CDCl₃)

40

¹³C NMR spectrum of compound- 3fa (100 MHz, CDCl₃)

HRMS spectrum of compound-3fa

¹³C NMR spectrum of compound- 3ga (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3ga

¹H NMR spectrum of compound- 3gc (400 MHz, CDCl₃); X= wax impurity

¹³C NMR spectrum of compound- 3gc (100 MHz, CDCl₃)

HRMS spectrum of compound-3gc

¹H NMR spectrum of compound- 3gf (400 MHz, CDCl₃); X = wax impurity, $Y = H_2O$

¹³C NMR spectrum of compound- 3gf (100 MHz, CDCl₃)

HRMS spectrum of compound-3gf

¹H NMR spectrum of compound- 3ha (400 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3ha

¹H NMR spectrum of compound- 3hc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 3hc (100 MHz, CDCl₃)

HRMS spectrum of compound-3hc

¹H NMR spectrum of compound- 3hd (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 3hd (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3hd

¹³C NMR spectrum of compound- 3ic (100 MHz, CDCl₃)

HRMS spectrum of compound-3ic

¹H NMR spectrum of compound- 3ja (400 MHz, CDCl₃); X= wax impurity

¹³C NMR spectrum of compound- 3ja (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3ja

¹³C NMR spectrum of compound- 3jb (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3jb

¹H NMR spectrum of compound- 3jc (400 MHz, CDCl₃); X= wax impurity, Y = H₂O

HRMS spectrum of compound-3jc

¹³C NMR spectrum of compound- 3jd (100 MHz, CDCl₃)

HRMS spectrum of compound-3jd

¹H NMR spectrum of compound- 3jf (400 MHz, CDCl₃); X= wax impurity

¹³C NMR spectrum of compound- 3jf (100 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3jf

¹³C NMR spectrum of compound- 3ka (100 MHz, CDCl₃);

¹H NMR spectrum of compound- 3ka (400 MHz, CDCl₃)

HRMS spectrum of compound-3ka

¹H NMR spectrum of compound- 3kb (400 MHz, CDCl₃); Y=H₂O impurity

¹³C NMR spectrum of compound- 3kb (100 MHz, CDCl₃)

HRMS spectrum of compound-3kb

¹³C NMR spectrum of compound- 3kd (100 MHz, CDCl₃)

HRMS spectrum of compound-3kd

¹H NMR spectrum of compound- 3ag (400 MHz, CDCl₃);

¹³C NMR spectrum of compound- 3ag (100 MHz, CDCl₃)

HRMS spectrum of compound-3ag

¹H NMR spectrum of compound- 3gg (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 3gg (100 MHz, CDCl₃)

HRMS spectrum of compound-3gg

¹H NMR spectrum of compound- 3hg (400 MHz, CDCl₃)

⁰¹³C NMR spectrum of compound- 3hg (100 MHz, CDCl₃)

HRMS spectrum of compound-3hg

68

¹H NMR spectrum of compound- 3gh (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 3gh (100 MHz, CDCl₃)

HRMS spectrum of compound-3gh

¹H NMR spectrum of compound- 3ki (400 MHz, CDCl₃); Y=H₂O impurity

Cosy spectrum of compound - 3ki

HMBC SPECTRUM OF COMPOUND - 3ki

HRMS SPECTRUM OF COMPOUND-3ki

72

¹³C NMR spectrum of compound- 3kh (400 MHz, CDCl₃); X= wax impurity

Cosy spectrum of compound - 3aj

HMBC spectrum of compound-3aj

HRMS SPECTRUM OF COMPOUND-3aj

¹H NMR spectrum of compound- 3kj (400 MHz, CDCl₃);

HMBC Spectrum of compound - 3kj

HRMS spectrum of compound-3kj

¹³C NMR spectrum of compound- 3kj (100 MHz, CDCl₃); X=wax impurity

HRMS spectrum of compound-3kj

¹H NMR spectrum of compound- 3la (400 MHz, CDCl₃); X= wax impurity

HRMS spectrum of compound-3la

82

¹³C NMR spectrum of compound- 3ma (100 MHz, CDCl₃); X= wax impurity

¹H NMR spectrum of compound- 4 (400 MHz, DMSO-d₆);

¹³C NMR spectrum of compound- 4 (100 MHz, DMSO-d₆);

ESMS spectrum of compound-4

¹H NMR spectrum of compound- 5 (400 MHz, CDCl₃)

¹³C NMR spectrum of compound- 5 (100 MHz, CDCl₃)

ESMS spectrum of compound-5

¹³C NMR spectrum of compound- 6 (100 MHz, DMSO-d₆)

ESMS spectrum of compound-7

Control experiments:

