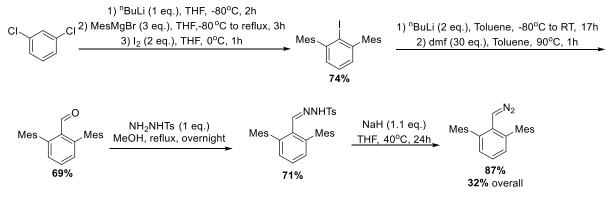
ESI

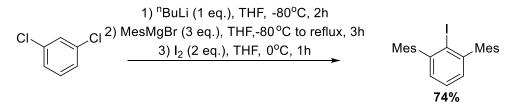
Combining Ligand-Enhanced Backdonation and Steric Shielding to Stabilize a Mono-substituted Au(I) Carbene

David Vesseur, Karinne Miqueu, and Didier Bourissou*


Content

Materials and methods	S3
Experimental procedures and analytical data	S4
Synthesis of Dmpl	S4
Synthesis of CHODmp	S5
Synthesis of CH(NNHTs)Dmp	S5
Synthesis of $CH(N_2)Dmp$	S6
Synthesis of [(PP)Au][NTf ₂]	S6
Generation of 1	S7
Variable temperature NMR of 1	S7
Computational details	S9
References	S17
NMR Spectra	S18
NMR spectra of Dmpl	S18
NMR spectra of CHODmp	S19
NMR spectra of CH(NNHTs)Dmp	S20
NMR spectra of $CH(N_2)Dmp$	S21
NMR spectra of ${f 1}$	S22
Variable temperature NMR spectra of 1	\$26

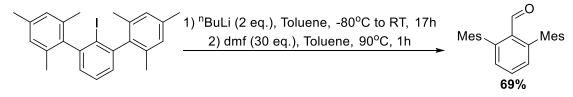
Materials and methods


All reactions and manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques or in a glovebox under inert atmosphere. Dry, oxygen-free solvents were employed. All reagents were purchased from Sigma Aldrich. Solution ¹H, ¹³C and ³¹P NMR spectra were recorded on Bruker Avance 300 or 400 spectrometers at 298 K unless otherwise stated. Chemical shifts (δ) are expressed with a positive sign, in parts per million. ¹H and ¹³C chemical shifts reported are referenced internally to residual protio- (¹H; δ 5.32 for CD₂Cl₂) or deutero- (¹³C; δ 53.84 for CD₂Cl₂) solvent, while ³¹P chemical shifts are relative to 85% H₃PO₄. The following abbreviations and their combinations are used: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. The ¹H and ¹³C resonance signals were attributed by means of 2D COSY, HSQC and HMBC experiments. *J*_{HP} and *J*_{PC} were determined by comparison with the relevant ¹H{³¹P} and ¹³C{¹H,³¹P} spectra.

Experimental procedures

Scheme S1. Synthetic route to CH(N₂)Dmp.

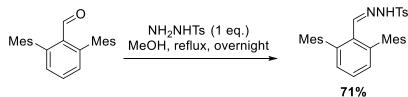
Synthesis of Dmpl


An oven dried three necked flask connected to a reflux condenser and a dropping funnel was flushed with argon (3x). Magnesium powder (1.5 g, 62.7 mmol, 3.0 eq.) was the added to the three necked flask as well as dry THF (15 mL). Mesityl bromide (9.5 mL, 12.54 g, 62.7 mmol, 3.0 eq.) in dry THF (45 mL) was added to the dropping funnel. A small amount of the mesityl bromide and some iodine crystals were added and the mixture was stirred. This caused the mixture to heat slightly after which the rest of the mesityl bromide was added dropwise. The dropping funnel was replaced by a stopper and the mixture was refluxed for 3 hours after which it was allowed to cool to room temperature.

Another oven dried three necked round bottom flask connected to a reflux condenser was flushed with argon (3x). 1,3-dichlorobenzene (3.1 g, 21.1 mmol, 1.0 eq.) and dry THF (50 mL) were added. this was cooled to -80°C in an acetone/nitrogen bath and nBuLi (1.2 mL, 1.6 M in hexanes, 21.1 mmol, 1.0 eq.) was added slowly. This mixture was stirred for 2 hours after which the freshly prepared mesityl magnesium bromide was added via a canula while maintaining a temperature of -80 °C. The mixture was then allowed to warm to room temperature and subsequently refluxed for 3 hours after which it was allowed to cool to room temperature.

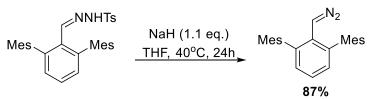
The mixture was cooled to 0°C in an ice water bath and iodine (10.6 g, 41.7 mmol, 2.0 eq.) in dry THF (45 mL) was added and stirred for 30 minutes. A saturated solution of Na_2SO_3 was added and the product was extracted with Et₂O (3 x 100 mL). The organic layers were collected and washed with H₂O (3 x 50 mL) and brine (50 mL) this was dried over $NaSO_4$, filtered and concentrated. The resulting solid was refluxed in EtOH (50 mL) for 30 minutes after which it was cooled to room temperature to give colourless crystals, filtering gave DmpI in a 6.9 gram yield (74%). The spectra matched those reported in literature.¹

¹**H NMR** (300.11 MHz, CDCl₃): 7.46 (t, J^{HH} = 7.5 Hz, 1H), 7.08 (d, J^{HH} = 7.5 Hz, 2H), 6.96 (s, 4H), 2.35 (s, 6H), 1.98 (s, 12H)


Synthesis of CHODmp

Dmpl (2.0 g, 4.5 mmol, 1.0 eq.) was added to a Schlenk and purged with argon (3x). Dry Toluene (20 mL) was added and the mixture cooled to -80 °C in an acetone/nitrogen bath. "BuLi (5.7 mL, 1.6M in hexanes, 9.1 mmol, 2.0 eq.) was then added dropwise while stirring. The reaction was stirred for 1 hour at -80 °c in a acetone/nitrogen bath after which it was warmed to room temperature and stirred for another 16 hours resulting in a yellow suspension. The mixture was cooled to -80°C in an acetone/nitrogen bath and dry dmf (1.9 g, 2 mL, 138.0 mmol, 30 eq.) was added dropwise. The reaction was warmed to room temperature and stirred for 30 minutes after which it was heated to 90°C and stirred for one hour to give a colourless solution with a white suspension. The mixture was cooled to 0° C in a ice water bath and distilled H₂O (25 mL) was added to quench. The product was extracted with Et₂O (2x 25 mL). The organic fractions were combined and washed with H₂O (3x 25 mL) and brine (25 mL) then dried over NaSO₄, filtered and concentrated to give a yellow solid which was dissolved in a minimal amount of pentane at 30°C. Cooling the mixture to -25 °C in a fridge gave a white precipitate. Filtering gave the product as an off white solid in a 1.08 gram yield (69%). The spectra matched those reported in literature.²

¹**H NMR** (300.11 MHz, CDCl₃): 9.66 (s, 1H), 7.66 (t, J^{HH} = 7.6 Hz, 1H), 7.17 (d, J^{HH} = 7.6 Hz, 2H), 6.94 (s, 4H), 2.34 (s, 6H), 1.96 (s, 12H)


Synthesis of CH(NNHTs)Dmp

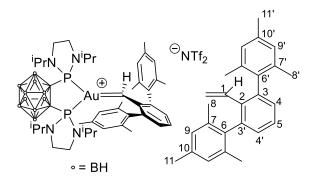
CHODmp (1.08 g, 3.2 mmol, 1 eq.) and TsNHNH₂ (596 mg, 3.2 mmol, 1 eq.) were added to a 20 mL round bottom flask and MeOH (6 mL) was added. This mixture was refluxed overnight and cooled to - 25 °C in a fridge for several hours to give white crystals. This was filtered and washed with precooled - 25°C MeOH (2 x 4 mL) and pentane (2 x 20 mL) to give the product as white crystals in a 1.14 g yield (71%).

¹**H NMR** (300.13 MHz, CDCl₃): 7.43 (t, J^{HH} = 7.9 Hz, 1H), 7.32 (d, J^{HH} = 8.6 Hz, 2H), 7.20 (m, 3H), 7.04 (d, J^{HH} = 7.6 Hz, 2H), 6.89 (s, 4H), 2.42 (s, 3H), 2.33 (s, 6H), 1.87 (s, 12H)

Synthesis of CH(N₂)Dmp



CH(NNHTs)Dmp (511 mg, 1.0 mmol, 1 eq.) was dissolved in THF (10 mL) and slowly added to a stirring suspension of NaH (27.8 mg (95%), 1.1 mmol, 1.1 eq) in THF (5 mL) which resulted in immediate formation of gaseous H₂. This was stirred overnight at 40°C to give a strongly orange coloured solution. The solvent was removed by evaporation and the product was extracted via canula filtration with pentane (4 x 5 mL) till only a white solid remained. The solution was concentrated to approximately half the original volume and stored overnight in a -80°C fridge resulting in the formation of crystals. The pentane was removed via canula filtration giving the product as an salmon coloured solid in a 352 mg yield (8 7%). The spectra matched those reported in literature.²


¹**H NMR** (300.11 MHz, CD_2CI_2): 7.16 (dd, J^{HH} =7.1 Hz, J^{HH} = 8.0 Hz, 1H), 6.96 (d, J^{HH} = 7.5 Hz, 2H), 6.92 (s, 4H), 4.16 (s, 1H), 2.31 (s, 6H), 2.01 (s, 12H)

Synthesis of (PP)AuNTf₂ iPrN, NⁱPr Aul PrN, NⁱPr OCM, RT, 15 min $\circ = BH$ $\circ = BH$ $\circ = BH$ 85%

In a glove box (PP)Aul (400 mg, 0.49 mmol, 1.0 eq.) and $AgNTf_2$ (191 mg, 0.49 mmol, 1.0 eq.) were added to an aluminium covered vial containing a stirring bar. DCM (10 mL) was added and the reaction was stirred for 15 minutes. The solution was filtered over a short celite pad and washed with DCM (2 x 2mL). The solution was concentrated to approximately half the original volume and stored in a -24°C fridge resulting in the formation of yellow crystals. The solvent was removed by canula filtration, drying under high vacuum gave the product as yellow crystals in a 404 mg yield (85%). The spectra matched those reported in literature.³

In a glovebox CH(N₂)Dmp (11.0 mg, 0.031 mmol, 1 eq.) and CD₂Cl₂ (0.3 mL) were added to a NMR tube after which it was capped with a septum. (PP)AuNTf₂ (30.0 mg, 0.031 mmol, 1 eq.) and CD₂Cl₂ (0.5 mL) were added to a vial. The solution was taken up into a syringe and the needle was capped with a septum. Outside the glovebox, the NMR tube was cooled to -50°C in a acetone/nitrogen bath after which the solution containing (PP)AuNTf₂ was slowly added to the NMR tube resulting in a direct colour change to deep purple. The NMR tube was then thoroughly sealed with Teflon tape and parafilm after which the tube was completely submerged in the -50°C acetone/nitrogen bath. The tube was allowed to cool for 10 minutes after which it was vigorously shaken for several minutes while maintaining the low temperature. The tube was then transferred to a -80°C acetone/nitrogen bath for transport. Finally, the NMR tube was inserted into a precooled -80°C NMR spectrometer showing clean and quantitative formation of **1**. The complex was fully characterized with multinuclear NMR at this temperature.

¹**H NMR** (400.13 MHz, CD_2Cl_2 , -80°C): 13.36 (t, $J^{HP} = 16.6$ Hz, 1H, H_1), 8.06 (m, 1H, H_5), 7.25 (br, 1H, H_4 or $H_{4'}$), 7.18 (bs, 1H, H_4 or $H_{4'}$), 6.94 (bs, 4H, H_9 and $H_{9'}$), 3.45-2.94 (m, 12H, NCH(CH₃)₂ and N(CH₂CH₂)N), 2.29 (br, 3H, H_{11}), 1.85 (br, 3H, H_7 or $H_{7'}$), 1.85 (br, 3H, H_7 or $H_{7'}$), 1.26 (d, $J^{HH} = 6.2$ Hz, 6H, NCH(CH₃)₂), 1.19 (d, $J^{HH} = 6.2$ Hz, 6H, NCH(CH₃)₂), 1.11 (d, $J^{HH} = 6.2$ Hz, 6H, NCH(CH₃)₂), 0.70 (d, $J^{HH} = 6.2$ Hz, 6H, NCH(CH₃)₂)

Note: due to overlap with the methyl signals of **8** and **11** and their broadness, the B**H** signals of the carborane could not be assigned.

¹³C{¹H} NMR (100.63 MHz, CD₂Cl₂, -80°C): 295.6 (t, $J^{CP} = 85.6$ Hz, C₁), 154.9 (br, C₃ or C_{3'}), 149.3 (t, $J^{CP} = 8.9$ Hz, C₂), 146.5 (br, C₃ or C_{3'}), 142.6 (t, $J^{CP} = 7.4$ Hz, C₅), 138.0 (br, C₇ or C_{7'} or C₁₀ or C_{10'}), 136.7 (br, C₇ or C_{7'} or C₁₀ or C_{10'}), 136.2 (s, C₆), 134.9 (br, C₇ or C_{7'} or C₁₀ or C_{10'}), 133.4 (br, C₇ or C_{7'} or C₁₀ or C_{10'}), 131.7 (br, C₄ or C_{4'}), 130.3 (br, C₄ or C_{4'}), 128.4 (br, C₉ or C_{9'}), 127.6 (br, C₉ or C_{9'}), 119.0 (q, $J^{CP} = 321.1$ Hz, N(SO₂CF₃)₂), 91.5 (d, $J^{CP} = 62.1$ Hz, Carborane), 48.8 (m, NCH(CH₃)₂), 41.9 (s, N(CH₂CH₂)N), 40.1 (s, N(CH₂CH₂)N), 23.2 (s, NCH(CH₃)₂), 21.6 (s, NCH(CH₃)₂), 20.6 (m, C₈, C_{8'}, C₁₁ and NCH(CH₃)₂), 17.0 (s, NCH(CH₃)₂)

³¹P{¹H} NMR (161.98 MHz, CD₂Cl₂, -80°C): δ 141.3 (s)

³¹P NMR (161.99 MHz, CD₂Cl₂, -80°C): δ 141.6 (broadened s)
¹¹B NMR (128.38 MHz, CD₂Cl₂, -80°C): δ 50 to -50 (br)

Figure S0. Picture of complex 1 in CD2Cl2 seconds after taking it out of a -80 ° Cacetone/nitrogen bath. Left: picture taken with flash. Right: picture without flash.

Variable temperature NMR of 1

1 was prepared according to the above described procedure. After insertion into a precooled -80°C spectrometer, the temperature was increased in steps of 10°C. After reaching a stable temperature approximately 5 minutes were waited after which the ¹H and ³¹P NMR spectra were measured. When 0°C was reached, the characteristic triplet around 13 ppm had almost entirely disappeared signalling decomposition at this temperature and the experiment was stopped.

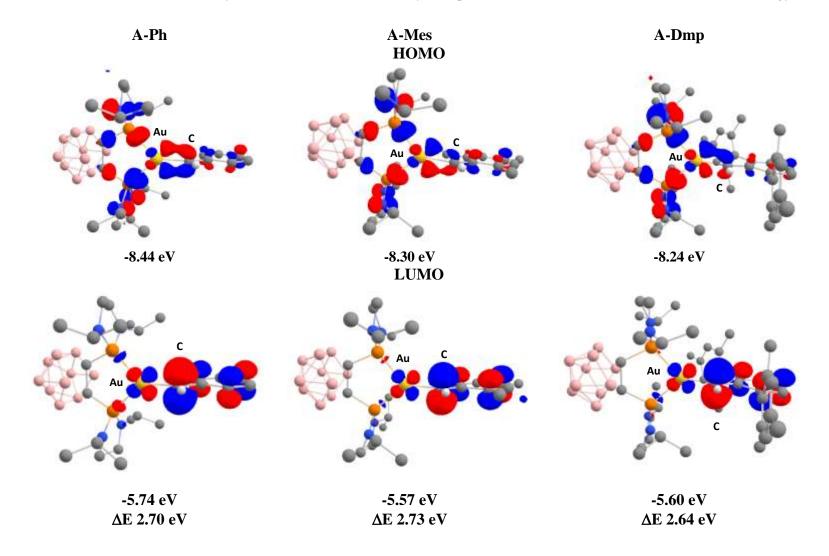
Computational details

All calculations were performed using the Gaussian 09 package⁴ and the B3PW91 hybrid functional⁵ on the different gold carbene complexes. The gold atom was described with the relativistic electron core potential SDD and associated basis set,⁶ augmented by a set of f-orbital polarization functions.⁷ The 6-31G^{**} basis set was employed for all other atoms.⁸ Frequency calculations were undertaken to confirm the nature of the stationary points, yielding zero imaginary frequency for *minima*. All the geometrical structures were plotted with Chemcraft program.⁹

The bonding situation in all systems was studied using Natural Bond Orbital¹⁰ analyses (NBO, 7.0 version).¹¹ Charge transfer between the carbene and the metallic fragment has been calculated using atomic NPA charges. The Natural Localized Molecular Orbitals (NLMO) associated to the interactions involving the vacant of the carbene, *i.e.* the $d_{xz}(Au) \rightarrow 2p^{\pi}(C_{carbene})$ and $\pi_{C=CAr} \rightarrow 2p^{\pi}(C_{carbene})$ interactions, have been analyzed. NLMO plots associated to the Au $\rightarrow C_{carbene}$ back-donation or Aryl $\rightarrow C_{carbene}$ interaction were drawn (cutoff: 0.04) with Chemcraft program.⁹

For each system, a charge decomposition analysis (CDA) was carried out with the CDA 2.2 program developed by G. Frenking.¹² The orbital contributions to the charge distributions are divided into four parts: (*i*) the mixing of the occupied orbitals of the ligand (carbene) and the unoccupied MOs of the metal fragment L_nAu^+ (Ligand $\rightarrow Au$ donation *d*), (*ii*) the mixing of the unoccupied orbitals of the ligand and the occupied MOs of the metal fragment (Ligand $\leftarrow Au$ back-donation *b*), (*iii*) the mixing of the occupied orbitals of the ligand and the occupied orbitals of the metal fragment (Ligand $\leftarrow Au$ back-donation *b*), (*iii*) the mixing of the occupied orbitals of the metal fragment (Ligand $\leftarrow Au$ repulsive polarization *r*), and (*iv*) the mixing of the unoccupied orbitals of the ligand and the unoccupied orbitals of the metal fragment (residual term Δ).

Energy Decomposition Analysis¹³ was performed with Amsterdam Density Functional program, version 2021.102¹⁴ at ZORA-B3LYP/TZ2P level of theory on the geometry optimized from Gaussian 09 at B3PW91/SDD+f(Au),6-31G** level of theory. Different fragmentations were considered : i) (P,P)Au⁺(Singlet)/CHR(Singlet), (P,P)Au⁺(Triplet)/CHR(Triplet) and (P,P)Au³⁺/CHR²⁻. This analysis is based on the EDA method of Morokuma and the ETS partitioning scheme of Ziegler and Rauk. The interaction energy term $\Delta E_{int}(\zeta)$ is decomposed into different chemically meaningful contributions: (i) electrostatic interaction energy between the reagents (ΔV_{elstat}), (ii) Pauli repulsion which account for destabilizing interactions between occupied orbitals of each fragment (ΔE_{Pauli}), and (iii) stabilizing orbital interactions (ΔE_{orb}).

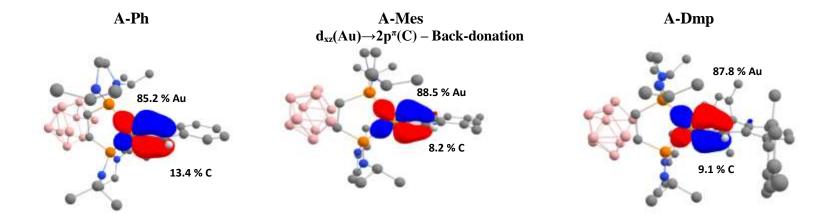

$\Delta E_{\rm int} = \Delta V_{\rm elstat} + \Delta E_{\rm Pauli} + \Delta E_{\rm orb}$

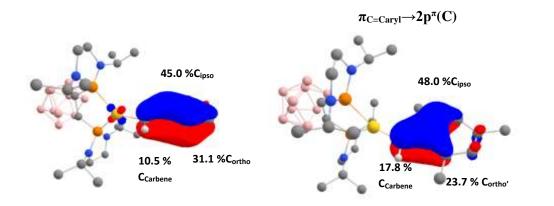
The main orbital interaction contributions to the total ΔE_{orb} term can visualized and quantified by means of the Natural Orbital for Chemical Valence (NOCV)¹⁵ extension of the EDA method. The EDA-NOCV approach is a powerful tool to quantitatively analyze chemical bonds, combining the extended transition state (*ETS*) method for energy decomposition *analysis* combined with the natural orbitals for chemical valence (*NOCV*) theory. Within this methodology, the ΔE_{orb} term is decomposed into the contributions from different natural orbitals of chemical valence (NOCV) eigenvalues (λ_i) as follows:

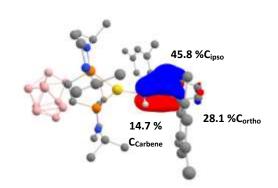
$$\Delta E_{orb} = \sum_{k} \Delta E_{orb}^{k} = \sum_{k=1}^{M/2} v_{k} [-F_{-k,-k}^{TS} + F_{k,k}^{TS}]$$

Where the terms $F^{TS}_{k,k}$ are the diagonal Kohn-Sham matrix elements corresponding to NOCVs. The components ΔE^{k}_{orb} provide energetic estimation of $\Delta \rho^{k}$ and allow to characterize the importance of a particular electron flow channel for the bonding between considered molecular fragments.

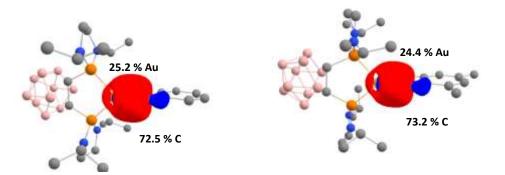
Figure S1. Plots of the HOMO and LUMO (cutoff: 0.05) for the (**P**,**P**)AuCH(**R**)⁺ complexes, **A-Ph**, **A-Mes** and **A-Dmp**, calculated at the B3PW91/SDD+f(Au), 6-31G**(other atoms) level of theory. H have been omitted for clarity, excepted the H on the carbone center. HOMO-LUMO energy difference (ΔE) in eV.

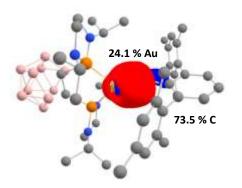


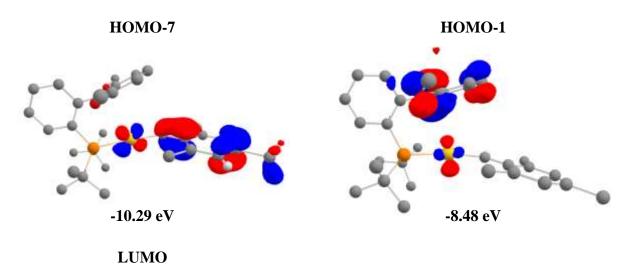

Table S2. CDA analysis for the complexes **A-Ph**, **A-Mes**, **A-Dmp** and for the (JohnPhos)AuCHMes⁺ complex **B-Mes**, calculated at the B3PW91/SDD+f(Au), 6-31G**(other atoms) level of theory.


L ₂ Au ⁺ (singlet)/CHR (singlet)						
	A-Ph	A-Mes	A-Dmp	B-Mes		
$CR_2 \rightarrow AuL_2$ donation (d)	0.365	0.447	0.482	0.391		
$Au \rightarrow CR_2$ back-donation (b)	0.219	0.215	0.231	0.119		
d/b ratio	1.67	2.08	2.09	3.29		
Au ↔ C repulsion	-0.348	-0.355	-0.380	-0.356		
Residue term (Δ)	0.006	-0.006	-0.006	-0.009		

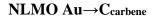
In light of the EDA results (see Table S4), the CDA analysis was carried out in the best fragmentation, *i. e.* L_nAu⁺/CHR fragments (both in the singlet state).

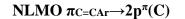

Figure S2. Plots of the NLMO (cutoff: 0.04) associated to the donation $C_{carbene} \rightarrow Au$ ($n_C^{\sigma}(C) \rightarrow Au$), the back-donation $Au \rightarrow C_{carbene}$ ($d_{xz}(Au) \rightarrow 2p^{\pi}(C)$) and the delocalization of the aryl group on the vacant of the carbene ($\pi_{C=CAr} \rightarrow 2p^{\pi}(C)$) for complexes **A-Ph**, **A-Mes** and **A-Dmp**. Contributions of gold, $C_{carbene}$ and C_{aryl} atoms in percent. H have been omitted for clarity, excepted the H on the carbene center.

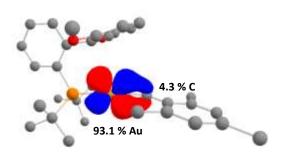


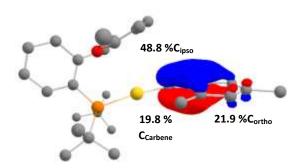


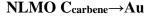
 $n_C{}^{\sigma}\!(C) \to Au-Donation$

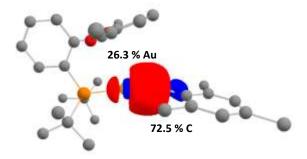



Figure S3. Plots of the main molecular orbitals (cutoff: 0.05) for the (**JohnPhos**)**AuCHMes**⁺ complex **B-Mes**, calculated at the B3PW91/SDD+f(Au), 6-31G**(other atoms) level of theory. H have been omitted for clarity, excepted the H on the carbene center. Plot of the NLMOs (cutoff: 0.04) associated to the donation $C_{carbene} \rightarrow Au (n_C^{\sigma}(C) \rightarrow Au)$, the back-donation $Au \rightarrow C_{carbene} (d_{xz}(Au) \rightarrow 2p^{\pi}(C))$ and to the delocalization of the aryl group on the vacant of the carbene $(\pi_{C=CAr} \rightarrow 2p^{\pi}(C))$. Contributions of gold, $C_{carbene}$ and C_{aryl} atoms in percent. H have been omitted for clarity.






-6.12 eV



The plot of the main MOs, the NLMOs associated to back-donation Au \rightarrow C_{carbene} (d_{xz}(Au) \rightarrow 2p^{π}(C) and to the delocalization of the aryl group on the vacant of the carbene (π _{C=CAr} \rightarrow 2p^{π}(C)) as well as the contributions of Au, Ccarbene and C-aryl in these NLMOs confirm the weaker Au \rightarrow C_{carb} backdonation and stronger Ar \rightarrow C_{carb} π -donation in **B-Mes** than in **A-Dmp**.

Analysis of the NLMO associated to the donation term ($C_{carbene} \rightarrow Au$) evidences that this contribution is relatively similar in all gold carbene complexes, meaning that that the difference in stability is not due to the σ -donor effect of the ligand. The main difference comes from the back-donation term.

	(P,P)Au ⁺ (S)/CHR (S)	(P,P)Au ³⁺ /CHR ²⁻	(P,P)Au⁺ (T)/CHR (T)
ΔE_{Pauli}	262.3	334.17	203.19
ΔV_{elstat}	-243.63 (70.1 %)ª	-648.87	-156.44
ΔE_{orb}	-103.75 (29.9 %)ª	-358.79	-153.75
ΔE_{int}	-85.10	-673.50	-107.00
	^a Values into bracket (%) correspond to the percentage contribution to the total attractive interaction ($\Delta E_{elstat} + \Delta E_{orb}$).		

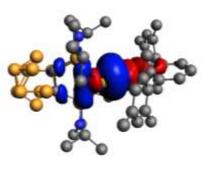
Table S3. EDA carried out at ZORA-B3LYP/TZ2VP for the complex **A-Dmp** with different fragmentations. Energies are in kcal/mol.

We carried out Energy Decomposition Analyses (EDA) using different fragmentations. According to the orbital interaction, the best description for **A-Dmp** is found for the fragmentation $(P,P)Au^+(singlet)/CHR(singlet)$ rather than $(P,P)Au^+(triplet)/CHR(triplet)$ or $(P,P)Au^{3+}/CHR^{2-}$.

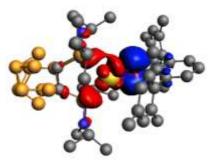
Table S4. EDA carried out at ZORA-B3LYP/TZ2VP for the complex **A-Ph**, **A-Mes**, **A-Dmp** and **B-Mes**. Only the best fragmentation (P,P)Au⁺(Singlet)/CHR(Singlet) has been considered. Energies are in kcal/mol.

	A-Ph	A-Mes	A-Dmp	JohnPhosAu⁺/CHR	
ΔE_{Pauli}	275.95	268.38	262.30	230.22	
ΔV_{elstat}	-260.03	-254.09	-243.63	-231.48	
	(71.7%)ª	(72.0%)ª	(70.1 %)ª	(74.8 %)ª	
ΔE_{orb}	-102.76	-99.04	-103.75	-78.07	
	(28.3%) ^a	(28.0 %) ^a	(29.9 %)ª	(25.2 %) ^a	
ΔE_{int}	-86.84	-84.76	-85.10	-79.34	
ΔE _{orb1} (ρ)	-50.7	-49.9	-49.6	-44.7	
	(back-donation)	(Donation)	(Donation)	(Donation)	
ΔE _{orb2} (ρ)	-34.6	-29.8	-31.6	-15.3	
	(back-donation)	(back-donation)	(back-donation)	(back-donation)	
^a Values into bracket (%) correspond to the percentage contribution to the total attractive					
interaction ($\Delta V_{elstat} + \Delta E_{orb}$).					

For the best fragmentation, we carried out EDA analysis for **A-Ph**, **A-Mes**, **A-Dmp** and **B-Mes** for comparison. In all cases, the main stabilizing contribution to the ΔE_{int} term comes from the electrostatic term (ΔV_{elstat}) which accounts for ~ 70-75 % of the total attractive interaction energy, while the orbital term (ΔE_{orb}) accounts to ~ 25-30 % to the stabilization.

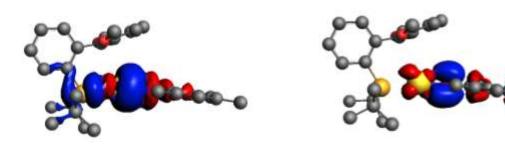

The Natural Orbital for Chemical Valence (NOCV) extension of the EDA method (see Table S4 and Figure S4) indicates that the orbital interaction (ΔE_{orbi} (ρ)) is primarily due to the donation from the carbene to the metal fragment and that this term is relatively similar in all complexes ($\Delta E_{orb}(\rho)$: -44.7 to -50.7 kcal/mol). The metal to carbene back-donation quite significantly contributes to the stabilization in the gold complexes with (P,P) ligand, with $\Delta E_{orb}(\rho) \sim 30-35$ kcal/mol and much less for **B-Mes** ($\Delta E_{orb}(\rho)$: -15.3 kcal/mol).

Comparison of **A-Dmp** and **B-Mes** complexes shows that with the bidentate (P,P) ligand the ΔE_{orb} term associated to the back-donation is twice as large compared to the monodentate Johnphos ligand (**B-Mes**), whereas the donation term is relatively close. This means that the back-donation term is enhanced with (P,P) ligand and contributes primilarly to the stabilisation of the carbene, in addition to steric effects.


Figure S4. Plot of the contours of deformation densities contributions $(\Delta \rho_{orb,i})$ of the main pairwise orbital interaction between L_2Au^+ ligand and carbene, and associated orbital interaction energy contribution ($\Delta E_{orb,i}$ in kcal/mol) for the complex **A-Dmp** (a) and **B-Mes** (b), computed at ZORA-B3LYP/TZ2P level of theory. The charge flow is red \rightarrow blue ($\Delta \rho < 0$ in red and $\Delta \rho > 0$ in blue). The contour value for density is 0.001 a.u.

a) Donation

Back-donation


 $\Delta E_{orb}(\rho 2)$: -49.6

 $\Delta E_{orb}(\rho 1)$: -31.6

b) Donation

Back-donation

 $\Delta E_{orb}(\rho 1) : -44.7$

 $\Delta E_{orb}(\rho 2) : -15.3$

References

1) J. E. Borger, A. W. Ehlers, M. L., J. C. Slootweg and K. Lammertsma, *Angew. Chem. Int. Ed.*, 2014, **47**, 12836–12839.

2) V. M. Iluc, C. A. Laskowski and G. L. Hillhouse, Organometallics, 2009, 20, 6135–6138.

3) M. Joost, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune and D. Bourissou, *Angew. Chem. Int. Ed.*, 2014, **52**, 14512–14516.

4) Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

5) (*a*) A. D. Becke, *Phys. Rev.* 1988, **A38**, 3098–3100; (*b*) A. D. Becke *J. Chem. Phys.* 1993, **98**, 5648–5652; (*c*) J. P. Perdew, in *Electronic Structure of Solids '91*, Ed. P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, 1991, 11.

6) (*a*) D. Andrae, U. Häussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, **77**, 123–141; (*b*) M. Dolg, *Modern Methods and Algorithm of Quantum Chemistry, Vol. 1* (Ed.: J. Grotendorst), John von Neuman Institute for Computing, Jülich (Germany), 2000, 479.

7) A. W. Ehlers, M. Biihme, S. Dapprich, A. Gobbi, A. Hijllwarth, V. Jonas, K. F. Kiihler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 111–114.

8) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213–222.

9) Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

10) (*a*) E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899–926; (*b*) J. P. Foster and F. Weinhold, *J. Am. Chem. Soc.*, 1980, **102**, 7211–7218; (*c*) A. E. Reed and F. Weinhold, *J. Chem. Phys.*, 1985, **83**, 1736–1740.

11) NBO 7.0 program, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.

12) S. Dapprich and G. Frenking, J. Phys. Chem., 1995, 99, 9352–9362.

13) (a) K. Morokuma, *J. Chem. Phys.*, 1971, **55**, 1236–1244; (b) T. Ziegler, A. Rauk, *Theor. Chim. Acta*, 1977, **46**, 1–10.

14) (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, *Journal of Computational Chemistry*, **2001**, *22*, 931. (b) ADF 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. (c) E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovle, ADF 2021, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. 15) M. Mitoraj, A. Michalak, T. Ziegler, *J. Chem. Theor. Comput.* 2009, **5**, 962–975.

NMR Spectra

NMR spectra of Dmpl

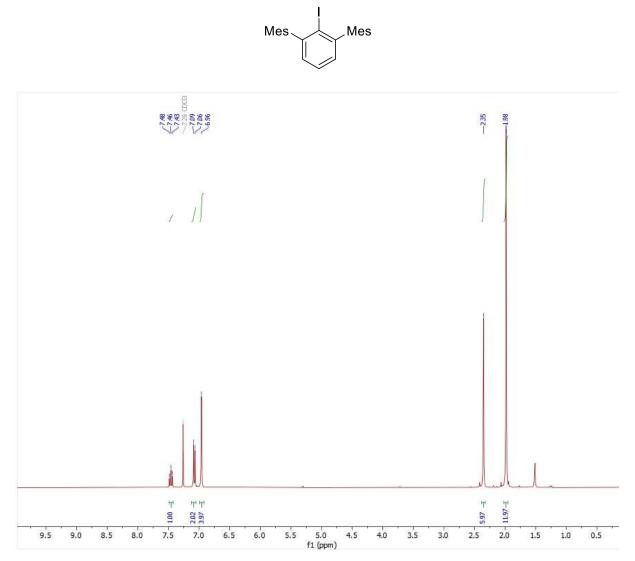


Figure S5. 1 H NMR (300.11 Hz, CDCl₃) spectrum of dmpl.

NMR spectra of CHODmp 0 Mes Mes 39.6---8888888 --2.34 8.1 ſ 0.89 H 4.13 H F 00'9 1.02 11.41-1 ٣ 0.81 11.5 11.0 10.5 10.0 9.5 9.0 8.0 7.5 7.0 3.0 2.5 2.0 1.5 1.0 0.5 0. 8.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5

Figure S6. ¹H NMR (300.11 Hz, CDCl₃) spectrum of CHODmp.

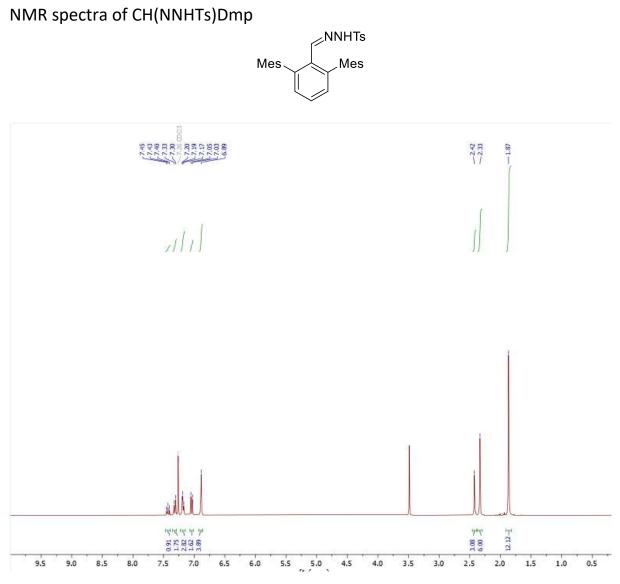


Figure S7. ¹H NMR (300.11 Hz, CDCl₃) spectrum of CH(NNHTs)Dmp.

NMR spectra of CH(N₂)Dmp

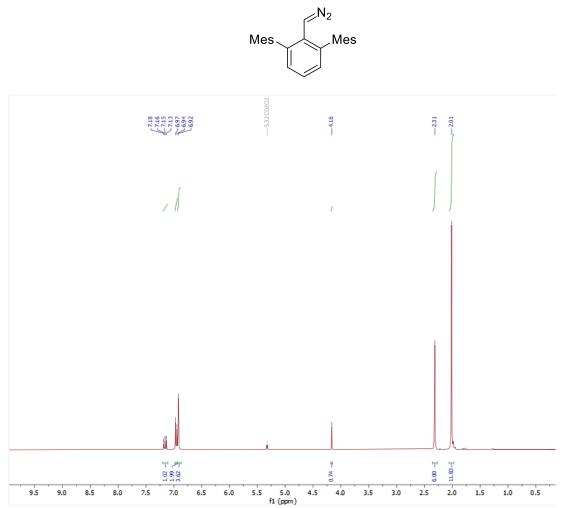
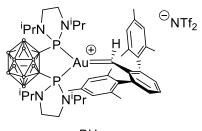



Figure S8. ¹H NMR (300.11 Hz, CDCl₃) spectrum of $CH(N_2)Dmp$.

NMR spectra of 1

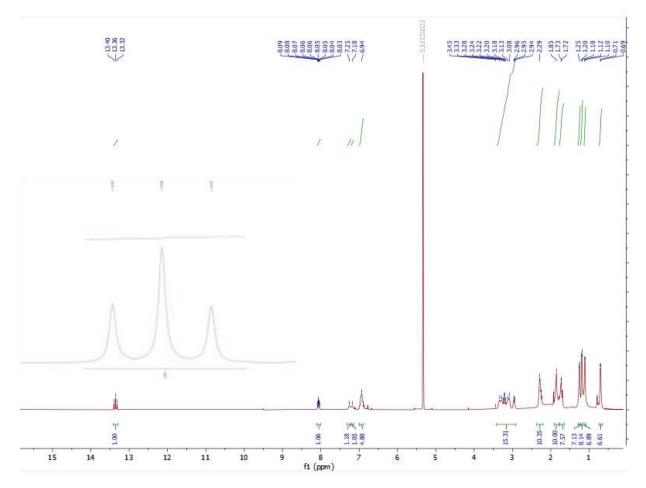


Figure S9. ¹H NMR (400.13 Hz, CD₂Cl₂, -80°C) spectrum 1.

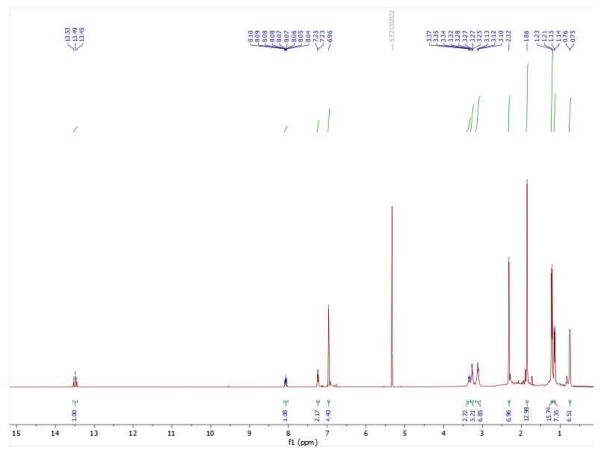


Figure S10. ¹H NMR (400.13 Hz, CD₂Cl₂, -30°C) spectrum of 1.

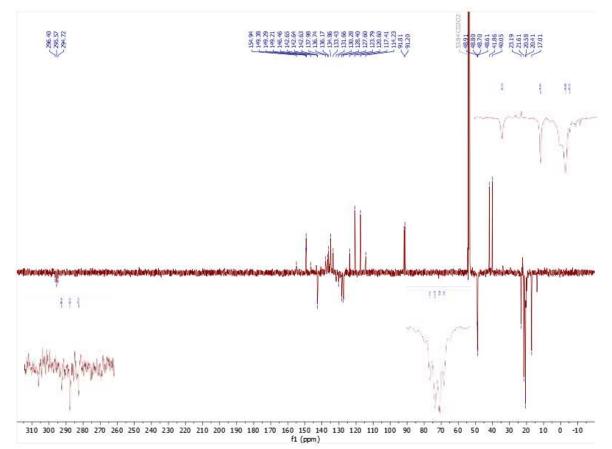


Figure S11. ¹³C NMR (100.63 Hz, CD₂Cl₂, -80°C) spectrum of 1.

¹³Cjmod

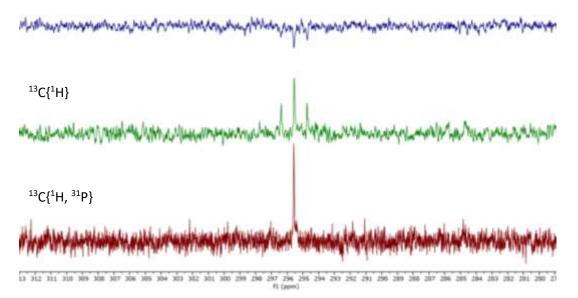


Figure S12. ${}^{13}C_{Jmoldulate}$ NMR (100.63 Hz, CD₂Cl₂, -80°C), ${}^{13}C{}^{1H}$ NMR (100.63 Hz, CD₂Cl₂, -80°C)], ${}^{13}C{}^{1H}$, ${}^{31}P$ NMR (100.63 Hz, CD₂Cl₂, -80°C) spectra of **1**.

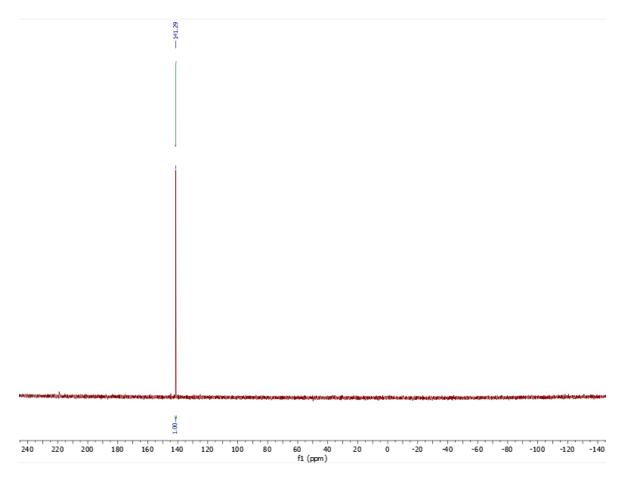


Figure S13. ${}^{31}P{}^{1}H$ NMR (161.98 MHz, CD₂Cl₂, -80°C) spectrum of 1.

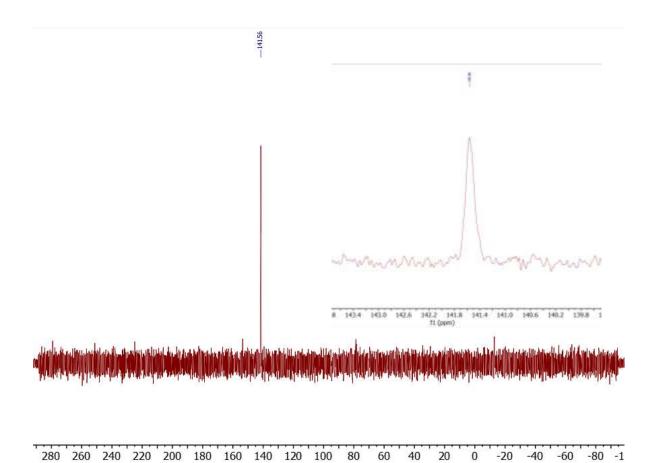
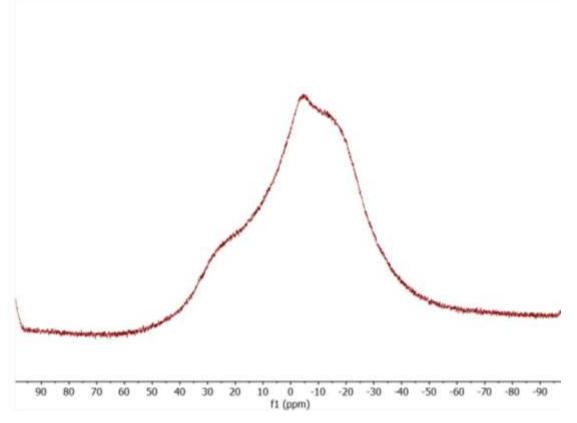
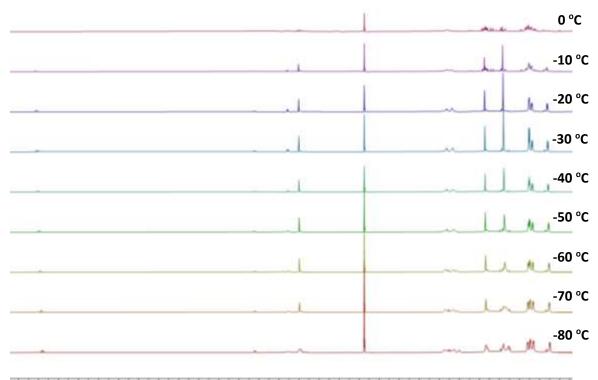
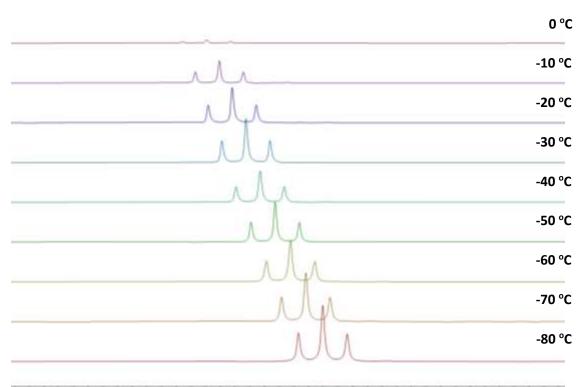




Figure S14. ³¹P NMR (161.99 MHz, CD₂Cl₂, -80°C) spectrum of 1.


Figure S15. ¹¹B NMR (128.38 MHz, CD₂Cl₂, -80°C) spectrum of **1**.

Variable temperature NMR spectra of 1

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 11 (ppm)

Figure S16. ¹H NMR spectra of 1 from -80 °C to 0 °C in increments of 10 °C.

13.90 13.85 13.80 13.75 13.70 13.65 13.60 13.55 13.50 13.45 13.40 13.33 13.30 13.25 13.20 13.15 13.10 13.05 13.0

Figure S17. ¹H NMR spectra of 1 from -80 °C to 0 °C in increments of 10 °C from 13.0 to 14.0 ppm.

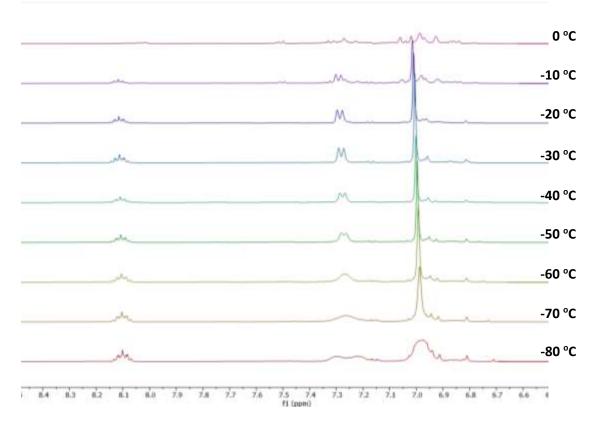
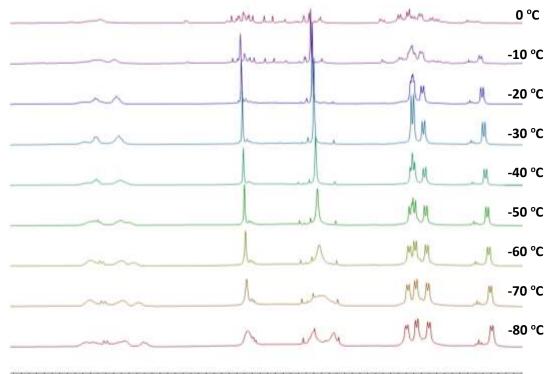
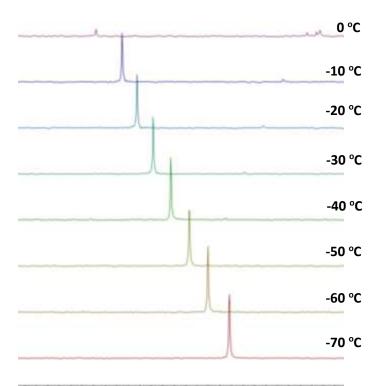




Figure S18. ¹H NMR spectra of 1 from -80 °C to 0 °C in increments of 10 °C from 6.5 to 8.5 ppm.

^{3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6}

Figure S19. ¹H NMR spectra of 1 from -80 °C to 0 °C in increments of 10 °C from 0.5 to 4.0 ppm.

0 143.5 145.0 144.5 144.0 143.5 143.0 142.5 142.0 141.5 141.0 140.5 140.0 139.5 139.0

Figure S20. ³¹P NMR spectrum of 1 from -70 °C to 0 °C in increments of 10 °C from 139 to 145 ppm.

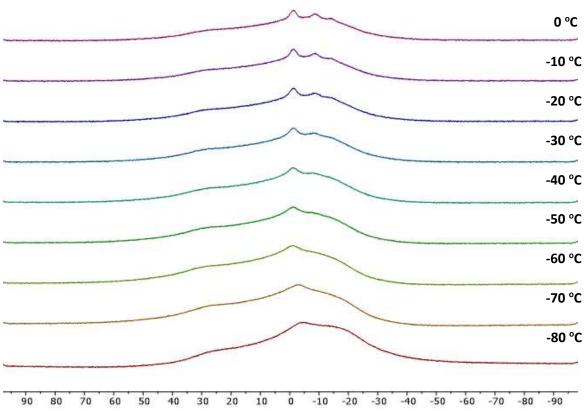


Figure S21. ¹¹B NMR spectrum of 1 from -80 °C to 0 °C in increments of 10 °C.