Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

A Diselenide Additive Enables a Photocatalytic Hydroalkoxylation of *gem*-Difluoroalkenes

Ryan M. Herrick,^{†a} Mohammed K. Abd El-Gaber,^{†a,b} Gabriela Coy,^{a,c} Ryan A. Altman^{*a,d}

^b Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

[°] Department of Pharmacy, Universidad Nacional de Colombia, Bogotá 111321, Colombia

^d Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States

[†]These authors contributed equally to this work

* Corresponding Author Email: raaltman@purdue.edu

Table of Contents

General Synthetic Information	S1
Reaction Development	S2–4
Synthesis and Characterization	S5–13
Cyclic Voltammetry	S13–15
Fluorescence Quenching Experiments	S16–22
References	S22
¹ H, ¹³ C{ ¹ H}, and ¹⁹ F NMR Spectra	S23–84
	General Synthetic Information Reaction Development Synthesis and Characterization Cyclic Voltammetry Fluorescence Quenching Experiments References ¹ H, ¹³ C{ ¹ H}, and ¹⁹ F NMR Spectra

General Synthetic Information

Air- and moisture-sensitive reactions were carried out in oven-dried one-dram vials sealed with poly(tetrafluoroethylene) (PTFE)-lined septa or glassware sealed with rubber septa under an atmosphere of dry nitrogen or argon. Plastic syringes equipped with stainless-steel needles were used to transfer air- and moisture-sensitive liquid reagents. Reactions were stirred using Teflon-coated magnetic stir bars, and elevated temperatures were maintained using thermostat-controlled heating mantles. Light-promoted reactions were conducted using an EvoluChem PhotoRedOx Box photoreactor equipped with a Kessil PR160 427 nm light with a peak intensity at 427 nm operating at 40 W. Organic solvents were removed using a rotary evaporator with a diaphragm vacuum pump. Thin-layer analytical chromatography was performed on silica gel UNIPLATE Silica Gel HLF UV254 plates, and spots were visualized by quenching of ultraviolet light ($\lambda = 254$ nm). Purification of products was accomplished by automated flash column chromatography on silica gel (VWR Common Silica Gel 60 Å, 40–60 µm) or C18 silica gel (Teledyne RediSep Gold C18 High Performance Columns, 100 Å, 20–40 µm).

Unless otherwise noted, reagents were purchased from various commercial sources and used as received. Specifically, anhydrous PhMe (99.8%) was purchased from Thermo Fisher Scientific and stored in an N₂ glovebox. When commercially available, anhydrous grade alcohols were purchased and stored in an N₂ glovebox. When anhydrous alcohols were not available, the highest available grade of purity was purchased and used as received.

NMR spectra were recorded on Bruker DRX 500 MHz (¹H at 500 MHz, ¹³C{¹H} at 126 MHz, and ¹⁹F at 470 MHz) or Bruker Avance III 800 with a QCI cryoprobe (¹H at 800 and ¹³C{¹H} at 201 MHz) nuclear magnetic resonance spectrometers. ¹H NMR spectra were calibrated against the peak of the residual CHCl₃ (7.26 ppm)

^a Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States

or DMF-d₇ (8.03 ppm). ¹³C{¹H} NMR spectra were calibrated against the peak of CDCl₃ (77.2 ppm) or DMF-d₇ (163.2 ppm). ¹⁹F NMR spectra were calibrated against the peak of CFCl₃ (0.0 ppm). NMR data are represented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constant in hertz (Hz), integration. High-resolution mass determinations were obtained by electrospray ionization (ESI) or atmospheric-pressure chemical ionization (APCI) on a Waters LCT Premier mass spectrometer. Infrared spectra were measured on a PerkinElmer Spectrum Two Fourier Transform Infrared Spectrometer by drying samples on a diamond ATR sample base plate. Uncorrected melting points were measured on a Chemglass Digital Melting Point apparatus.

Reaction Development

Table S1: Initial Reaction Development

	$= \operatorname{Ar} \qquad 1.5$ $\operatorname{MeO} \qquad F \qquad 2\%$ $\operatorname{MeO} \qquad F \qquad 10^{\circ}$ $\operatorname{MeO} \qquad F \qquad 40^{\circ}$ $\operatorname{PhMe} \qquad 0^{\circ}$	5 equiv. EtOH Photocatalyst % Additive(s) N 427 nm LED 10 MI 30 °C 13 h	MeO MeO OMe	+ MeO	S/S F F	e–R
	6a	,,	7a		8	
	r _{Bu} → Mes r _{Bu} → N Ph BF PC-I	ⁱ Pr ⁱ Bu ⁱ Bu ⁱ Pr ⁱ Pr ⁱ Pr ⁱ Fr ⁱ Fr	-S) ₂	D ₂ Me Se Se NHCO ₂ X-PhSe) ₂	DMe Me	
Entry	Photocatalyst (PC)	<i>E</i> _{1/2} [PC*/PC ⁿ⁻¹] (V)	Additive(s)	% Conv. 6a	% Yield 7a	% Yield 8
1	{Ir[dF(CF ₃)ppy] ₂ -(5,5'-dCF ₃ bpy)}PF ₆	_	10% (PhS) ₂ , 10% lutidine	77	11	5
2	${Ir[dF(CF_3)ppy]_2-(5,5'-dCF_3bpy)}PF_6$	+ 1.30 ¹	(PhS) ₂	47	12	6
3	[lr(dtbbpy)(ppy)2]PF6	+ 0.28 ²	(PhS) ₂	33	0	0
4	Rose Bengal	+ 0.28 ³	(PhS) ₂	<5	0	0
5	Eosin Y (dibasic)	+ 0.45 ³	(PhS) ₂	<5	0	0
6	{Ir[dF(CF ₃)ppy] ₂ -(dtbbpy)}PF ₆	+ 0.83 ¹	(PhS) ₂	48	5	2
7	PC-I	+ 1.70 ⁴	(PhS) ₂	45	20	5
8	PC-I	-	(TRIP-S) ₂	>95	57	5
9	PC-I	-	(PhSe) ₂	>95	70	0
10	PC-I	-	(X-PhSe) ₂	26	10	0
11	PC-I	-	(4-CF ₃ -PhSe) ₂	>95	30	0
12	PC-I	-	(BnSe)2	>95	75	0
13	_	-	(BnSe) ₂	0	0	0
14	PC-I	-	-	22	<5	0

Oven-dried one-dram vials equipped with magnetic stir bars were each charged with *gem*-difluoroalkene **6a** (0.023 g, 0.10 mmol), additive(s) (10 µmol), and photocatalyst (2.0 µmol). The vials were then sealed with PTFE-lined septa and subsequently evacuated and backfilled with dry argon (3x). Dry PhMe (1.0 mL, 0.10 M) and EtOH (8.7 µL, 0.15 mmol) were added *via* a syringe, and the vials were irradiated by a 40 W 427 nm LED lamp (entries 1–3, 6–14) or a 40 W 525 nm LED lamp (entries 4, 5) cooled by a fan (30 °C) for 13 h. Upon completion, an internal standard of α,α,α -trifluorotoluene (10 µL) was added to each crude reaction mixture, and the resultant mixtures were thoroughly mixed. Aliquots of each reaction mixture were subsequently transferred to NMR tubes and analyzed by ¹⁹F NMR (470 MHz, PhMe): α,α,α -trifluorotoluene δ -66.0 (s); side product **8** (entries 1-7) δ - 76.96 (t, *J* = 10.8 Hz); side product **8** (entry 8) δ -74.3 (m); product **7a** δ -77.0 (t, *J* = 10.9 Hz); *gem*-difluoroalkene **6a** δ -87.8 (dd, *J* = 35.8, 25.8 Hz), -89.4 (d, *J* = 35.9 Hz); [ns = 8; D1 = 5 s]. Spectra were baseline corrected, phased, and integrated using MestReNova. Additional observed side products are listed in Chart S1.

Chart S1. Additional Side Products from Table S1

Compound identities were assigned based on interpretations of mass spec data obtained by GC-MS. "Entry X" indicates the reaction(s) from Table S1 in which the compound was observed.

Table S2: Solvent Screening

Ar F 6a	1.5 equi 2% I .F	v. EtOH P C-I 3nSe) ₂ → Ar [^] ['] nm LED M], 30 °C, 13 h	OEt F F 7a
Entry	Solvent	% Conv. 6a	% Yield 7a
1	PhMe	>95	75
2	PhCF ₃	Full	<5
3	DCE	Full	0
4	THF	0	0
5	MeCN	0	0
6	DMF	0	0

Oven-dried one-dram vials equipped with magnetic stir bars were each charged with *gem*-difluoroalkene **6a** (0.023 g, 0.10 mmol), 1,2-dibenzyldiselane (3.4 mg, 10 μmol), and **PC-I**: 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (1.2 mg, 2.0 μmol). The vials were then sealed with PTFE-lined septa and subsequently evacuated and backfilled with dry argon (3x). Dry PhMe (1.0 mL, 0.10 M) and EtOH (8.7 µL, 0.15 mmol) were added *via* a syringe, and the vials were irradiated by a 40 W 427 nm LED lamp cooled by a fan (30 °C) for 13 h. Upon completion, an internal standard of α,α,α -trifluorotoluene (10 µL) (entries 1, 3-6) or fluorobenzene (10 µL) (entry 2) was added to each crude reaction mixture, and the resultant mixtures were thoroughly mixed. Aliquots of each reaction mixture were subsequently transferred to NMR tubes and analyzed by ¹⁹F NMR (470 MHz, PhMe): α,α,α -trifluorotoluene δ -66.0 (s); product **7a** δ -77.0 (t, *J* = 10.9 Hz); *gem*-difluoroalkene **6a** δ -87.8 (dd, *J* = 35.8, 25.8 Hz), -89.4 (d, *J* = 35.9 Hz); ¹⁹F NMR (470 MHz, PhCF₃): product **7a** δ -76.4 - -76.5 (m); fluorobenzene δ -113.0 (s); ¹⁹F NMR (470 MHz, THF): α,α,α -trifluorotoluene δ -66.0 (s); *gem*-difluoroalkene **6a** δ -88.1 (dd, *J* = 37.5, 27.0 Hz), -90.1 (d, *J* = 37.5, 26.7 Hz), -89.7 (d, *J* = 37.2 Hz); ¹⁹F NMR (470 MHz, DMF): α,α,α -trifluorotoluene δ -66.0 (s); *gem*-difluoroalkene **6a** δ -88.1 (dd, *J* = 37.5, 27.0 Hz), -90.1 (d, *J* = 37.5, 26.7 Hz), -89.7 (d, *J* = 37.2 Hz); ¹⁹F NMR (470 MHz, DMF): α,α,α -trifluorotoluene δ -66.0 (s); *gem*-difluoroalkene **6a** δ -88.4 (d, *J* = 32.1 Hz), -90.5 (d, *J* = 37.7 Hz); [ns = 8; D1 = 5 s]. Spectra were baseline corrected, phased, and integrated using MestReNova.

Table S3: Optimization of Reagent Loading and Reaction Concentration on a 0.50 mmol Scale

		F -	XX equiv. EtOH XX% PC-I XX% (BnSe) ₂	OEt		
		Ar T F 6a	40 W 427 nm LED PhMe [XX M] , 30 °C, 8 h	Ar F F 7a		
Entry	Equiv. EtOH	% PC, [PC]	% (BnSe)₂	[6a]	% Conv. 6a	% Yield 7a
1	1.1	2.0%, 5.0 mM	5.0%	0.25 M	66	61
2	1.5	2.0%, 5.0 mM	5.0%	0.25 M	67	64
3	2.0	2.0%, 5.0 mM	5.0%	0.25 M	71	68
4	4.0	2.0%, 5.0 mM	5.0%	0.25 M	22	19
5	1.5	0.6%, 1.5 mM	5.0%	0.25 M	90	82
6	1.5	1.0%, 2.5 mM	5.0%	0.25 M	88	81
7	1.5	1.2%, 3.0 mM	5.0%	0.25 M	88	85
8	1.5	1.4%, 3.5 mM	5.0%	0.25 M	80	72
9	1.5	1.2%, 1.7 mM	5.0%	0.14 M	57	49
10	1.5	1.2%, 2.4 mM	5.0%	0.20 M	40	34
11	1.5	1.2%, 3.5 mM	5.0%	0.30 M	20	16
12	1.5	1.2%, 4.3 mM	5.0%	0.36 M	64	57
13	1.5	0.8%, 3 mM	5.0%	0.36 M	Full	78
14	1.5	2.1%, 3 mM	5.0%	0.14 M	90	82
15	1.5	1.2%, 3.0 mM	2.5%	0.25 M	48	45
16	1.5	1.2%, 3.0 mM	10%	0.25 M	86	82

Oven-dried one-dram vials equipped with magnetic stir bars were each charged with *gem*-difluoroalkene **6a** (0.115 g, 0.50 mmol), 1,2-dibenzyldiselane (see table), and **PC-1**: 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (see table). The vials were then sealed with PTFE-lined septa and subsequently evacuated and backfilled with dry argon (3x). Dry PhMe (see table) and EtOH (see table) were added *via* a syringe, and the vials were irradiated by a 40 W 427 nm LED lamp cooled by a fan (30 °C) for 8 h. Upon completion, an internal standard of α , α , α -trifluorotoluene (10 µL) was added to each crude reaction mixture, and the resultant mixtures were thoroughly mixed. Aliquots of each reaction mixture were subsequently transferred to NMR tubes and analyzed by ¹⁹F NMR (470 MHz, PhMe): α , α , α -trifluorotoluene δ -66.0 (s); product **7a** δ -77.0 (t, *J* = 10.9 Hz); *gem*-difluoroalkene **6a** δ -87.8 (dd, *J* = 35.8, 25.8 Hz), -89.4 (d, *J* = 35.9 Hz); [ns = 8; D1 = 5 s]. Spectra were baseline corrected, phased, and integrated using MestReNova.

Synthesis and Characterization

Chart S2. Prepared Substrates

<u>Preparation and Characterization of Substrates</u>: *gem*-Difluoroalkenes **6a–6g** and **6i**,⁵ **6h**,⁶ and **6j**⁷ were prepared according to previously reported procedures. Alcohols *tert*-butyl (*S*)-2-(hydroxymethyl)pyrrolidine-1-carboxylate ⁸ and (*S*)-(1-tosylpyrrolidin-2-yl)methanol ⁹ were prepared according to previously reported procedures.

General Procedure A, for the Photochemical Hydroalkoxylation of *gem*-Difluoroalkenes: An oven-dried one-dram vial equipped with a magnetic stir bar was charged with *gem*-difluoroalkene (0.50 mmol, 1.0 equiv), 1,2-dibenzyldiselane (0.025 mmol, 0.050 equiv), and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (6.0 µmol, 0.012 equiv). When relevant, solid alcohol (1.0 mmol, 1.5 equiv) was then added. The system was sealed with PTFE-lined septa and subsequently evacuated and backfilled with dry N₂ or argon (3x). Dry PhMe (0.50 M) and, when relevant, liquid alcohol (1.0 mmol, 1.5 equiv) was added *via* a syringe, and the vial was irradiated by a 40 W 427 nm LED lamp cooled by a fan (30 °C). Upon completion, the reaction was immediately filtered through a pad of silica using Et₂O (~100 mL) to remove photocatalyst, as some α , α -difluorinated products degraded to form carboxylic acid and ester side-products when exposed to air in the presence of the photocatalyst (Scheme S1). The resultant filtrate was then concentrated onto diatomaceous earth and purified by normal-phase flash chromatography to provide the desired product in >95% purity.

Scheme S1. Common Degradation Side-Products

5-(2-ethoxy-2,2-difluoroethyl)-1,2,3-trimethoxybenzene (**7a**): Following general procedure A, *gem*difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with ethanol (43.8 µL, 0.750 mmol) in the presence of 1,2dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 24 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and pentane (0 \rightarrow 50%) to furnish desired product **7a** as a yellow oil (0.123 g, 89%). ¹H NMR (500 MHz, CDCl₃) δ 6.51 (s, 2H), 3.91 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 6H), 3.83 (s, 3H), 3.16 (t, *J* = 10.8 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.0, 137.3, 128.4, 124.5 (t, *J* = 261.9 Hz), 107.4, 60.9, 59.1 (t, *J* = 7.0 Hz), 56.1, 42.4 (t, *J* = 31.3 Hz), 15.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.28 (t, *J* = 11.0 Hz, 2F). IR (Film) 2941, 2988, 1593, 1509, 1461, 1424, 1325, 1236, 1128, 1028 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₃H₁₈F₂O₄ [M + H]⁺ 276.1173, found 276.1173.

MeS

(4-(2-ethoxy-2,2-difluoroethyl)phenyl)(methyl)sulfane (7b): Following general procedure A, gemdifluoroalkene 6b (0.093 g, 0.50 mmol) was reacted with ethanol (43.8 μL, 0.750 mmol) in the presence of 1,2dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 18 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 10%) to furnish desired product 7b as a colorless oil (0.108 g, 93%). ¹H NMR (500 MHz, CDCl₃) δ 7.24 (s, 4H), 3.92 (q, *J* = 7.1 Hz, 2H), 3.21 (t, *J* = 10.8 Hz, 2H), 2.49 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 137.5, 130.8, 129.6, 126.6, 124.4(t, *J* = 262.8 Hz), 59.1 (t, *J* = 7.0 Hz), 41.5 (t, *J* = 31.3 Hz), 15.8, 15.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.41 (t, *J* = 11.4 Hz, 2F). IR (Film) 2986, 2921, 1496, 1350, 1287, 1269, 1251, 1234, 1018, 817 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₁H₁₄F₂OS [M]⁺ 232.0733, found 232.0719.

4-(2-ethoxy-2,2-difluoroethyl)phenyl benzoate (**7c**): Following general procedure A, *gem*-difluoroalkene **6c** (0.130 g, 0.500 mmol) was reacted with ethanol (43.8 μL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 18 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using acetone and pentane (0 → 20%) to furnish desired product **7c** as a colorless oil (0.118 g, 77%). ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.68 – 7.64 (m, 1H), 7.54 (td, *J* = 8.0, 1.9 Hz, 2H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.26 – 7.18 (m, 3H), 3.94 (q, *J* = 7.1 Hz, 2H), 3.30 (t, *J* = 10.7 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.2, 150.9, 134.5, 133.7, 130.3, 129.6, 129.3, 128.7, 128.0, 124.3 (t, *J* = 263.2 Hz), 123.7, 120.8, 59.2 (t, *J* = 7.0 Hz), 41.9 (t, *J* = 31.6 Hz), 1.50. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.02 (t, *J* = 9.9 Hz, 2F). IR (Film) 3064, 2936, 1738, 1490, 1449, 1266, 1236, 1148, 1025, 706cm ⁻¹. HRMS (APCl)⁺ *m/z* calc'd C₁₇H₁₆F₂O₃ [M – F]⁺ 287.1083, found 287.1074.

4-(2-ethoxy-2,2-difluoroethyl)phenyl 4-methylbenzenesulfonate (**7d**): Following general procedure A, *gem*difluoroalkene **6d** (0.155 g, 0.500 mmol) was reacted with ethanol (43.8 μL, 0.750 mmol) in the presence of 1,2dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 24 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 40%) to furnish desired product **7d** as a colorless solid (0.143 g, 80%). ¹H NMR (800 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 6.93 (d, *J* = 8.3 Hz, 2H), 3.88 (q, *J* = 7.1 Hz, 2H), 3.18 (t, *J* = 10.6 Hz, 2H), 2.45 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (201 MHz, CDCl₃) δ 149.0, 145.5, 132.6, 132.0, 131.7, 129.9, 128.7, 124.2 (t, *J* = 262.0 Hz), 122.2, 59.2 (t, *J* = 6.9 Hz), 41.6 (t, *J* = 31.6 Hz), 21.8, 15.00. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.32 (t, *J* = 10.7 Hz, 2F). IR (Film) 2919, 1505, 1374, 1199, 1178, 1155, 1094, 1020, 865 cm ⁻¹. MP 80–88 °C. HRMS (ESI)⁺ *m/z* calc'd C₁₇H₁₈F₂O₄S [M – F]⁺ 337.0910, found 337.0904.

4-(2-ethoxy-2,2-difluoroethyl)benzonitrile (**7e**): Following general procedure A, *gem*-difluoroalkene **6e** (0.083 g, 0.50 mmol) was reacted with ethanol (43.8 μL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 18 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 10%) to furnish desired product **7e** as a colorless oil (0.094 g, 89%). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 3.89 (q, *J* = 7.1 Hz, 2H), 3.28 (t, *J* = 10.3 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H).¹³C{¹H} NMR (126 MHz, CDCl₃) δ 138.2, 131.2, 126.0, 123.8 (t, *J* = 261.9 Hz), 118.8, 111.5, 59.3 (t, *J* = 6.9 Hz), 42.3 (t, *J* = 31.8 Hz), 14.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.51 – -73.67 (m, 2F). IR (Film) 2920, 2850, 2231, 1612, 1350, 1275, 1251, 1024, 827, 749 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₁H₁₁F₂NO [M + H]⁺ 212.0887, found 212.0883.

1-chloro-4-(2-ethoxy-2,2-difluoroethyl)benzene (**7f**): Following general procedure A, *gem*-difluoroalkene **6f** (0.087 g, 0.50 mmol) was reacted with ethanol (43.8 μ L, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μ mol) using a 40 W 427 nm LED cooled by a fan for 18 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 \rightarrow 10%) to furnish desired product **7f** as a colorless oil (0.086 g, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, *J* = 6.8 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 3.90 (q, *J* = 7.2 Hz, 2H), 3.20 (t, *J* = 10.5 Hz, 2H), 1.22 (t, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 133.4, 131.8, 131.3, 128.5, 124.3 (t, *J* = 261.8 Hz), 59.2 (t, *J* = 7.1 Hz), 41.5 (t, *J* = 31.6 Hz), 15.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.57 (t, *J* = 14.9 Hz, 2F). IR (Film) 2987, 2936, 1494, 1350, 1291, 1251, 1271, 1018, 843, 801 cm⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₁H₁₄F₂OS [M + H]⁺ 221.0545, found 221.0550.

3-(2-ethoxy-2,2-difluoroethyl)dibenzo[*b,d*]thiophene (7g): Following general procedure A, *gem*difluoroalkene **6g** (0.123 g, 0.500 mmol) was reacted with ethanol (43.8 µL, 0.750 mmol) in the presence of 1,2dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 18 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 \rightarrow 10%) to furnish desired product **7g** as a colorless oil (0.122 g, 84%). ¹H NMR (500 MHz, CDCl₃) δ 8.30 – 8.00 (m, 2H), 7.93 – 7.83 (m, 1H), 7.62 – 7.32 (m, 4H), 3.97 (q, *J* = 7.1 Hz, 2H), 3.57 (t, *J* = 10.7 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 141.1, 139.2, 136.0, 128.9, 127.5, 126.9, 124.7, 124.3 (t, *J* = 260.9 Hz), 122.8, 121.8, 120.8, 59.3 (t, *J* = 6.9 Hz), 41.3 (t, *J* = 32.1 Hz), 15.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -72.98 (t, *J* = 10.7 Hz, 2F). IR (Film) 3062, 2984, 1732, 1443, 1403, 1260, 1155, 1128, 1093, 750 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₆H₁₄F₂OS [M]⁺ 292.0733, found 292.0703.

3-(2-ethoxy-2,2-difluoroethyl)-1-(phenylsulfonyl)-1H-indole (**7h**): Following general procedure A, *gem*difluoroalkene **6h** (0.160 g, 0.500 mmol) was reacted with ethanol (43.8 μL, 0.750 mmol) in the presence of 1,2dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 13.5 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 35%) to furnish desired product **7h** as a viscous, colorless oil (0.158 g, 90%).¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 2H), 7.63 – 7.48 (m, 3H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.38 – 7.29 (m, 1H), 7.29 – 7.17 (m, 1H), 3.90 (q, *J* = 7.1 Hz, 2H), 3.32 (t, *J* = 10.4 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 138.3, 135.1, 133.9, 131.0, 129.3, 126.9, 125.8, 124.9, 124.3 (t, *J* = 261.9 Hz), 123.4, 120.1, 114.4, 113.7, 59.3 (t, *J* = 6.9 Hz), 32.3 (t, *J* = 33.5 Hz), 15.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.96 (t, *J* = 11.4 Hz, 2F). IR (Film) 2989, 1448, 1373, 1274, 1247, 1177, 1122, 1086, 1030, 977 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₈H₁₇F₂NO₃S [M]⁺ 365.0897, found 365.0889.

4-(2-ethoxy-2,2-difluoroethyl)-1-phenyl-1*H***-pyrazole (7i): Following general procedure A,** *gem***-difluoroalkene 6i** (0.103 g, 0.500 mmol) was reacted with ethanol (43.8 µL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 18 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 \rightarrow 10%) to furnish desired product **7i** as a colorless oil (0.106 g, 84%). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.70 – 7.65 (m, 3H), 7.46 – 7.39 (m, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 3.94 (q, *J* = 7.1 Hz, 2H), 3.20 (t, *J* = 10.7 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 141.9, 140.1, 129.4, 126.7, 126.4, 124.2 (t, *J* = 263.3 Hz), 119.0, 114.3, 59.2 (t, *J* = 7.1 Hz), 31.7 (t, *J* = 33.3 Hz), 15.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -75.20 (t, *J* = 10.9 Hz, 2F). IR (Film)

2987, 2936, 1601, 1505, 1402, 1279, 1246, 1026, 756, 691 cm $^{-1}$. HRMS (APCI)⁺ *m*/*z* calc'd C₁₃H₁₄F₂N₂O [M + H]⁺ 253.1145, found 253.1152.

tert-butyl 4-(difluoro(4-methoxybutoxy)methyl)piperidine-1-carboxylate (7j): Following general procedure A, *gem*-difluoroalkene 6j (0.117 g, 0.500 mmol) was reacted with 4-methoxybutan-1-ol (84.0 µL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 13.5 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 40%) to furnish desired product 7j as a pale yellow oil (0.114 g, 67%). ¹H NMR (500 MHz, CDCl₃) δ 4.14 (s, 2H), 3.83 (t, *J* = 5.8 Hz, 2H), 3.37 (t, *J* = 5.9 Hz, 1H), 3.31 (d, *J* = 1.5 Hz, 3H), 2.62 (s, 2H), 2.04 – 1.90 (m, 1H), 1.77 (d, *J* = 13.2 Hz, 2H), 1.69 – 1.55 (m, 4H), 1.46 – 1.30 (m, 12H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.8, 125.8 (t, *J* = 262.9 Hz), 79.6, 72.2, 62.7 (t, *J* = 6.6 Hz), 58.7, 43.4, 42.3 (t, *J* = 28.8 Hz), 28.5, 26.1, 26.0, 25.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -82.52 (s, 2F). IR (Film) 2960, 2935, 2867, 1695, 1423, 1366, 1328, 1236, 1157, 1040 cm ⁻¹. HRMS (APCl)⁺ *m*/z calc'd C₁₁H₂₀F₂NO₂ [M + H – F]⁺ 218.1556, found 218.1555.

5-(2,2-difluoro-2-(4-methoxybutoxy)ethyl)-1,2,3-trimethoxybenzene (**7k**): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with 4-methoxybutan-1-ol (84 μL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 16 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 20%) to furnish desired product **7k** as a colorless oil (0.122 g, 73%). ¹H NMR (500 MHz, CDCl₃) δ 6.49 (s, 2H), 3.91 – 3.74 (m, 11H), 3.34 (t, *J* = 6.0 Hz, 2H), 3.29 (s, 3H), 3.15 (t, *J* = 10.7 Hz, 2H), 1.67 – 1.57 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 152.9, 137.3, 128.3, 124.3 (t, *J* = 262.1 Hz), 107.4, 72.7, 72.1, 70.6, 62.8 (t, *J* = 6.5 Hz), 60.9, 58.6, 56.1, 42.3 (t, *J* = 31.4 Hz), 26.5, 26.1, 26.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.12 (t, *J* = 10.9 Hz, 2F). IR (Film) 2939, 2839, 1732, 1507, 1423, 1318, 1239, 1123, 1007, 971 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₆H₂₄F₂O₅ [M – F]⁺ 315.1608, found 315.1215.

(2-(1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)ethyl)trimethylsilane (7I): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with 2-(trimethylsilyl)ethan-1-ol (108 μ L, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μ mol) using a 40 W 427 nm LED cooled by a fan for 24 h. The material was isolated according to the general procedure and further purified by normal-phase flash chromatography using EtOAc and pentane (0 \rightarrow 20%) to obtain a mixture of unreacted **6a** and desired product **7I**. This starting material and product mixture was then purified by normal-phase preparative TLC using EtOAc and pentane (20%) to furnish desired product **7I** as a pale brown oil (0.124 g, 71%). ¹H NMR (500 MHz, CDCl₃) δ 6.51 (s, 2H), 3.96 (t, *J* = 8.2 Hz, 2H), S9

3.85 (s, 6H), 3.83 (s, 3H), 3.15 (t, J = 10.7 Hz, 2H), 0.94 (t, J = 8.3 Hz, 2H), -0.00 (s, 9H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.0, 137.3, 128.4, 124.5 (t, J = 261.7 Hz), 107.5, 61.2 (t, J = 7.2 Hz), 60.9, 56.1, 42.6 (t, J = 31.5 Hz), 17.8, -1.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.82 (t, J = 10.0 Hz, 2F). IR (Film) 2954, 2841, 1593, 1463, 1325, 1278, 1246, 1130, 1028, 838 cm ⁻¹. HRMS (APCI)⁺ m/z calc'd C₁₆H₂₆F₂O₄Si [M]⁺ 348.1568, found 348.1579.

4-(1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)butan-2-one (**7m**): Following general procedure A, *gem*difluoroalkene **6a** 0.115 g, 0.500 mmol) was reacted with 4-hydroxybutan-2-one (65 μL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 16 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 20%) to furnish desired product **7m** as a colorless oil (0.081 g, 51%). ¹H NMR (500 MHz, CDCl₃) δ 6.46 (s, 2H), 4.13 (t, *J* = 6.2 Hz, 2H), 3.87 – 3.81 (m, 9H), 3.14 (t, *J* = 10.8 Hz, 2H), 2.69 (t, *J* = 6.2 Hz, 2H), 2.11 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 205.9, 153.0, 137.3, 128.0, 124.3 (t, *J* = 263.8 Hz),107.4, 60.9, 58.5 (t, *J* = 6.3 Hz), 56.1, 43.0, 42.2 (t, *J* = 31.0 Hz), 30.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.48 (t, *J* = 11.4 Hz, 2F). IR (Film) 2941, 2840, 1733, 1591, 1508, 1320, 1241, 1125, 1007, 838 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₅H₂₀F₂O₅ [M – F]⁺ 299.1295, found 299.1378.

5-(2-(3-bromopropoxy)-2,2-difluoroethyl)-1,2,3-trimethoxybenzene (**7n**): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with 3-bromopropan-1-ol (65 μL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 16 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 20%) to furnish desired product **7n** as a colorless oil (0.099 g, 64%). ¹H NMR (500 MHz, CDCl₃) δ 6.49 (s, 2H), 3.99 (t, *J* = 5.6 Hz, 2H), 3.91 – 3.82 (m, 9H), 3.40 (t, *J* = 6.1 Hz, 2H), 3.17 (t, *J* = 10.7 Hz, 2H), 2.12 (p, *J* = 6.3 Hz, 2H).¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.0, 137.4, 128.1, 126.5, 124.4 (t, *J* = 261.1 Hz), 122.3, 107.4, 61.0, 60.8 (t, *J* = 12.7 Hz), 56.2, 42.2 (t, *J* = 30.9 Hz), 32.4, 29.4.¹⁹F NMR (470 MHz, CDCl₃) δ - 74.13 – -74.29 (m, 2F).IR (Film) 2960, 2940, 2839, 1733, 1590, 1459, 1240, 1125, 1008, 974 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₄H₁₉BrF₂O₄ [M – F]⁺ 349.0451, found 349.0465.

5-(2-(3-(4-bromophenyl)propoxy)-2,2-difluoroethyl)-1,2,3-trimethoxybenzene (**7o**): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with 3-(4-bromophenyl)propan-1-ol (0.12 mL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 8 h. The

material was isolated according to the general procedure and purified by normal-phase flash chromatography using Et₂O and pentane (0 \rightarrow 20%) to furnish desired product **7o** as a yellow oil (0.163 g, 73%). ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.53 (s, 2H), 3.90 – 3.80 (m, 11H), 3.18 (t, *J* = 10.5 Hz, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 1.94 – 1.83 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.1, 140.2, 137.4, 131.6, 130.3, 128.4, 124.3 (t, *J* = 262.1 Hz), 119.8, 107.5, 61.8 (t, *J* = 6.4 Hz), 61.0, 56.2, 42.7, 42.3 (t, *J* = 31.2 Hz), 42.2, 31.4, 30.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.14 (t, *J* = 11.2 Hz, 2F). IR (Film) 2935, 2840, 1591, 1460, 1324, 1233, 1127, 1010, 835, 707 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₂₀H₃₂F₂O₉ [M – F]⁺ 425.0764, found 425.0766.

5-(2,2-difluoro-2-(methoxy-d₃)ethyl-1-d)-1,2,3-trimethoxybenzene (**7p**): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with methanol-d₄ (31 μL, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 μmol) using a 40 W 427 nm LED cooled by a fan for 16 h. The material was isolated according to the general procedure, then subjected to normal-phase flash chromatography using EtOAc and hexanes (0 \rightarrow 20%) to furnish the desired product **7p** as a pale yellow oil (0.130 g, 98%).¹H NMR (500 MHz, CDCl₃) δ 6.49 (s, 2H), 3.83 (m, 9H), 3.14 (t, *J* = 10.5 Hz, 1H). ²H NMR (77 MHz, CDCl₃) δ 5.83 (s, 3²H), 5.50 (s, 1²H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.0, 137.3, 128.1, 124.5 (t, *J* = 262.5 Hz), 107.4, 60.8, 56.1, 42.0 – 41.4 (m). ¹⁹F NMR (470 MHz, CDCl₃) -76.70 – -76.84 (m, 2F). IR (Film) 2942, 2841, 1591, 1459, 1422, 1324, 1240, 1126, 1095, 1008 cm⁻¹. HRMS (APCl)⁺ *m/z* calc'd C₁₂H₁₂D₄F₂O₄ [M + H]⁺ 267.1346, found 267.1338.

(3aR,5R,5aS,8aS,8bR)-5-((1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)methyl)-2,2,7,7-

tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran (7q): Following general procedure A, *gem*difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (195 mg, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 16 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 \rightarrow 20%) to furnish desired product **7q** as a yellow oil (0.157 g, 64%). ¹H NMR (500 MHz, CDCl₃) δ 6.52 – 6.46 (m, 2H), 5.55 – 5.45 (m, 1H), 4.62 – 4.49 (m, 1H), 4.35 – 4.24 (m, 1H), 4.16 – 4.09 (m, 1H), 4.06 – 3.94 (m, 2H), 3.94 – 3.79 (m, 10H), 3.17 (t, *J* = 10.7 Hz, 2H), 1.50 – 1.37 (m, 6H), 1.35 – 1.26 (m, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 152.9, 137.2, 128.1, 124.4 (t, *J* = 263.1 Hz), 109.6, 108.8, 107.4, 96.3, 71.0, 70.7, 70.5, 66.6, 62.4 (t, *J* = 6.2 Hz), 60.8, 56.1, 42.1 (t, *J* = 30.7 Hz), 26.0, 25.9, 25.0, 24.5. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.78 – -75.01 (m, 2F). IR (Film) 2988, 2939, 1592, 1460, 1325, 1212, 1127, 1070, 1005, 888 cm ⁻¹. HRMS (APCl)⁺ *m/z* calc'd C₂₃H₃₂F₂O₉ [M – F]⁺ 471.2030, found 471.2019.

(*S*)-2-((1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)methyl)-1-tosylpyrrolidine (7r): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with (*S*)-(1-tosylpyrrolidin-2-yl)methanol (0.191 g, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 24 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 → 80%) to furnish desired product **7r** as a pale yellow oil (0.123 g, 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 6.49 (s, 2H), 4.08 (dd, *J* = 10.0, 3.7 Hz, 1H), 3.87 – 3.79 (m, 10H), 3.73 (tt, *J* = 7.6, 3.3 Hz, 1H), 3.34 – 3.30 (m, 1H), 3.17 (t, *J* = 10.6 Hz, 2H), 3.07 (dt, *J* = 9.5, 7.1 Hz, 1H), 2.42 (s, 2H), 1.75 – 1.62 (m, 2H), 1.59 – 1.40 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.0, 143.7, 137.4, 134.2, 129.8, 128.1, 127.6, 124.3 (t, *J* = 263.0 Hz), 107.5, 65.3 (t, *J* = 5.41 Hz), 60.9, 58.3, 56.2, 49.3, 42.2 (t, *J* = 31.0 Hz), 28.5, 23.9, 21.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.11 (dt, *J* = 141.7, 10.8 Hz, 1F), -73.78 (dt, *J* = 141.3, 10.8 Hz, 1F). IR (Film) 3019, 2942, 1594, 1509, 1463, 1326, 1234, 1161, 1129, 754 cm⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₂₃H₂₉F₂NO₆S [M + H]⁺ 486.1762, found 486.1755.

tert-butyl (*S*)-2-((1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)methyl)pyrrolidine-1-carboxylate (7s): Following general procedure A, *gem*-difluoroalkene **6a** (0.115 g, 0.500 mmol) was reacted with *tert*-butyl (*S*)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (0.151 g, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 24 h. The material was isolated according to the general procedure and purified by reverse-phase flash chromatography using MeCN and 0.1% AcOH in H₂O (10 → 100%) to furnish desired product **7s** as a pale yellow oil (0.153 g, 71%). ¹H NMR (500 MHz, DMF-d₇, 60 °C) δ 6.70 (s, 2H), 4.06 – 3.95 (m, 1H), 3.92 (d, *J* = 7.0 Hz, 2H), 3.86 (s, 6H), 3.76 (s, 3H), 3.32 (t, *J* = 10.1 Hz, 3H), 3.26 – 3.11 (m, 1H), 2.02 – 1.93 (m, 1H), 1.91 – 1.68 (m, 3H), 1.46 (s, 9H).¹³C{¹H} NMR (126 MHz, DMF-d₇, 62 °C) δ 155.1, 154.4, 139.3, 129.5, 125.97 (t, *J* = 261.9 Hz), 109.7, 79.8, 64.9, 61.0, 57.2, 47.8, 42.6 (t, *J* = 31.2 Hz), 29.0, 24.2. ¹⁹F NMR (470 MHz, DMF-d₇, 61 °C) δ -71.68 (d, *J* = 143.2 Hz, 1F), -72.42 (d, *J* = 144.6 Hz, 1F). ¹⁹F NMR (470 MHz, DMF-d₇, 19 °C) δ -71.45 – -72.79 (m, 2F). IR (Film) 2974, 2941, 1694, 1593, 1461, 1393, 1325, 1236, 1129, 1032 cm ⁻¹. HRMS (ESI)⁺ m/z calc'd C₂₁H₃₁F₂NO₆ [M – C₅H₉O₂]⁺ 332.1673, found 332.1698.

4-(2-(cyclohexyloxy)-2,2-difluoroethyl)-1-phenyl-1H-pyrazole (**7t**): Following general procedure A, *gem*difluoroalkene **6i** (0.103 g, 0.500 mmol) was reacted with cyclohexanol (0.075 g, 0.750 mmol) in the presence of 1,2-dibenzyldiselane (8.5 mg, 0.025 mmol) and 9-mesityl-3,6-di-*tert*-butyl-10-phenylacridinium tetrafluoroborate (3.4 mg, 6.0 µmol) using a 40 W 427 nm LED cooled by a fan for 24 h. The material was isolated according to the general procedure and purified by normal-phase flash chromatography using EtOAc and hexanes (0 \rightarrow 20%) to furnish desired product **7t** as a pale yellow oil (0.115 g, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.69 – 7.66 (m, 3H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.28 (t, *J* = 6.3 Hz, 1H), 4.28 (tt, *J* = 9.0, 3.9 Hz, 1H), 3.20 (t, *J* = 10.5 Hz, 2H), 1.89 – 1.85 (m, 2H), 1.75 – 1.71 (m, 2H), 1.54 – 1.40 (m, 3H), 1.37 – 1.29 (m, 2H), 1.27 – 1.19 (m, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 142.0, 140.2, 129.5, 126.7, 126.4, 124.7 (t, *J* = 261.3 Hz), 119.0, 114.7, 73.2, 33.4, 32.2 (t, *J* = 33.7 Hz), 25.4, 24.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -72.13 (t, *J* = 11.4 Hz, 2F). IR (Film) 2939, 2860, 1601, 1506, 1402, 1291, 1239, 1093, 1012, 954 cm ⁻¹. HRMS (APCI)⁺ *m/z* calc'd C₁₇H₂₀F₂N₂O [M + H]⁺ 307.1622, found 307.1660.

Cyclic Voltammetry

Samples were prepared with anhydrous, degassed THF (5 mL), tetra-*n*-butylammonium hexafluorophosphate (0.10 M), ferrocene (3 µmol), and analyte (5 µmol). A three-electrode configuration was employed, which consisted of a glassy carbon working electrode (3 mm diameter disk), platinum wire counter electrode, and silver wire pseudoreference electrode. Cyclic voltammograms were collected under an N₂ atmosphere (glovebox) with a Gamry Interface 1000 potentiostat at a scan rate of 100 mV/s. Data was analyzed using OriginPro software. All reported peak potentials (E_p) were referenced to the $E_{1/2}$ value for the reversible Fc/Fc⁺ redox couple and represent the average of two independent measurements (rounded to the nearest 0.1 V), while pictured cyclic voltammograms represent one of the two independent measurements. Black arrows on the graphs indicate the scan direction.

Cyclic Voltammogram of gem-Difluoroalkene 6a

6a (vs. Fc/Fc⁺): E_p = +1.0 V

Cyclic Voltammogram of gem-Difluoroalkene 6e

6e (vs. Fc/Fc⁺): *E*_p = +1.3 V

Cyclic Voltammogram of gem-Difluoroalkene 6j

6j (vs. Fc/Fc⁺): *E*_p = +1.4 ∨

Potential (V)

(BnSe)₂ (vs. Fc/Fc⁺): *E*_p = −1.7 V

Fluorescence Quenching Experiments

Fluorescence intensity measurements were measured using a BioTek Synergy NEO2 microplate reader using the instrument's monochromator functionality at an excitation wavelength of 420 nm (<6 nm bandwidth) and an emission detection wavelength of 517 nm, which correspond to the absorption and emission maxima for **PC-I**, respectively.⁴ Specifically, samples were prepared in an N₂ glovebox in polypropylene opaque flat-bottomed 96-well plates. For a given experiment, one well contained **PC-I** (0.10 mM) alone in anhydrous MeCN or PhMe (150 μ L total). The subsequent wells (3–6 total) contained increasing concentrations of quencher (see below for specific values) in addition to **PC-I** (0.10 mM) in anhydrous MeCN or PhMe (150 μ L total). All wells were repeated (3–6 replicants each per experiment). The 96-well plate was sealed with optical adhesive film (Applied Biosystems MicroAmp) prior to removal from the glovebox, and the plate was read within 5 minutes of application of the film to prevent solvent condensation.

The recorded single-point fluorescence intensities were then used to construct Stern-Volmer plots according to the following equation:

$$\frac{I^{\circ}}{I} = 1 + k_q \tau[Q]$$

Where I° is the recorded fluorescence intensity in the absence of quencher, I is the recorded fluorescence intensity in the presence of quencher, [Q] is the concentration of quencher, τ is the literature-reported value for the lifetime of the excited state **PC-I** in the absence of quencher (14.4 ns),⁴ and k_q is the bimolecular quenching constant. Specifically, the "y-values" $\left(\frac{I^{\circ}}{I}\right)$ were obtained by dividing each replicant fluorescence intensity value from the wells containing **PC-I** alone by each replicant fluorescent intensity value from the wells containing quencher. This treatment of data better incorporates error into the full dataset and results in an expansion of data such that the total number of "y-values" is the square of the number of experimentally determined fluorescence intensities ($I^{\circ} + I$). "x-Values" were simply [Q]. Stern-Volmer plots using the full dataset were then constructed in GraphPad Prism, which returned values for slope, y-intercept, R², and error bars representing standard error. The slope of the graph was used to calculate k_q in units of ($M^{-1} \cdot s^{-1}$) using the following relationship:

$$k_q = \frac{slope}{\tau}$$

 k_q was not determined for plots with fitted lines having R² < 0.5, and these experiments were interpreted as failing to show fluorescence quenching of **PC-1** by the tested compound.

Tested concentrations of 6a: 0, 1.00, 2.50, 5.00, and 10.54 mM $k_q = (8.33 \pm 0.07) \times 10^9 \text{ M}^{-1} \cdot \text{s}^{-1}$

Stern-Volmer Plot for Compound 6a – in PhMe

Tested concentrations of 6a: 0, 5.00, 10.00, 50.00, and 108.85 mM

 $k_q = (3.76 \pm 0.04) \times 10^9 \text{ M}^{-1} \cdot \text{s}^{-1}$

Tested concentrations of 6e: 0, 25.0, 50.0, 100.0, and 196.5 mM $k_q = N.D.$ due to absence of trend

Stern-Volmer Plot for Compound 6e – in PhMe

Tested concentrations of 6e: 0, 10.00, 25.00, and 73.02 mM

 $k_q = N.D.$ due to absence of trend

Tested concentrations of 6j: 0, 10.0, 50.0, and 102.0 $\ensuremath{\mathsf{mM}}$

 $k_q = (2.16 \pm 0.06) \times 10^8 \text{ M}^{-1} \cdot \text{s}^{-1}$

Tested concentrations of (BnSe)₂: 0, 0.46, 0.92, 2.29, 4.59, 6.88, and 9.67 mM $k_q = (9.10 \pm 0.07) \times 10^9 \text{ M}^{-1} \cdot \text{s}^{-1}$

Stern-Volmer Plot for (BnSe)₂ – in PhMe

Tested concentrations of (BnSe)₂: 0, 5.00, 10.00, 50.00, and 95.33 mM

 $k_{q} = (2.83 \pm 0.03) \times 10^{9} \text{ M}^{-1} \cdot \text{s}^{-1}$

Tested concentrations of EtOH: 0, 0.50, 1.00, 2.50, 5.00, 7.50, and 10.00 mM

 k_q = N.D. due to absence of trend

Stern-Volmer Plot for PhMe – in MeCN

Tested concentrations of PhMe: 0, 5.00, 10.00, 50.00, 100.00 mM

 $k_q = N.D.$ due to absence of trend

References

- 1 E. Tsui, A. J. Metrano, Y. Tsuchiya and R. R. Knowles, *Angew. Chemie Int. Ed.*, 2020, **59**, 11845–11849.
- 2 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, *Chem. Rev.*, 2013, **113**, 5322–5363.
- 3 T. Y. Shang, L. H. Lu, Z. Cao, Y. Liu, W. M. He and B. Yu, *Chem. Commun.*, 2019, **55**, 5408–5419.
- 4 A. Joshi-Pangu, F. Lévesque, H. G. Roth, S. F. Oliver, L. C. Campeau, D. Nicewicz and D. A. DiRocco, *J. Org. Chem.*, 2016, **81**, 7244–7249.
- 5 J. P. Sorrentino, D. L. Orsi and R. A. Altman, J. Org. Chem., 2021, 86, 2297–2311.
- 6 D. L. Orsi, B. J. Easley, A. M. Lick and R. A. Altman, *Org. Lett.*, 2017, **19**, 1570–1573.
- J. P. Sorrentino, R. M. Herrick, M. K. Abd El-Gaber, A. Z. Abdelazem, A. Kumar and R. A. Altman, *J. Org. Chem.*, 2022, **87**, 16676–16690.
- 8 L. Wang, R. Tang and H. Yang, *J. Korean Chem. Soc.*, 2013, **57**, 591–598.
- 9 Q. Y. Li, S. N. Gockel, G. A. Lutovsky, K. S. DeGlopper, N. J. Baldwin, M. W. Bundesmann, J. W. Tucker, S. W. Bagley and T. P. Yoon, *Nat. Chem.*, 2022, **14**, 94–99.

NMR Spectra for Compound 5-(2-ethoxy-2,2-difluoroethyl)-1,2,3-trimethoxybenzene (7a)

NMR Spectra for Compound (4-(2-ethoxy-2,2-difluoroethyl)phenyl)(methyl)sulfane (7b)

NMR Spectra for Compound 4-(2-ethoxy-2,2-difluoroethyl)phenyl benzoate (7c)

NMR Spectra for Compound 4-(2-ethoxy-2,2-difluoroethyl)phenyl 4-methylbenzenesulfonate (7d)

Parameter	Value	1					DCID								
Title	rherric-LGC-77-Isolated-800.2.fid	.03 .60 .96		7 7			16 C	2 2 28	<u></u>	1 9 2		2 2	6F		
Origin	Bruker BioSpin GmbH	149 145 132 131	129 129 128 128 124 122	7				59.5	41.7	41.6 41.4		51.8	14- 2.		
Solvent	CDCI3		SV/	I				$\mathbf{\nabla}$	i, i	\mathbf{V}					
Temperature	298.0									-					
Pulse Sequence	zqpq30														
Experiment	1D														
Probe	5 mm CPQCI 1H-31P/ 13C/ 15N/ D Z-GRD Z114952/ 0003														
Number of Scans	586														
Receiver Gain	912.0														
Relaxation Delay	0.1500						L								
Pulse Width	12.0000														
Presaturation Frequen	су														
Acquisition Time	0.6554														
Acquisition Time															
Acquisition Date	2023-01-11115:23:20														
Sportromotor Frequen	2023-01-11113.23.27														
Spectrol Width	E0000.0														
	-2979 7														
Nucleus	120														
Acquired Size	22769														
Spectral Size	65536														
TsO	F F							ł		ĺ					
													I		
	<i>᠁᠁</i> ᠉᠉᠄᠆᠆᠆᠘᠘ᡩᠳ᠆᠘᠘᠘ᡤᢛᠱᡀ᠄ᢤᢛᡀ᠉ᢁᠳᡄ᠃᠂᠔ᡓᠧᠳᡘᠱᡊᡣᢂ᠉ᡣᠬᡊᢩ᠘᠉᠅ᡧᡢᡊᢩ᠕᠅᠅ᡧᡢᢓ᠉᠅᠁᠁ᡁᡨᢓᡬᡟ᠉ᢂᡋᠥᠶ᠁	⋓⋰⋗∊⋎⋳ ⋳⋣ ∁∊∊⋳⋎∊⋪⋰∊ _⋛ ⋳⋳∊⋨⋨⋔⋳⋎⋖⋪⋬⋎∊⋺⋎⋈∊⋛⋳∊⋪	ben h. aus en ekselselselselse permekselselselse	44,767-94-757,6764,698,7499	~~~~	~~~	and galanting and	aan,gaaaa,aan,aan,aan,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****		490 filo an fraidean ann an 184	~~~
230 220 210	200 190 180 170 160	150 140	130 120	110 f1 (ppm)	100	90	80 70) 60	50	40	30	20	10	0	-10

NMR Spectra for Compound 4-(2-ethoxy-2,2-difluoroethyl)benzonitrile (7e)

NMR Spectra for Compound 1-chloro-4-(2-ethoxy-2,2-difluoroethyl)benzene (7f)

NMR Spectra for Compound 3-(2-ethoxy-2,2-difluoroethyl)dibenzo[b,d]thiophene (7g)

NMR Spectra for Compound 3-(2-ethoxy-2,2-difluoroethyl)-1-(phenylsulfonyl)-1H-indole (7h)

NMR Spectra for Compound 4-(2-ethoxy-2,2-difluoroethyl)-1-phenyl-1H-pyrazole (7i)

NMR Spectra for Compound tert-butyl 4-(difluoro(4-methoxybutoxy)methyl)piperidine-1-carboxylate (7j)

					0	CC13					
Parameter	Value	5	2 1 0			8					
litle	rherric-RMH3-12-Isolated.3.fid	54.1	27.9		9.61	7.1(2.2	2.71 2.71 8.66	22.24	8.51 6.12 5.29		
Origin	GmbH	K					200	4444	2242		
Solvent	CDCI3	I) (((()	Ύ́		Yr		
Temperature	292.8										
Pulse Sequence	zgpq30										
Experiment	1D										
Probe	5 mm PABBO BB/ 19F-1H/ D Z-GRD										
	Z109128/ 0141										
Number of Scans	872										
Receiver Gain	16384.0										
Relaxation Delay	0.1500										
Pulse Width	12.0000										
Presaturation Frequer	псу										
Acquisition Time	0.5456										
Acquisition Date	2023-01-12T14:57:21										
Modification Date	2023-01-12T14:57:24										
Spectrometer Freque	ncy125.71										
Spectral Width	30030.0										
Lowest Frequency	-1258.1										
Nucleus	13C										
Acquired Size	16384										
Spectral Size	65536										
Boc _N /									11		
	F F						1				
					i i						
								М			
~~~~~	ŧĸŊġĸŗſĸŢĸĸĸĊĬĸĸŊĸĸĸĸĸĸŧĊĬĸĸĸĸſĬŔĸŔĸIJŧŖſĸĿŖĸŶŔĸſŔĿſŶĬŊĸĸĸĬĸŀŔĸĬĸĬĸĬĸĬĸĬĸĬĸĬĸĬĸĬĸĸĬŔĬĸĸĸĸţĸĬĸĸĬĬĸ	, our way and the second second second	ere	<i>โลโฟฟละให้สะสะบาลสะคลใ</i> ห้ระการ์ที่สุดให้เห็นสะการ์ได้ไปไป	www.weineren.weineren.weineren hauf	Marine Marine	an way have been all	of the second the second the second the second terms of the second s	resurgesting for a former and	rimtelinenseerillikundikustesse	****
220 210						' '		<b>FO 1</b> 0		10	
220 210	200 190 180 170 160	) 150 140	130 120	110 100	90 80	/0	60	50 40	30 20	10	U -:
				i (hhu)							



NMR Spectra for Compound 5-(2,2-difluoro-2-(4-methoxybutoxy)ethyl)-1,2,3-trimethoxybenzene (7k) S52







#### NMR Spectra for Compound (2-(1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)ethyl)trimethylsilane (7I)







# NMR Spectra for Compound 4-(1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)butan-2-one (7m)







## NMR Spectra for Compound 5-(2-(3-bromopropoxy)-2,2-difluoroethyl)-1,2,3-trimethoxybenzene (7n)









### NMR Spectra for Compound 5-(2-(3-(4-bromophenyl)propoxy)-2,2-difluoroethyl)-1,2,3-trimethoxybenzene (7o)





## NMR Spectra for Compound 5-(2,2-difluoro-2-(methoxy-d₃)ethyl-1-d)-1,2,3-trimethoxybenzene (7p)









NMR Spectra for Compound (3aS,5S,5aR,8aR,8bS)-5-((1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)methyl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (7q)






## NMR Spectra for Compound (S)-2-((1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)methyl)-1-tosylpyrrolidine (7r)







## لي **Value** rherric-RMHअ37-Isolated-VTemp.6.fid Parameter Title 98 96 87 86 86 Origin Solvent CDCI3 333.0 Temperature Pulse Sequence zg30 Experiment 1D Probe 5 mm PABBO BB/ 19F-1H/ D Z-GRD Z109128/ 0141



NMR Spectra for Compound tert-butyl (S)-2-((1,1-difluoro-2-(3,4,5-trimethoxyphenyl)ethoxy)methyl)pyrrolidine-1-carboxylate (7s)







## NMR Spectra for Compound 4-(2-(cyclohexyloxy)-2,2-difluoroethyl)-1-phenyl-1H-pyrazole (7t)





