Competition Between Side-Chain Interactions Dictates 2D Polymer Stacking Order

Alexander K. Oanta, Chloe E. Pelkowski, Michael J. Strauss, and William R. Dichtel*

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

Correspondence Address	
Professor William R. Dichtel	
Department of Chemistry	
Northwestern University	
2145 Sheridan Road	
Evanston, IL 60208 (USA)	
wdichtel@northwestern.edu	

Supporting Information

Table of Contents

Section A: Materials and Methods	S-3
Section B: Synthetic Procedures	S-5
Section C: NMR Digestion Studies	S-8
Section D: PXRD and Nitrogen Porosimetry Data	S-26
Section E: FT-IR Data	S-33
Section F: NMR Data	S-35
Section G: SEM Data	S-38
Section H: References	S-39

List of Figures in Supporting Information

- Figure S1. ¹H NMR spectrum of digested 9%[NR₃]-C₁-2DP.
- Figure S2. ¹H NMR spectrum of digested 8%[Z]-C₁-2DP.
- Figures S3-S10. ¹H NMR spectra of digested Y₁%[NR₃]-C₁-2DPs.
- Figures S11-S19. ¹H NMR spectra of digested Y₂%[Z]-C₁-2DPs.
- Figures S20-23. ¹H NMR spectra of digested Y₁%[NR₃]-C₆-2DPs.
- Figures S24-S27. ¹H NMR spectra of digested Y₂%[NR₃]-C₆-2DPs.
- Figure S28. ¹H NMR spectrum of digested 100%[NR₃]-2DP.
- Figure S29. ¹H NMR spectrum of digested 91%[Z]-2DP.
- Figure S30. PXRD Patterns of Y1%[NR3]-C1-2DPs.
- Figure S31. PXRD Patterns of Y1%[NR3]-C6-2DPs.
- Figure S32. Nitrogen sorption isotherms for Y2%[Z]-C1-2DPs.
- Figure S33. BET plots for Y₂%[Z]-C₁-2DPs.
- Figure S34. BET plots for 25%[Z]-C6-2DP and 67%[Z]-C6-2DP.
- Figure S35. BET plot for 100%[NR₃]-2DP.
- Figure S36. BET plot for 91%[Z]-2DP.
- Figure S37. Pore width distributions for Y₂%[Z]-C₁-2DPs.
- Figure S38. Pore width distributions for 25%[Z]-C6-2DP and 67%[Z]-C6-2DP.
- Figure S39. Pore width distribution for 100%[NR₃]-2DP.
- Figure S40. Pore width distribution for 91%[Z]-2DP.
- Figure S41. FT-IR data comparing monomers and 100%[NR₃]-2DP.
- Figure S42. FT-IR data of 91%[Z]-2DP.
- Figure S43. ¹H NMR spectrum of 1 in CDCl₃.
- Figure S44. Zoomed-in ¹H NMR spectrum of 1 in CDCl₃.
- Figure S45. ¹³C NMR spectrum of 1 in CDCl₃.
- Figure S46. ¹³C CP-MAS NMR spectra.
- Figure S47. SEM images of 100%[NR₃]-2DP.
- Figure S48. SEM images of 91%[Z]-2DP.

A. Materials and Methods

Materials

All chemicals were either purchased from Sigma Aldrich or Tokyo Chemical Industries and used as received or synthesized using procedures adapted from literature reports as noted.

Methods and Instrumentation

Nuclear Magnetic Resonance. All ¹H NMR spectra were collected at 298 K on a Bruker Avance III 500 MHz spectrometer. Chemicals shifts were calibrated using residual NMR solvent (CDCl₃ at 7.26 ppm and DMSO- d_6 at 2.50 ppm) as an internal reference. Solid state cross-polarization magic angle spinning (CP-MAS) ¹³C NMR spectra were collected on a 400 MHz Bruker Avance III HD NMR spectrometer with a 4 mm HX probe. The spinning rate at the magic angle was 10 kHz at 298 K. The Bruker pulse sequence of cross-polarization was used with standard proton decoupling. The spectrum was referenced to adamantane at δ 38.3 ppm.

High-Resolution Mass Spectrometry. HR-MS data was gathered by an Agilent 6210A LC-TOF mass spectrometer, with Atmospheric Pressure Photoionization (APPI) as an ionization source. The mass spectrometer was fitted with an Agilent 1200 HPLC binary pump and an autosampler. The samples were run on this instrument using the direct injection method.

Sonication. Sonication was performed with a Branson 3510 sonicator that was set to a frequency of 42 kHz and a power output of 100 W.

Supercritical CO₂ Drying. Supercritical drying was performed with a Leica EM CPD300 critical point dryer using bone-dry grade CO₂. After samples were loaded into the drying chamber in teabags (ETS Drawstring Tea Filters, sold by English Tea Store) that had been pre-soaked in methanol or acetone, the drying chamber was cooled to 15 °C and filled with CO₂. Subsequently, the CO₂ within the chamber was exchanged 80 times, and finally, the temperature was raised to 40 °C before the system was vented to release pressure.

Nitrogen Porosimetry. Nitrogen gas adsorption isotherms were collected with a Micromeritics ASAP 2420 accelerated surface area and porosity analyzer. 20-30 mg of 2DP samples were loaded into pre-massed dry analysis tubes fitted with filler rods and Transeal caps. The samples were heated to 40 °C at a rate of 1 °C/min and evacuated at 40 °C for 20 minutes, then heated to 100 °C at a rate of 1 °C/min and evacuated at 100 °C for 18 h. After degassing, each sample was weighed again to determine the mass of the activated sample, found by subtracting the initial mass. Then, adsorption measurements were run using UHP-grade N₂, generated by incremental exposure of N₂ up to 1 atm in a liquid nitrogen bath. Surface areas were determined by the BET model (calculated from the linear region of the N₂ isotherm within the pressure ranges shown in the BET plots below) and pore width distributions were determined using DFT models, all found using the instrument software.

Fourier-Transform Infrared Spectroscopy. FT-IR spectra were acquired at room temperature on a Nicolet iS10 FT-IR instrument using a ZnSe ATR attachment and 4 cm⁻¹ resolution.

Powder X-ray Diffraction and Simulations. Powder X-ray diffraction patterns were collected at room temperature using a STOE STADI P powder diffractometer with CuK α 1 radiation (λ = 1.54056 Å). The 2DP samples were placed between acetate foils, mounted into a rotating holder, and measured in transmission geometry mode. Materials Studio (version 5.0) was used to generate simulated PXRD patterns. For each series of 2DPs, an initial 2DP structure was drawn, and the Forcite Module was employed to optimize first the geometry, then the energy, of the structure using parameters from the Universal Force Field. Afterward, the Reflex module was used to generate PXRD patterns. These predicted PXRD patterns were then compared to experimental data. The unit cell parameters were also obtained from these optimized structures.

B. Synthetic Procedures

Synthesis of 2,5-dihydroxy-1,4-dibenzaldehyde.¹ 2,5-dimethoxy-1,4-dibenzaldehyde (3.0 g, 15 mmol, 1.0 equiv) was added to dry CH₂Cl₂ (150 mL) in a flame-dried 250 mL round bottom flask. The atmosphere was flushed with N₂, and the reaction flask cooled to 0 °C before BBr₃ (1.0 M in CH₂Cl₂, 42 mL, 42 mmol, 2.8 equiv) was added dropwise. The reaction was allowed to warm to room temperature while stirring under an atmosphere of N₂ for 18 h. At this time, the reaction was diluted with water (150 mL), which induced the precipitation of an orange solid. The solid was collected by filtration and recrystallized from the minimum amount of boiling ethyl acetate necessary for full dissolution. The orange crystals were collected *via* filtration and dried *in vacuo* to yield the title compound as orange crystals (1.82 g, 71%). ¹H NMR data was consistent with previous reports.¹

Synthesis of 1. A flame-dried 100 mL round bottom flask equipped with a magnetic stir bar was charged with 2,5-dihydroxy-1,4-dibenzaldehyde (500 mg, 3.00 mmol, 1.0 equiv), K₂CO₃ (2.50 g, 18.1 mmol, 6.0 equiv), and DMF (20 mL). Subsequently, 2-chloro-*N*,*N*-dimethylethylamine hydrochloride (1.08 g, 7.50 mmol, 2.5 equiv) was added and the reaction stirred under N₂ at 85 °C for 18 h. The reaction solution was then allowed to cool to room temperature. At this time, the solvent was removed from the reaction mixture with the aid of a rotary evaporator to yield the crude material as a brown solid. To this solid was added CH₂Cl₂ (80 mL) and aqueous NaOH (3 M, 50 mL). The organic layer was separated, and the aqueous layer extracted with additional CH₂Cl₂ (2 × 60 mL). The combined organic layers were washed with aqueous NaOH, dried over MgSO₄, and filtered before being concentrated under reduced pressure overnight to yield **1** as a brown solid (620 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 10.51 (s, 2H), 7.46 (s, 2H), 4.20 (t, *J* = 5.5 Hz, 4H), 2.78 (t, *J* = 5.5 Hz, 4H), 2.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 189.26, 155.16, 129.40, 111.97, 67.65, 58.14, 45.99. ESI HRMS *m*/*z* calculated for [C₁₆H₂₄N₂O₄+H]⁺ 309.1814, found: 309.1809.

Synthesis of 2,5-dihexyloxy-1,4-dibenzaldehyde.² A flame-dried 100 mL round bottom flask equipped with a magnetic stir bar was charged with 2,5-dihydroxy-1,4-dibenzaldehyde (650 mg, 3.9 mmol, 1.0 equiv), K_2CO_3 (3240 mg, 23.5 mmol, 6.0 equiv), and DMF (30 mL). To this solution was added 1-bromohexane (3.3 mL, 23.6 mmol, 6.0 equiv) *via* syringe. The reaction solution was heated to 90 °C under an atmosphere of N_2 for 18 h. After allowing the reaction to cool to room temperature, water (60 mL) was added, and the reaction mixture extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated with the aid of a rotary evaporator. The solids were subjected to column chromatography (SiO₂, 100% hexanes) to yield the title compound (974 mg, 74%) as yellow crystals. ¹H NMR data was consistent with previous reports.²

Synthesis of 100%[NR₃]-2DP.³ A 20 mL scintillation vial was charged with 1 (98.7 mg, 0.32 mmol, 1.5 equiv), TAPB (75 mg, 0.21 mmol, 1.0 equiv), and 13 mL DMF, then gently heated and sonicated until all components dissolved. Subsequently, glacial acetic acid (248 uL) was added *via* syringe and the reaction heated at 90 °C for 3 days. The reaction mixture was moved to a teabag and washed with a 5% triethylamine/methanol solution before washing with methanol in a Soxhlet extractor for 18 h. Afterwards, the solids were activated by supercritical CO₂ drying to yield 101.3 mg (62%) of product as yellow solids.

Converting 100%[**NR**₃]-**2DP to zwitterionic 2DP.** A 20 mL scintillation vial was charged with **100%**[**NR**₃]-**2DP** (35.0 mg, 0.069 mmol of linker, 0.138 mmol of dimethylamine groups) and 6 mL of acetonitrile. To this was added a solution of 1,3-propanesultone (16.9 mg, 0.138 mmol, 2.0 equiv relative to mmol of linker) in 1 mL of MeCN *via* syringe. The reaction mixture was left to heat, without stirring, at 80 °C for 2 days. The reaction mixture was moved to a teabag and rinsed with acetone before washing with acetone in a Soxhlet extractor for 18 h. Afterwards, the solids were activated by supercritical CO₂ drying to yield 49.0 mg (94%) of product as dark orange solids. The final zwitterion loading of the 2DP product was quantified through ¹H NMR digestion (see Section C for procedures and analysis of zwitterion loading).

Synthesis of Y_1 %[NR₃]-C₁-2DPs. A similar procedure was followed as above, but at different molar ratios X%/(100-X)% of the two aldehyde components 1 and 2,5-dimethoxy-1,4-dibenzaldehyde (total moles of aldehydes equaled 1.5 times moles of TAPB). The dimethylamine loadings of the 2DP products were quantified through ¹H NMR digestion (see Section C). Isolated yields ranged from 37%-92% for the 2DPs examined.

Synthesis of $Y_2\%[NR_3]$ - Z_1 -2DPs. A similar procedure was followed as above, but the mmol sultone added arose from the calculated dimethylamine loading (see Section C for a discussion on quantifying this). The final zwitterion loadings of the 2DP products were quantified through ¹H NMR digestion (see Section C). Isolated yields ranged from 91%-100% for the 2DPs examined.

Synthesis of $Y_1\%[NR_3]$ -C₆-2DPs. A similar procedure was followed as $Y_1\%[NR_3]$ -C₁-2DPs above, but using co-linker 2,5-dihexyloxy-1,4-dibenzaldehyde instead of 2,5-dimethoxy-1,4-dibenzaldehyde. Isolated yields ranged from 44%-80% for the 2DPs examined.

Synthesis of Y₂%[NR₃]-Z₆-2DPs. A similar procedure was followed as Y₂%[NR₃]-Z₁-2DPs above. Isolated yields ranged from 72%-100% for the 2DPs examined.

C. NMR Digestion Studies

<u>General 2DP digestion procedure</u>: this procedure was adapted from a previous report.⁴ 1.5 mg of 2DP powder was added to a 4 mL vial along with 0.6 mL of DMSO- d_6 and 0.1 mL of DCl. This mixture was sonicated for 2 minutes and heated at 90 °C for 5 minutes to furnish clear yellow solutions and then submitted for ¹H NMR analysis with DMSO as the reference solvent.

The dimethylamine 2DPs were acid-digested to return aldehyde monomers in solution: a mixture of dimethylamine dialdehyde **1** and co-linker dialkoxy dialdehyde. The difference in integration values between proton resonances was used to calculate the percentage of dimethylamine groups relative to alkoxy groups, and thus the percentage of each linker present.

The zwitterionic 2DPs were acid-digested to return aldehyde monomers in solution: a mixture of dimethylamine dialdehyde $\mathbf{1}$, zwitterionic dialdehyde, and co-linker dialkoxy dialdehyde. The difference in integration values between proton resonances of $\mathbf{1}$ and zwitterionic dialdehyde was used to calculate what percentage of dimethylamine groups were converted to zwitterions, and this percentage multiplied by the original dimethylamine loading gave the final zwitterion loading.

Example calculations are given below.

Example: Dimethylamine 2DPs

Sample calculation for the 9%[NR₃]-C₁-2DP: The signal at $\delta = 2.75$ ppm corresponds to the methyl groups of dimethylamine, with an integration of 1.00 for 12 protons. The signal at $\delta = 3.76$ ppm corresponds to the methyl groups of the methoxy chain, with an integration of 5.23 for 6 protons (in the hexyloxy 2DP series, instead the signal used is at $\delta = 0.70$ ppm corresponding to 6 protons of the terminal methyl groups on the hexyl chains).

Figure S1. ¹H NMR spectrum of digested 9%[NR₃]-C₁-2DP.

integration dimethylamine			1	
12 protons dimethylamine	_		12	-0.007 - 006
integration dimethylamine _ integration alkoxy	_	1	5.23	= 0.087 = 9%
12 protons dimethylamine + 6 protons alkoxy		12	+ 6	

Yielding a final dimethylamine loading of 9%, meaning the remaining 91% of linkers are dimethoxy linkers.

Example: Zwitterionic 2DPs

Sample calculation for the 8%[NR₃]-Z₁-2DP: The signal at $\delta = 2.76$ ppm corresponds to the methyl groups of unreacted dimethylamine, with an integration of 1.00 for 12 protons. The signal at $\delta = 3.09$ ppm corresponds to the methyl groups of (reacted) zwitterion chains, with an integration of 11.69 for 12 protons. As the number of methyl groups is conserved throughout the reaction, thus the dimethylamine integration before the reaction = 1 + 11.69 = 12.69.

Figure S2. ¹H NMR spectrum of digested 8%[Z]-C₁-2DP.

$$Conversion = 1 - \frac{Dimethylamine integration after reaction}{Dimethylamine integration before reaction} = 1 - \frac{1}{12.69} = 92\%$$

Thus, 92% of the dimethylamine groups were converted to zwitterionic groups.

With a conversion percentage known, the final zwitterion loading can be calculated as follows.

Final loading = initial loading × conversion rate (%)

Final loading = $9\% \times 0.92 = 8\%$

Yielding a final zwitterion loading of 8% in this 2DP. The same procedure is applied for the zwitterionic hexyloxy 2DPs.

Figure S3. ¹H NMR spectrum of digested 22%[NR₃]-C₁-2DP.

Figure S4. ¹H NMR spectrum of digested 24%[NR₃]-C₁-2DP.

Figure S5. ¹H NMR spectrum of digested 34%[NR₃]-C₁-2DP.

Figure S6. ¹H NMR spectrum of digested 35%[NR₃]-C₁-2DP.

Figure S7. ¹H NMR spectrum of digested 38%[NR₃]-C₁-2DP.

Figure S8. ¹H NMR spectrum of digested 42%[NR₃]-C₁-2DP.

Figure S9. ¹H NMR spectrum of digested 66%[NR₃]-C₁-2DP.

Figure S10. ¹H NMR spectrum of digested 77%[NR₃]-C₁-2DP.

Figure S11. ¹H NMR spectrum of digested 5%[Z]-C₁-2DP.

Figure S12. ¹H NMR spectrum of digested 13%[Z]-C₁-2DP.

Figure S13. ¹H NMR spectrum of digested 21%[Z]-C₁-2DP.

Figure S14. ¹H NMR spectrum of digested 26%[Z]-C₁-2DP.

Figure S15. ¹H NMR spectrum of digested 32%[Z]-C₁-2DP.

Figure S16. ¹H NMR spectrum of digested 33%[Z]-C₁-2DP.

Figure S17. ¹H NMR spectrum of digested 39%[Z]-C₁-2DP.

Figure S18. ¹H NMR spectrum of digested 53%[Z]-C₁-2DP.

Figure S19. ¹H NMR spectrum of digested 72%[Z]-C₁-2DP.

Figure S20. ¹H NMR spectrum of digested 28%[NR₃]-C₆-2DP.

Figure S21. ¹H NMR spectrum of digested 65%[NR₃]-C₆-2DP.

Figure S22. ¹H NMR spectrum of digested 73%[NR₃]-C₆-2DP.

Figure S23. ¹H NMR spectrum of digested 85%[NR₃]-C₆-2DP.

Figure S24. ¹H NMR spectrum of digested 25%[Z]-C₆-2DP.

Figure S25. ¹H NMR spectrum of digested 59%[Z]-C₆-2DP.

Figure S26. ¹H NMR spectrum of digested 67%[Z]-C₆-2DP.

Figure S27. ¹H NMR spectrum of digested 78%[Z]-C₆-2DP.

Figure S28. ¹H NMR spectrum of digested 100%[NR₃]-2DP.

Figure S29. ¹H NMR spectrum of digested 91%[Z]-2DP, originating from 100%[NR₃]-2DP.

Co-linker	Dimethylamine Loading %	Conversion	Final Zwitterion Loading %
-	100	91%	91
	9	60%	5
	9	92%	8
	22	58%	13
	24	89%	21
C	34	75%	26
C ₁	35	90%	32
	38	86%	33
	42	94%	39
	66	80%	53
	77	93%	72
C ₆	28	91%	25
	65	90%	59
	73	92%	67
	85	92%	78

Table S1. Zwitterion-forming reaction conversions of 2DPs.

D. PXRD and Nitrogen Porosimetry Data PXRD Data

Figure S30. PXRD Patterns of $Y_1\%[NR_3]$ -C₁-2DPs before reactions with 1,3-propane sultone, along with simulated PXRD patterns of $0\%[NR_3]$ -C₁-2DP (a 2DP made with entirely C₁ linkers) and 100%[NR₃]-2DP, calculated from Materials Studio. Predictions from Materials Studio describe hexagonal-pore 100%[NR₃]-2DP forming as an eclipsed lattice stack with hexagonal unit cell dimensions of a = b = 37.6 Å and c = 3.9 Å.

Figure S31. PXRD Patterns of $Y_1\%[NR_3]$ -C₆-2DPs before reactions with 1,3-propane sultone, along with simulated PXRD patterns of $0\%[NR_3]$ -C₆-2DP (a 2DP made with entirely C₆ linkers) and 100%[NR₃]-2DP, calculated from Materials Studio. Predictions from Materials Studio describe hexagonal-pore 100%[NR₃]-2DP forming as an eclipsed lattice stack with hexagonal unit cell dimensions of a = b = 37.6 Å and c = 3.9 Å.

Nitrogen Sorption Isotherms

Figure S32. Nitrogen sorption isotherms for Y₂%[Z]-C₁-2DPs.

BET Plots for Surface Area Calculations

Figure S33. BET plots for Y2%[Z]-C1-2DPs.

Figure S34. BET plots for 25%[Z]-C6-2DP and 67%[Z]-C6-2DP.

Figure S35. BET plot for 100%[NR₃]-2DP.

Figure S36. BET plot for 91%[Z]-2DP.

Nitrogen Porosimetry Data

Zwitterion Loading %	$S_{\rm BET} ({ m m}^2{ m g}^{-1})$
5	1590
8	1300
13	1060
21	230
26	200
32	160
33	220
39	170
53	130
72	190

Table S2. *S*_{BET} vs. zwitterion loading data of Y2%[Z]-C1-2DPs from Figure 3.

Pore Width Distributions

Figure S37. Pore width distributions for Y₂%[Z]-C₁-2DPs, using a nonlinear density functional theory (NL-DFT) model.

Figure S38. Pore width distributions for 25%[Z]-C6-2DP and 67%[Z]-C6-2DP, using NL-DFT.

Figure S39. Pore width distribution for 100%[NR₃]-2DP, using NL-DFT.

Figure S40. Pore width distribution for 91%[Z]-2DP, using NL-DFT.

E. FT-IR Data

Figure S41. FT-IR data comparing monomers and **100%**[**NR**₃]-**2DP**. Observed is the disappearance of amine (3350 cm⁻¹) and aldehyde (1680 cm⁻¹) features and the appearance of an imine stretch (1590 cm⁻¹), indicating a high degree of polymerization.

Figure S42. FT-IR data of **91%[Z]-2DP** zoomed into the region containing the imine stretch (1590 cm⁻¹), which is maintained after the zwitterion-forming reaction.

1,3-propane sultone reacts preferentially with the dimethylamine groups, not the imine groups. This is first evident by the high average dimethylamine conversion rates consistently observed. Additionally, the FT-IR and ¹³C CP-MAS NMR data upon reaction indicates the imine linkages within the 2DP sheets were preserved. Together, these demonstrate the integrity of the imine linkages after the transformation. While it is not possible to completely exclude the possibility that some imine groups reacted with the sultone reagent, this was at most a minor side reaction.

Figure S44. Zoomed-in ¹H NMR spectrum of 1 in CDCl₃.

Figure S45. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S46. ¹³C CP-MAS NMR spectra of 100%[NR₃]-2DP, 1,3-propane sultone, 91%[Z]-2DP, and a commercially available molecular zwitterion. Dotted lines added for clarity. The 91%[Z]-2DP product peaks upfield of 70 ppm are shifted from the spectra of the starting materials. The spectrum of 91%[Z]-2DP does not lose any peaks present in the spectrum of 100%[NR₃]-2DP, indicating that the transformation does not damage the 2DP backbone. All spectra were acquired in the solid state.

G. SEM Data

Figure S47. SEM images of 100%[NR₃]-2DP, which show typical polycrystalline 2DP structure.

Figure S48. SEM images of 91%[Z]-2DP, which show typical polycrystalline 2DP structure.

H. References

- 1. Y. Okada, M. Sugai and K. Chiba, J. Org. Chem., 2016, 81, 10922-10929.
- 2. P. Shao, J. Li, F. Chen, L. Ma, Q. Li, M. Zhang, J. Zhou, A. Yin, X. Feng and B. Wang, *Angew. Chem., Int. Ed.*, 2018, **57**, 16501-16505.
- 3. J. I. Feldblyum, C. H. McCreery, S. C. Andrews, T. Kurosawa, E. J. Santos, V. Duong, L. Fang, A. L. Ayzner and Z. Bao, *Chem. Commun.*, 2015, **51**, 13894-13897.
- 4. R. L. Li, A. Yang, N. C. Flanders, M. T. Yeung, D. T. Sheppard and W. R. Dichtel, *J. Am. Chem. Soc.*, 2021, **143**, 7081-7087.