Supporting Information

Visible light/copper catalysis enabled alkylation of silyl enol ethers with arylsulfonium salts

Wenwen Cui, ${ }^{\text {a }}$ Guoju Guo, ${ }^{\text {a }}$ Yifei Wang, ${ }^{a}$ Xiuyan Song, ${ }^{\text {a }}$ Jian Lv, ${ }^{\text {a }}$ and Daoshan Yang ${ }^{\text {a,b* }}$
${ }^{\text {a Key }}$ Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
${ }^{b}$ National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.

Table of Contents

I. \quad General considerations	S 2
II. Optimization of Reaction Condition	S 3
III. Experimental procedures	S 5
IV. Experiments of investigations on the mechanism	S 11
V. Characterization of products	S 17
VI. References	S 31
VII. X-ray Crystallography Data of 3d	S 41
VIII. NMR spectra and HRMS of the products	

I. General considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification. The starting materials were synthesized according to literature procedures. Flash chromatography was performed on silica gel (200~300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were recorded at 500 and 125 MHz on a BRUKER 500 spectrometer. Chemical shifts (δ) are expressed in parts per million (ppm), coupling constants (J) are in Hz. Proton and carbon magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded using tetramethylsilane (TMS) as the internal standard in CDCl_{3}. Spectra were calibrated relative to solvent's residual proton and carbon chemical shift: CHCl_{3} ($\delta=7.26$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR).

High resolution mass spectrometry (HRMS) were measured on an UPLC-Q/TOF Xevo G2-XS (Waters, MA, USA) with an ESI source. UV-visible spectroscopy was recorded on a UV-2600 UV-Vis spectrophotometer. The fluorescence emission intensities of reaction solution was recorded on a RF-6000 Fluorescence spectrophotometer. The power density of the incident light was recorded on CEL-FZ-A radiometer. The reactor was 3.0 cm from a 20W blue LED. Cyclic voltammetry was performed on a CorrTest Instruments electrochemical workstation model CS150M.

The spectrum of our lamp and the visible-light irradiation instrument

All reactions have been studied in borosilicate glass vessels irradiated by a blue light LED manufactured by Xuzhou Ai Jia Electronic Technology Co., Ltd. without using filters.

Figure S1. The spectrum of our lamp (blue LED)

Figure S2. The blue light LED

Figure S3. Photograph of the reaction setup

II. Optimization of Reaction Condition:

Table S1. Optimization of other Photocatalysts ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), Photocatalyst ($2 \mathrm{~mol} \%$), DIPEA (0.4 mmol) and DCM (2 mL) at room temperature under irradiation with a 20 W blue LED $(455 \mathrm{~nm})$ for 24 h under nitrogen atmosphere. DIPEA $=\mathrm{N}, \mathrm{N}$-diisopropylethylamine. ${ }^{b}$ Isolated yield.

Table S2. Optimization of Reaction Conditions ${ }^{a}$
(
${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), Cu (I) photosensitizer ($5 \mathrm{~mol} \%$), base (0.4 mmol) and solvent (2 mL) at room temperature under irradiation with a 20 W blue LED (455 nm) for 24 h under nitrogen atmosphere. DIPEA $=\mathrm{N}, \mathrm{N}$-diisopropylethylamine. ${ }^{b}$ Isolated yield. ${ }^{c}$ In the dark. N.R. $=$ no reaction.

III. Experimental procedures

1. General method for sulfonium salt synthesis ${ }^{\mathbf{1 , 2}}$:

General procedure: Triethylamine ($3.9 \mathrm{~mL}, 27.23 \mathrm{mmol}, 1.5$ equiv.) was slowly added to a 50 mL round-bottom flask containing thiophenol $(2.25 \mathrm{~g}, 18.15 \mathrm{mmol}, 1.0$ equiv.), dibromide ($4.3 \mathrm{~mL}, 36.3 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The reaction mixture was stirred until the substrate was completely consumed which monitored by TLC. Then use $1.2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ and EA $(3 \times 15 \mathrm{~mL})$ to treat the reaction solution, and wash with saturated NaHCO_{3} solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, later the crude material was dissolved in acetone $(20 \mathrm{~mL})$ after the solvents were evaporated, and add $\mathrm{NH}_{4} \mathrm{PF}_{6}(4.44 \mathrm{~g}, 27.23 \mathrm{mmol})$ to the solution. Reflux and stir until the substrate was completely consumed which monitored by TLC, then the reaction mixture was filtered through glass bush funnel and the filtrate was concentrated to 10 mL under reduced pressure. After that add $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ to precipitate white or beige solid, the resulting solid was filtered and washed with water (30 mL) and ethanol (30 mL). Finally, the product was dried under vacuum and obtained in $10-70 \%$ yield.

General procedure: Tetramethylene sulfoxide ($0.49 \mathrm{~mL}, 5.5 \mathrm{mmol}$) and anhydrous $\mathrm{DCM}(25 \mathrm{~mL})$ were added to a 100 mL round bottom flask at $-40^{\circ} \mathrm{C}$. The $\mathrm{Tf}_{2} \mathrm{O}(0.93$ $\mathrm{mL}, 5.5 \mathrm{mmol}$) was added dropwise under argon, then diphenylethylene (5.0 mmol) was added gradually. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min before warming to $0{ }^{\circ} \mathrm{C}$. Upon completion monitored by the TLC, the solvent was removed under reduced pressure. The resulted crude product was dissolved in a small amount of anhydrous DCM, which was slowly dropped into anhydrous ether (100 mL) to precipitate out the vinyl sulfonium salts solid. The pure product was obtained by recrystallisation $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$; yield 85%.

2. General method for silyl enol ethers ${ }^{3}$:

General procedure: Unless otherwise noted in the experimental procedures, the silyl enol ethers were prepared from the corresponding ketones according to procedures described in the literature. To an oven-dried round bottom flask was added ketone (5.0 mmol, 1.0 equiv.) and anhydroussodium iodide ($899 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv.). The reaction vessel was evacuated and backfilled with $\mathrm{N}_{2}(\times 3)$, then anhydrous $\mathrm{MeCN}(7.5$ $\mathrm{mL}, 1.5 \mathrm{~mL} / \mathrm{mmol}$) was added. The resulting solution was stirred at rt for 30 min , and then added $\mathrm{Et}_{3} \mathrm{~N}$ ($1.0 \mathrm{~mL}, 7.5 \mathrm{mmol}, 1.5$ equiv.), followed by chlorotrimethylsilane ($0.76 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was stirred for 16 h at room temperature, then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with a mixture of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) solution (20 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic extract was sequentially washed with ice-water $(20 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}$.) solution $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was distilled under reduced pressure to provide pure silyl enol ethers.
3. Synthesis of natural product $3 \mathbf{x}^{4,5}$:

General procedure: Charge an oven dried 50 mL round bottom flask with 4-hydroxy acetophenone (1.0 equiv.), substituted bromoester (1.1 equiv.) and acetonitrile (25 mL). Add $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10.0 equiv.) and heat the reaction mixture to $90^{\circ} \mathrm{C}$ for 4 h . Evaporate the acetonitrile in vacuo. Purify the residue by silica gel column chromatography (20% EtoAc/Hexane) to obtain the desired ketone \mathbf{A}.

To a 50 mL round-bottom flask equipped with a stirring bar was added a solution of \mathbf{A} $(5.0 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{~mL})$ and triethylamine ($0.91 \mathrm{~g}, 9.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 40 min before triisopropylsilyl triflate ($1.84 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added slowly. Then the resulting mixture was stirred at
room temperature for several minutes. Once the reaction was complete (reaction monitored by TLC), the reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and diluted with dichloromethane $(15 \mathrm{~mL})$. The organic layer was washed twice with a cooled saturated aqueous solution of NaHCO_{3}, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography over on basic alumina (pH 9.0 9.5) eluting with petroleum ether to afford the desired silyl enol ether \mathbf{B}.

4. Synthesis of natural product $\mathbf{3 a b}^{\mathbf{6}}$:

General procedure: EDC (2.5 equiv.) and DMAP (0.5 equiv.) were added sequentially to an ice-cold solution of the 4^{\prime}-hydroxy acetophenone (1.0 equiv.) and corresponding acid (2.5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$. After 30 min , the ice-water cooling bath was removed, and the resulting suspension was stirred vigorously at room temperature for 16 h . Then, the reaction mixture was concentrated in vacuo. Purification by column chromatography on silica gel (n-hexane/EtOAc) afforded the desired ketone \mathbf{C}.

To a 50 mL round-bottom flask equipped with a stirring bar was added a solution of \mathbf{C} $(5.0 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{~mL})$ and triethylamine ($0.91 \mathrm{~g}, 9.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 40 min before triisopropylsilyl triflate ($1.84 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added slowly. Then the resulting mixture was stirred at room temperature for several minutes. Once the reaction was complete (reaction monitored by TLC), the reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and diluted with dichloromethane $(15 \mathrm{~mL})$. The organic layer was washed twice with a cooled saturated aqueous solution of NaHCO_{3}, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography over on basic alumina ($\mathrm{pH} 9.0-$ 9.5) eluting with petroleum ether to afford the desired silyl enol ether \mathbf{D}.

5. General method for sulfonium salts with \boldsymbol{O}-silyl enol ethers:

General procedure: To a 25 mL Schlenk tube equipped with a magnetic stir bar, added sulfonium salts 1 (0.2 mmol), O-silyl enol ethers $2(0.3 \mathrm{mmol})$, DIPEA (0.4 mmol) and $\mathrm{Cu}[(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}(5 \mathrm{~mol} \%)$ in degassed $\mathrm{DCM}(2.0 \mathrm{~mL})$. The tube was evacuated and backfilled with nitrogen (three times), Then the mixture was stirred and irradiated by the one 20 W blue LEDs at room temperature for 24 h . The resulting crude residue was purified via column chromatography on silica gel to afford the desired products.

6. Synthesis of 3a on a gram scale

General procedure: A 200 mL Schlenk tube equipped with a magnetic stirring bar was charged with 1a (6 mmol) and 2a (9 mmol), $\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos}) \mathrm{Br}(5 \mathrm{~mol} \%)$ and DIPEA (12 mmol). The tube was evacuated and backfilled with nitrogen (three times), 100 mL of degassed DCM was added by syringe under a nitrogen atmosphere. The solution was stirred at room temperature with the irradiation of two 20 W blue LEDs lights for 48 h . After completion of the reaction (TLC). The solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether as eluent to provide the desired products $\mathbf{3 a}$ in 61% yield, 1.04 g .

7. Product derivatization ${ }^{7}$

General procedure: To a stirred solution of the sulfide $\mathbf{3 a}$ ($0.060 \mathrm{~g}, 0.2 \mathrm{mmol}, 1$ equiv.) in 1 mL methanol was added $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% in water, $0.06 \mathrm{~mL}, 0.8 \mathrm{mmol}, 4.0$ equiv.) at room temperature. The reaction was stirred for 48 h and then concentrated in vacuo in
ice bath. The crude product was further purified by silica gel flash chromatography (PE: EA=5:1 as the eluent) to give Phenyl(4-(p-tolylsulfinyl)butyl)selane 4 (62% yield) as a yellow oil. (Note: The temperature of water bath during solvent evaporation should be controlled under $10{ }^{\circ} \mathrm{C}$.)

General procedure: $3 \mathrm{a}(0.060 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1 equiv.), m-CPBA ($0.1081 \mathrm{~g}, 0.42 \mathrm{mmol}$, 2.1 equiv.), and DCM (3 mL) were added to an oven-dried test tube equipped with a magnetic stirring bar. Then, the reaction tube was sealed with an air balloon (atmospheric pressure) and stirred at the desired temperature for 48 h . After the reaction was completed, the reaction solution was extracted by EtOAc $(3 \times 2 \mathrm{~mL})$. The organic solvent was removed in vacuo, and the residue was purified by flash column chromatography (PE:EA, v/v=10:1) on silica gel to give 5 in 46% yield.

8. Synthesis of Cu-photocatalyzed ${ }^{8}$

General procedure: To a solution of $\mathrm{CuBr}(0.0495 \mathrm{~g}, 0.5 \mathrm{mmol}, 1.0$ equiv. $)$ in dry dichloromethane (80 mL) was added the corresponding phosphine ($0.52 \mathrm{mmol}, 1.05$ equiv.) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 5 hours. A solution of the corresponding amine ($0.52 \mathrm{mmol}, 1.05$ equiv.) in dry dichloromethane (3 mL) was then added dropwise under a nitrogen atmosphere and the resulting reaction mixture was heated to reflux for another 12 hours. The reaction mixture was then allowed to cool to room temperature. Then the resulting filtrate was concentrated under reduced pressure to one tenth of the original volume and n-hexane was added to precipitate the product. It was filtered and washed with n hexane. The resulting solid was further purified by recrystallization in a $\mathrm{DCM} / \mathrm{n}$-hexane mixture at $4{ }^{\circ} \mathrm{C}$. The yellow precipitate was collected by filtration and dried under
vacuum to give the desired copper complex catalyst as a yellow solid.

9. Investigation of other sulfonium salts

General procedure: To a 25 mL Schlenk tube equipped with a magnetic stir bar, added sulfonium salts (0.2 mmol), O-silyl enol ethers 2a (0.3 mmol), DIPEA (0.4 mmol) and $\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos}) \mathrm{Br}(5 \mathrm{~mol} \%)$ in degassed $\mathrm{DCM}(2.0 \mathrm{~mL})$. The tube was evacuated and backfilled with nitrogen (three times), Then the mixture was stirred and irradiated by the one 20W blue LEDs at room temperature for 24 h . Monitored by TLC, when the reaction was completed. It is a pity that the above eight alkyl sulfonium salts cannot obtain ideal products under current conditions. But the thianthrenium salt $\mathbf{1 0}$ can obtain ideal product 11 in 51% yield under current conditions.

IV. Mechanistic studies

1. Radical capturing reaction

General procedure: Reaction conditions: a mixture of 1a (0.20 mmol), 2a (0.30 mmol), $\mathrm{Cu}[(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}(5 \mathrm{~mol} \%)$, DIPEA (0.4 mmol) and 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO, 0.40 mmol) in degassed DCM (2 mL) irradiated with a 20 W blue LED $(455 \mathrm{~nm})$ for 24 hours at room temperature under a N_{2} atmosphere. The radical trapping experiments were conducted with 1a and 2a under the standard conditions with a trapping agent 2, 2, 6, 6-tetramethyl-1-piperidinyloxy to capture the radical intermediate expected in our system, and the products were purified by column chromatography (eluent petroleum ether) to afford the product $\mathbf{6}$ in 82% yield.

General procedure: A mixture of 1a (0.2 mmol), $\mathrm{Cu}[(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}(5 \mathrm{~mol} \%)$, DIPEA (0.4 mmol) and 1, 1-diphenylethylene $7(0.4 \mathrm{mmol})$ in DCM (2 mL) irradiated with a 20 W blue LED for 24 hours at room temperature under a N_{2} atmosphere. The radical trapping experiments were conducted with 1a under the standard conditions with a trapping agent 1,1 -diphenylethylene to capture the radical intermediate expected in our system, and the products were purified by column chromatography (eluent petroleum ether) to afford the product $\mathbf{8}$ in 63% yield.

2. Calculation of apparent quantum efficiency (A. Q. E) :

The photon flux of the light source was determined by an optical power meter to be 170.60 mW (average of three experiments).

$$
\begin{aligned}
& \mathrm{E}_{\text {photon }}=\frac{h c}{\lambda_{\text {inc }(455 \mathrm{~nm})}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~S} \times 3 \times 10^{8} \mathrm{~m} \cdot x \cdot \mathrm{~s}^{-1}}{455 \times 10^{-9} \mathrm{~m}}=4.37 \times 10^{-19} \mathrm{~J}} \\
& \mathrm{E}_{\text {total }}=\mathrm{PSt}=170.60 \times 10^{-3} \mathrm{~W} \cdot \mathrm{~cm}^{-2} \times 4.75 \mathrm{~cm}^{2} \times 2.0 \times 3600 \mathrm{~s}=5.83 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

Number of incident photons $=\frac{E_{\text {total }}}{E_{\text {photon }}}=1.34 \times 10^{22}=22.26 \mathrm{mmol}$
A. Q. Y $(\%)=\frac{\text { Number of product }}{\text { Number of incident photons }}=\frac{0.026 \mathrm{mmol}}{22.26 \mathrm{mmol}}=0.12 \%<1$

Where $\mathrm{h}(\mathrm{J} \cdot \mathrm{s})$ is Planck's constant, $\mathrm{c}\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$ is the speed of light and $\lambda_{\text {inc }}(\mathrm{m})$ is the wavelength of the incident light. $\mathrm{P}\left(\mathrm{W} \cdot \mathrm{cm}^{-2}\right)$ is the power density of the incident light, $\mathrm{S}\left(\mathrm{cm}^{2}\right)$ is the irradiation area and $\mathrm{t}(\mathrm{s})$ is the photoreaction time. The A.Q.E(\%) result indicated that our reaction not involved radical chain pathway.

3. Effect of Visible Light Irradiation

Experimental procedure

A standard reaction mixtures in 25 mL schlenk tube were equipped with a magnetic stir bar, added Sulfonium salt 1a $(0.20 \mathrm{mmol}), O$-silyl enol ether 2a (0.30 mmol), DIPEA $(0.40 \mathrm{mmol})$ and $\mathrm{Cu}[(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}(5 \mathrm{~mol} \%)$ in degassed DCM $(2.0 \mathrm{~mL})$. The tube was evacuated twice and backfilled with nitrogen. Then the mixture was stirred and irradiated by one 20W blue LEDs at room temperature. At each time point, one reaction system was suspended, which was then purified with chromatography column on silica gel (petroleum ether:EtOAc=80:1) to give the corresponding products 3a. The yield of $\mathbf{3 a}$ was measured by weight of the product.

Figure S4. Light on/ off experiment

4. Fluorescence quenching experiments:

The fluorescence emission intensities were recorded on a RF-6000 spectrofluorimeter. The excitation wavelength was fixed at 455 nm . The samples were prepared by the in-situ-formed $[\mathrm{Cu}(\mathrm{dpp})($ DPEphos $)] \mathrm{Br}\left(5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ and different amount of quencher in DCM in a light path quartz fluorescence cuvette. The concentration of quencher is $5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ in DCM. For each quenching experiment, 0.01 ml of quencher solution was titrated to a mixed solution of copper complex $(0.005 \mathrm{~mL}$, in a total volume $=3.0$ mL). Then the emission intensity was collected and the results were presented in Figure S5 or Figure S6.

Figure S5. The emission quenching of in situ generated $[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}$ in DCM by various concentrations of quencher 1a.

Figure S6. The emission quenching of in situ generated $[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}$ in DCM by various concentrations of quencher $\mathbf{2 a}$.

5. UV-vis absorption experiment:

UV-visible spectroscopy of reaction solution was recorded on a UV-2600 UV-visible spectrophotometer. The sample was prepared by mixing copper catalysts $\left(\mathrm{C}=5.0 \times 10^{-4}\right.$ M), Sulfonium salt 1a, O-silyl enol ether $\mathbf{2 a}\left(\mathrm{C}=5.0 \times 10^{-4} \mathrm{M}\right)\left(\mathrm{C}=5.0 \times 10^{-4} \mathrm{M}\right)$ in DCM .

The absorption was collected and the result was listed in Figure S7.

Figure S7. UV-vis absorption spectra
6. Normalized absorption and emission sprectra for $[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}$

Figure S8. Normalized absorption (red line) and emission spectra (photoluminescence intensity (PLi), black line) for $[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}$.

7. Cyclic Voltammetry Experiments

Cyclic Voltammetry was performed on a CorrTest Instruments Electrochemical Workstation model CS150M. A solution of the sample in DCM (0.005 M) was tested with $0.2 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and $\mathrm{Hg} / \mathrm{Hg}_{2} \mathrm{Cl}_{2} / \mathrm{KCl}$ as reference electrode. The cyclic voltammetry scans were done one time at a scan rate of $100 \mathrm{mVs}^{-1}$.

Reductive potential of Sulfonium salt 1a

Figure S9. CV spectra of sulfonium salt 1a in DCM $(0.005 \mathrm{M})$ was tested with 0.2 M $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte.
$\operatorname{Ep}(\mathbf{1} \boldsymbol{a})=-1.91 V(v s . \mathrm{SCE})$

Reductive potential of [Cu(dpp)(DPEphos)]Br

Figure S10. CV spectra of $[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}$ in $\mathrm{DCM}(0.005 \mathrm{M})$ was tested with 0.2 $\mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte.

Note: According to previous literature ${ }^{9,10}$, the value obtained from the intersection of the normalized absorption and emission spectra of $[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})] \mathrm{Br}$ was used to calculated Triplet energy E_{T}.

$$
\begin{aligned}
& E_{\mathrm{T}}=h v=h \times \frac{c}{\lambda}=\frac{1240}{468}=2.650 \mathrm{eV} \\
& h(\text { Planck constant })=6.62607015 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.1356676969 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \\
& \mathrm{c}(\text { velocity of light })=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{E}_{1 / 2}[\mathrm{Cu}(\mathrm{II}) / \mathrm{Cu}(\mathrm{I})[\mathrm{Cu}(\mathrm{dpp})(\text { DPEphos })][\mathrm{Br}]=(2.70-1.83) / 2=0.435 \mathrm{~V}(v s . \text { SCE })
\end{aligned}
$$

$\mathrm{E}^{*}=\mathrm{E}_{1 / 2}\left[\mathrm{Cu}(\mathrm{II}) / \mathrm{Cu}(\mathrm{I})[\mathrm{Cu}(\mathrm{dpp})(\mathrm{DPEphos})][\mathrm{Br}]-\mathrm{E}_{\mathrm{T}}=0.435-2.650=-2.215 \mathrm{~V}(v s\right.$. SCE)

The reduction potential of Sulfonium salt (1a) to be $\mathrm{Ep}^{0 /-1}=-1.91 V$ (vs. SCE). This result suggests that Sulfonium salt (1a) can reach with $[\mathrm{Cu}(\mathrm{dpp})($ DPEphos $)] \mathrm{Br}$ through a single electron transfer (SET) process under visible light irradiation.

V. Characterization of products

Characterization data of compounds

1-Phenyl-6-(p-tolylthio)hexan-1-one (3a). Eluent petroleum ether/ethyl acetate (80:1). Yellow solid, $51 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.95(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), 7.09 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 1.75$ (dt, $J=15.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.4,137.2,136.1,133.1,132.9,130.1$, 129.8, 128.7, 128.2, 38.5, 34.4, 29.2, 28.5, 23.9, 21.1. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 299.1470$; found 299.1473 .

6-((2,4-Dimethylphenyl)thio)-1-phenylhexan-1-one (3b). Eluent petroleum ether/ethyl acetate (80:1). White solid, $52 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$, ppm) $\delta 7.98-7.91$ (m, 2H), 7.56 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=$ 14.8, $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.57-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.4$, 138.2, 137.2, 135.9, 133.08, 132.3, 131.2, 129.3, 128.7, 128.2, 127.2, 38.5, 33.6, 29.1, 28.7, 23.9, 21.0, 20.5. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 313.1626$; found 313.1626.

6-((4-Chlorophenyl)thio)-1-phenylhexan-1-one (3c). Eluent petroleum ether/ethyl acetate (80:1). Colorless oil, $48 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20$
$(\mathrm{m}, 4 \mathrm{H}), 2.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dt}$, $J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{dt}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ppm) $\delta 200.2,137.1,135.4,133.1,131.9,130.5,129.1,128.7,128.1,38.4,33.8,28.9$, 28.5, 23.8. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 319.0923$; found 319.0928 .

1-(p-Tolyl)-6-(p-tolylthio)hexan-1-one (3d). Eluent petroleum ether/ethyl acetate (80:1). White solid, $53 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, ppm) $\delta 7.88(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dt}, J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.71 (dt, $J=14.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 199.9,143.8,136.0,134.6,132.9,130.0,129.7,129.3,128.2,38.3,34.3,29.2,28.5$, 23.9, 21.7, 21.1. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1626; found 313.1627.

6-((4-Chlorophenyl)thio)-1-(p-tolyl)hexan-1-one (3e). Eluent petroleum ether/ethyl acetate ($70: 1$). White solid, $47 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.84$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28-7.19(\mathrm{~m}, 6 \mathrm{H}), 2.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{dt}, J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55$ $-1.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.9,143.9,135.5,134.7,131.9$, $130.5,129.4,129.1,128.28,38.3,33.9,29.0,28.5,23.9,21.8$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1080; found 333.1082.

6-((3-Bromophenyl)thio)-1-(p-tolyl)hexan-1-one (3f). Eluent petroleum ether/ethyl acetate (70:1). Yellow solid, $55 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J$
$=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dt}, J=$ $15.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{dt}, J=15.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.9,143.9,139.6,134.7,131.1,130.2,129.4,128.8$, 128.3, 127.2, 122.9, 38.3, 33.3, 28.9, 28.6, 23.9, 21.8. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrOS}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 377.0575$; found 377.0567.

1-(4-Methoxyphenyl)-6-(naphthalen-2-ylthio)hexan-1-one (3g). Eluent petroleum ether/ethyl acetate (70:1). White solid, $60 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$, ppm) $\delta 7.92$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.47$ - $7.40(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ppm) $\delta 199.0,163.5,134.5,133.9,131.8,130.4,130.3,128.4,127.8,127.4,127.1$, 126.7, 126.6, 125.6, 113.8, 55.6, 38.1, 33.5, 29.1, 28.7, 24.1. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 365.1575$; found 365.1573 .

1-(Naphthalen-2-yl)-6-(p-tolylthio)hexan-1-one (3h). Eluent petroleum ether/ethyl acetate (70:1). White solid, $56 \mathrm{mg}, 80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.46$ (s, 1H), 8.02 (dd, $J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62-7.54$ (m, 2H), 7.25 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.09$ (t, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{dt}, J=15.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dt}$, $J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.3$, 136.1, 135.7, 134.5, 132.9, 132.7, 130.1, 129.8, 129.7, 128.6, 128.5, 127.9, 126.9, 124.0, 38.6, 34.4, 29.2, 28.6, 24.1, 21.1. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 349.1626; found 349.1635 .

6-((3-Bromophenyl)thio)-1-(naphthalen-2-yl)hexan-1-one (3i). Eluent petroleum ether/ethyl acetate (70:1). Yellow solid, $65 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$, ppm) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ ($\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 200.2, 139.6, 135.7, 134.5, 132.7, 131.1, 130.3, 129.8, 129.7, 128.8, 128.6, 128.5, $127.9,127.2,126.9,124.0,122.9,38.5,33.4,28.9,28.6,24.0$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 413.0575$; found 413.0583.

6-((4-Chlorophenyl)thio)-1-(naphthalen-2-yl)hexan-1-one (3j). Eluent petroleum ether/ethyl acetate (70:1). White solid, $57 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, ppm) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.2$ Hz, 2H), 7.62 - 7.54 (m, 2H), $7.26-7.20(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (t, $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.82(\mathrm{dt}, J=15.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.59$ $-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.2,135.7,135.5,134.5,132.7$, $131.9,130.6,129.7,129.7,129.1,128.6,128.5,127.9,126.9,124.0,38.5,33.9,29.0$, 28.6, 24.0. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 369.1080$; found 369.1073 .

6-((4-(tert-Butyl)phenyl)thio)-1-(4-chlorophenyl)hexan-1-one (3k). Eluent petroleum ether/ethyl acetate (70:1). Colorless oil, $54 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, 2H), 7.26 (t, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.95-2.91$ (m, 2H), $2.91-2.88$ (m, 2H), 1.74 (dt, $J=$ $12.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.30$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 199.3, 149.3, 135.9, 133.2, 132.0, 129.7, $129.5,128.2,126.1,38.5,34.6,34.1,31.4,29.2,28.5,23.8$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 375.1549$; found 375.1558 .

1-(4-Chlorophenyl)-6-((3,5-dimethylphenyl)thio)hexan-1-one (31). Eluent petroleum ether/ethyl acetate (70:1). Yellow solid, $51 \mathrm{mg}, 74 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.79$ $(\mathrm{s}, 1 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{dt}, J=12.5,6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{dt}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.1,139.5,138.6,136.4,135.5,129.6,129.0,127.9,126.9$, $38.5,33.6,29.1,28.5,23.8,21.4 . \operatorname{HRMS}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 347.1236$; found 347.1243 .

1-(4-Bromophenyl)-6-((4-(tert-butyl)phenyl)thio)hexan-1-one (3m). Eluent petroleum ether/ethyl acetate (70:1). Colorless oil, $59 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.26(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{dt}, J=$ $12.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.30$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.3,149.3,135.9,133.2,132.0,129.7$, $129.5,128.2,126.1,38.5,34.6,34.1,31.4,29.2,28.5,23.8$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BrOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 419.1044$; found 419.1054.

1-(4-Bromophenyl)-6-((3,5-dimethylphenyl)thio)hexan-1-one (3n). Eluent petroleum ether/ethyl acetate (70:1). Yellow solid, $59 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.79$ $(\mathrm{s}, 1 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{dt}, J=12.5,6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{dt}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.3,138.6,136.3,135.9,132.0,129.7,128.2,127.9,126.9$, 38.5, 33.6, 29.1, 28.5, 23.8, 21.4. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 391.0731$; found 391.0737 .

1-(4-Bromophenyl)-6-(naphthalen-2-ylthio)hexan-1-one (30). Eluent petroleum ether/ethyl acetate (70:1). Yellow solid, $57 \mathrm{mg}, 69 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$, ppm) $\delta 7.81-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.44$ (m, 1H), $7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-$ $1.72(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.2,135.8$, $134.4,133.9,132.0,131.8,129.7,128.5,128.2,127.9,127.5,127.2,126.9,126.7$, 125.7, 38.4, 33.5, 29.0, 28.5, 23.8. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 413.0575$; found 413.0575.

3-Methyl-1-phenyl-6-(p-tolylthio)hexan-1-one (3p). Eluent petroleum ether/ethyl acetate (90:1). Yellow oil, $46 \mathrm{mg}, 74 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.93$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, 2H), 7.08 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.97-2.87$ (m, 2H), $2.83-2.74$ (m, 2H), 2.31 (s, 3H), $2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H})$, $0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.2,137.5,136.1$, 133.0, 132.9, 130.1, 129.8, 128.7, 128.2, 45.9, 36.2, 34.7, 29.5, 26.9, 21.1, 20.1. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 313.1626$; found 313.1629.

3-Methyl-1-(p-tolyl)-6-(p-tolylthio)hexan-1-one (3q). Eluent petroleum ether/ethyl acetate (80:1). White solid, $45 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.95$
(t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.09$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=16.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ $(\mathrm{s}, 3 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.35(\mathrm{~m}$, $1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.2,137.5,136.1$, $133.0,132.9,130.1,129.8,128.7,128.2,45.9,36.2,34.7,29.5,26.9,21.1,20.1$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 327.1783 ; found 327.1784.

6-((4-(tert-Butyl)phenyl)thio)-3-methyl-1-(p-tolyl)hexan-1-one (3r). Eluent petroleum ether/ethyl acetate (80:1). Yellow solid, $46 \mathrm{mg}, 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 2.92$ - 2.87 (m, 2H), 2.77 (dd, $J=16.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.77$ $-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.4,149.3,138.5,133.8,132.4,129.6$, 128.7, 128.6, 126.0, 125.4, 45.9, 36.3, 34.6, 34.5, 31.4, 29.5, 26.9, 21.5, 20.1. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 369.2252$; found 369.2259 .

1-Phenyl-7-(p-tolylthio)heptan-1-one (3s). Eluent petroleum ether/ethyl acetate (80:1). White solid, $44 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.95(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{dt}, J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{dt}, J=14.3,6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.40(\mathrm{dt}, J=15.0,7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.5,137.2$, 136.0, 133.1, 133.1, 129.9, 129.8, 128.7, 128.2, 38.6, 34.4, 29.2, 29.0, 28.7, 24.3, 21.1. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 313.1626$; found 313.1631.

7-((4-Methoxyphenyl)thio)-1-phenylheptan-1-one (3t). Eluent petroleum ether/ethyl acetate (80:1). White solid, $45 \mathrm{mg}, 69 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.95$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{dt}, J=14.4,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.37(\mathrm{dt}, J=14.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.5,158.9$, $137.2,133.1,133.0,128.7,128.2,126.9,114.6,55.4,38.6,35.9,29.3,28.9,28.6,24.3$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 329.1575$; found 329.1573 .

Compound $3 \mathbf{u}$ and $3 \mathbf{u}^{\prime}$. Eluent petroleum ether/ethyl acetate (60:1). Yellow solid, 48 $\mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.88$ $(\mathrm{m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}$, $1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, $1.45(\mathrm{dt}, J=15.1,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 200.3,141.2,138.3,138.2,137.8,137.2,137.1,136.9,133.1,133.1,132.3,129.7$, $129.7,129.0,128.8,128.7,128.7,128.5,128.4,128.2,128.1,127.9,127.3,127.0$, $126.6,38.5,38.4,32.7,31.8,29.7,29.1,28.5,28.3,23.9,23.8$. HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 387.1783$; found 387.1785 .

Compound $3 v$ and $3 v^{\prime}$. Eluent petroleum ether/ethyl acetate ($60: 1$). Yellow oil, 46 mg ,
58% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33-$ 7.31 (m, 4H), $7.29-7.27$ (m, 2H), $7.26-7.24$ (m, 2H), $7.24-7.22(m, 4 H), 7.08-$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H})$, $1.68(\mathrm{dt}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{dt}, J=$ $9.3,2.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.0,143.8,141.3,138.4,138.2$, $137.8,137.3,136.9,134.7,132.3,129.8,129.7,129.4,129.4,129.0,128.8,128.5$, $128.5,128.3,128.2,128.1,128.0,127.3,127.1,126.6,38.4,38.3,32.7,31.8,29.9,29.7$, 29.2, 28.6, 28.3, 24.0, 23.9, 21.8. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 401.1939$; found 401.1930 .

1-Phenyl-4-(2-(p-tolylthio)ethoxy)butan-1-one (3w). Eluent petroleum ether/ethyl acetate ($60: 1$). White solid, $33 \mathrm{mg}, 52 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.96$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.2,137.2,136.5,133.1,130.4,129.8,128.7,128.2,70.1$, 69.6, 35.2, 34.1, 24.4, 21.1. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 315.1419$; found 315.1419 .

Ethyl 2-methyl-2-(4-(6-(p-tolylthio)hexanoyl)phenoxy)propanoate (3x). Eluent petroleum ether/ethyl acetate (40:1). Colorless oil, $61 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{dt}, J=15.0$,
$7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 198.9,173.9$, $159.8,136.1,132.9,130.3,130.1,130.0,129.8,117.5,79.5,61.8,38.2,34.4,29.2,28.6$, 25.5, 24.1, 21.1, 14.2. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 429.2100$; found 429.2109 .

4-(6-(p-Tolylthio)hexanoyl)phenyl 2-(4-isobutylphenyl)propanoate (3y). Eluent petroleum ether/ethyl acetate (40:1). Yellow oil, $68 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.93$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 5 \mathrm{H}), 3.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ (dt, $J=12.2,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.1,172.9,154.6$, 141.2, 137.0, 136.1, 134.6, 132.9, 130.1, 129.8, 129.7, 129.7, 127.3, 121.7, 45.5, 45.2, $38.4,34.4,30.3,29.2,28.5,23.9,22.5,21.1,18.6$. HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 503.2620$; found 503.2621.

1-Phenyl-6-(p-tolylsulfinyl)hexan-1-one (4). Eluent petroleum ether/ethyl acetate (10:1). Yellow oil, $39 \mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.92(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $1.83-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{dt}, J=14.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 200.0,141.6,140.7,137.1,133.1,130.1,128.7,128.1,124.2$, 57.1, 38.2, 28.4, 23.8, 22.2, 21.5. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 315.1419$; found 315.1417.

1-Phenyl-6-tosylhexan-1-one (5). Eluent petroleum ether/ethyl acetate (20:1). Yellow oil, $30 \mathrm{mg}, 46 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{dt}, J$ $=15.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dt}, J=14.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 199.8,144.7,137.0,136.4,133.2,130.0,128.7,128.2,128.1$, 56.3, 38.0, 28.0, 23.6, 22.8, 21.7. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 331.1368$; found 331.1367 .

2,2,6,6-Tetramethyl-1-(4-(p-tolylthio)butoxy)piperidine (6). Eluent petroleum ether. White solid, $55 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.30(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ (s, 3H), 1.75 (dt, $J=14.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=13.3,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}$, $1 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 136.1,133.1,130.2,129.7,76.3,59.8,39.7,34.8,33.2,28.1$, 26.5, 21.1, 20.3, 17.3. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 336.2361$; found 336.2360 .

(6,6-Diphenylhex-5-en-1-yl)(p-tolyl)sulfane (8). Eluent petroleum ether. White solid, $45 \mathrm{mg}, 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ 7.25 (m, 4H), $7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.66-1.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 142.8,142.1,140.3,136.1$,
132.9, 130.1, 130.0, 129.7, 129.6, 128.3, 128.2, 127.3, 127.0, 126.9, 34.3, 29.3, 29.0, 28.8, 21.1. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 359.1833$; found 359.1834.

$\left[\mathbf{C u}\left(\right.\right.$ Phen)(DPEphos)]Br (PS1). Yellow solid, $259 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 8.66(\mathrm{~s}, 2 \mathrm{H}), 8.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 2 \mathrm{H}), 7.76-7.67(\mathrm{~m}$, 2H), $7.30-7.26$ (m, 2H), 7.20 (d, $J=6.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.07 - 7.01 (m, 10H), $6.97-6.91$ (m, 10H), $6.74(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.4,158.4,158.3,149.4$, $143.2,137.8,134.2,132.9,132.9,132.8,132.1,130.8,130.6,130.5,130.1,129.6$, 128.7, 128.7, 128.7, 127.5, 125.2, 123.9, 123.8, 123.7, 120.4. HRMS calcd for $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{CuN}_{2} \mathrm{OP}_{2}{ }^{+}[\mathrm{M}]^{+}: 781.1593$; found 781.1589.

[Cu(dpp)(DPEphos)]Br (PS2). Yellow solid, $320 \mathrm{mg}, 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 8.39(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 15 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 13 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 13 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~s}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.3,158.3,158.3,149.8,148.9,143.8,135.9,134.1,132.9$, $132.8,132.8,132.2,130.7,130.6,130.5,130.0,129.4,129.0,128.7,128.6,128.6$, 127.1, 125.2, $125.1,124.8,123.7,123.6,123.5,120.4$. HRMS calcd for $\mathrm{C}_{60} \mathrm{H}_{44} \mathrm{CuN}_{2} \mathrm{OP}_{2}{ }^{+}[\mathrm{M}]^{+}: 933.2219$; found 933.2214.

[Cu(dpp)(BINAP)]Br (PS3). Yellow solid, $368 \mathrm{mg}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}, \mathrm{ppm}) \delta 9.05(\mathrm{~s}, 2 \mathrm{H}), 8.13(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 10 \mathrm{H}), 7.35-7.23$ (m, 16H), 7.11 (s, 8H), 6.86 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (s, 2H), 6.65 (s, 4H). ${ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 150.5,150.2$ 144.2, 139.3, 136.0, 134.2, 133.7, 133.2, 132.9, $132.1,131.4,130.6,129.7,129.2,128.1,127.6,127.3,126.9,126.6,125.5,125.2$. HRMS calcd for $\mathrm{C}_{68} \mathrm{H}_{48} \mathrm{CuN}_{2} \mathrm{P}_{2}{ }^{+}[\mathrm{M}]^{+}: 1017.2583$; found 1017.2587.

[Cu(dpp)(DPPBz)]Br (PS4). Yellow solid, $272 \mathrm{mg}, 59 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz, ppm) $\delta 8.37(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~s}, 9 \mathrm{H})$, $7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H})$, $6.90(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 150.4,149.5,144.4,141.2,135.9$, 134.9, 134.0, 132.7, 132.7, 132.6, 132.4, 132.1, 131.9, 131.8, 131.7, 130.4, 130.2, 129.6, 129.2, 129.1, 128.9, 127.6, 125.3, 125.1. HRMS calcd for $\mathrm{C}_{54} \mathrm{H}_{40} \mathrm{CuN}_{2} \mathrm{P}_{2}{ }^{+}[\mathrm{M}]^{+}$: 841.1957; found 841.1954.

[Cu(dpp)(Xantphos)]Br (PS5). Yellow solid, $343 \mathrm{mg}, 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 8.51(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.69-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 10 \mathrm{H})$, $7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 9 \mathrm{H}), 6.95(\mathrm{~s}, 7 \mathrm{H})$, $6.65(\mathrm{~s}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 154.9,154.9,154.8$, $150.0,148.6,143.9,135.9,133.9,132.7,131.4,131.2,131.1,131.1,129.9,129.5$, 129.1, 128.7, 128.6, 128.6, 127.4, 127.3, 125.3, 125.2, 124.9, 119.6, 119.5, 119.4, 36.1, 28.3. HRMS calcd for $\mathrm{C}_{63} \mathrm{H}_{48} \mathrm{CuN}_{2} \mathrm{OP}_{2}{ }^{+}[\mathrm{M}]^{+}$: 973.2532; found 973.2529.

[Cu(dpp)(Tol-BINAP)]Br (PS6). Yellow solid, $352 \mathrm{mg}, 61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 9.09$ (s, 2H), 8.14 (s, 2H), 7.94 (s, 2H), 7.74 (s, 2H), 7.59 (s, 13H),
7.35 (s, 4H), 7.13 (d, $J=41.2 \mathrm{~Hz}, 6 \mathrm{H}), 6.95$ (s, 8H), 6.87 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.38$ (s, $4 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 150.3,149.8$, $144.0,140.8,139.5,139.0,135.8,133.9,133.5,133.0,132.5,132.1,131.9,131.9$, 129.7, 129.7, 129.6, 129.5, 129.1, 128.8, 128.1, 127.9, 127.5, 127.2, 126.9, 126.4, 126.3, 126.3, 125.4, 125.1, 21.1, 20.9. HRMS calcd for $\mathrm{C}_{72} \mathrm{H}_{56} \mathrm{CuN}_{2} \mathrm{P}_{2}{ }^{+}[\mathrm{M}]^{+}$: 1073.3209; found 1073.3215 .

4-(Naphthalen-1-yl)-1-phenylbutan-1-one. Eluent petroleum ether. Yellow solid, 28 $\mathrm{mg}, 51 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ppm) $\delta 200.2,138.1,137.3,134.1,133.1,132.1,128.9,128.7,128.2,126.9,126.3$, 126.0, 125.7, 124.1, 38.2, 32.6, 25.2. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 275.1436; found 275.1441.

VI. References

(1) J. Srogl, G. D. Allred and L. S. Liebeskind, J. Am. Chem. Soc., 1997, 119, 1237612377.
(2) M. H. Aukland, F. J. T. Talbot, J. A. Fernández-Salas, M. Ball, A. P. Pulis and D. J. Procter. Angew Chem Int Ed., 2018, 57, 9785-9789.
(3) I. Khan, B. G. Reed-Berendt, R. L. Melen and L. C. Morrill, Angew Chem Int Ed., 2018, 57, 12356-12359.
(4) X. Kou and K. G. M. Kou, ACS Catal., 2021, 11, 11510.
(5) K. Maji, P. R. Thorve, P. Raia and B. Maji, Chem. Commun., 2022, 58, 9516-9519.
(6) R. Ma, Z. Deng, K.-H. Wang, J. Wang, D. Huang, Y. Su, Y. Hu and X. Lv, ACS Omega., 2022, 7, 14357-14362.
(7) R. Fan, B. Liu, T. Zheng, K. Xu, C. Tan, T. Zeng, S. Su and J. Tan, Chem. Соттип., 2018, 54, 7081-7084.
(8) C. Minozzi, A. Caron, J.-C. Grenier-Petel, J. Santandrea and S. K. Collins, Angew. Chem Int Ed., 2018, 57, 5477-5481.
(9) E. Mejía, S. Luo, M. Karnahl, A. Friedrich, S. Tschierlei, A. Surkus, H. Junge, S. Gladiali, S. Lochbrunner and M. Beller, Chem. Eur. J., 2013, 19, 15972-15978.
(10) D. V. Scaltrito, D. W. Thompson, J. A. O' Callaghan and G. J. Meyer, Coord. Chem. Rev., 2000, 208, 243-266.

VII. X-ray Crystallography Data of 3d.

Crystal preparation of compound 3d.

Compound 3d (25 mg) was dissolved in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{v}_{1} / \mathrm{v}_{2}=1: 3\right)$, and it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 3 days at room temperature $\left(\sim 25^{\circ} \mathrm{C}\right)$.

All diffraction data were obtained on a Bruker Smart Apex CCD diffractometer equipped with graphite-monochromated Mo K α radiation. X-ray crystallographic data for 3d is available as Figure S11. X-ray crystallographic data in CIF format are available from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/).

Figure S11. X-ray crystallography of 3d.
Table 1. Crystal data and structure refinement for 3d.

CCDC number	2242756
Identification code	230215 d
Empirical formula	C 20 H 24 O S
Formula weight	312.45
Temperature	$293(2) \mathrm{K}$
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	$\mathrm{a}=20.6821(17) \mathrm{A} \quad$ alpha $=90 \mathrm{deg}$.
	$\mathrm{b}=14.2922(12) \mathrm{A} \quad$ beta $=92.440(2) \mathrm{deg}$.
	$\mathrm{c}=5.8697(4) \mathrm{A} \quad$ gamma $=90 \mathrm{deg}$.
Volume	$1733.5(2) \mathrm{A} \wedge 3$
Z, Calculated density	$4, \quad 1.197 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.187 \mathrm{~mm} \wedge-1$
$\mathrm{~F}(000)$	672

Crystal size	$0.35 \times 0.30 \times 0.04 \mathrm{~mm}$
Theta range for data collection	2.43 to 25.02 deg.
Limiting indices	$-24<=\mathrm{h}<=17,-17<=\mathrm{k}<=16,-5<=1<=6$
Reflections collected / unique	$8197 / 3025[\mathrm{R}(\mathrm{int})=0.1345]$
Completeness to theta $=25.02$	99.5%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9926 and 0.9375
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$3025 / 0 / 199$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.063
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0792, \mathrm{wR} 2=0.1191$
R indices (all data)	$\mathrm{R} 1=0.2016, \mathrm{wR} 2=0.1424$
Largest diff. peak and hole	0.238 and $-0.198 \mathrm{e} . \mathrm{A}^{\wedge}-3$

Table 2. Atomic coordinates ($\mathrm{x} 10^{\wedge} 4$) and equivalent isotropic displacement parameters $\left(\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3\right)$ for $3 \mathbf{d}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$7869(2)$	$4084(3)$	$10550(6)$	$93(1)$
$\mathrm{S}(1)$	$4233(1)$	$4201(1)$	$7363(2)$	$93(1)$
$\mathrm{C}(1)$	$8570(2)$	$3814(3)$	$7832(7)$	$53(1)$
$\mathrm{C}(2)$	$9116(2)$	$4098(3)$	$9123(6)$	$62(1)$
$\mathrm{C}(3)$	$9725(2)$	$4033(3)$	$8289(8)$	$71(1)$
$\mathrm{C}(4)$	$9835(2)$	$3663(3)$	$6194(9)$	$66(1)$
$\mathrm{C}(5)$	$9295(2)$	$3389(3)$	$4915(7)$	$64(1)$
$\mathrm{C}(6)$	$8688(2)$	$3457(3)$	$5687(7)$	$64(1)$
$\mathrm{C}(7)$	$7919(2)$	$3858(3)$	$8863(7)$	$48(1)$
$\mathrm{C}(8)$	$7343(2)$	$3545(3)$	$7332(6)$	$64(1)$
$\mathrm{C}(9)$	$6708(2)$	$3813(3)$	$8254(7)$	$66(1)$
$\mathrm{C}(10)$	$6115(2)$	$3548(3)$	$6775(7)$	$69(1)$
$\mathrm{C}(11)$	$5497(2)$	$3900(3)$	$7622(6)$	$70(1)$
$\mathrm{C}(12)$	$4912(2)$	$3706(3)$	$6105(6)$	$69(1)$
$\mathrm{C}(13)$	$3587(2)$	$3975(3)$	$5395(7)$	$53(1)$
$\mathrm{C}(14)$	$2994(2)$	$4265(3)$	$6024(6)$	$56(1)$
$\mathrm{C}(15)$	$2447(2)$	$4127(3)$	$4633(7)$	$60(1)$

$\mathrm{C}(16)$	$2479(2)$	$3667(3)$	$2567(7)$	$51(1)$
$\mathrm{C}(17)$	$3072(2)$	$3389(3)$	$1951(7)$	$58(1)$
$\mathrm{C}(18)$	$3623(2)$	$3520(3)$	$3330(7)$	$60(1)$
$\mathrm{C}(19)$	$10498(2)$	$3605(3)$	$5362(8)$	$98(2)$
$\mathrm{C}(20)$	$1885(2)$	$3503(3)$	$1045(6)$	$74(1)$

Table 3. Bond lengths [A] and angles [deg] for 3d.

$\mathrm{O}(1)-\mathrm{C}(7)$	$1.051(4)$
$\mathrm{S}(1)-\mathrm{C}(13)$	$1.759(4)$
$\mathrm{S}(1)-\mathrm{C}(12)$	$1.763(4)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.389(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.393(5)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.501(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.373(5)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.367(5)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.376(5)$
$\mathrm{C}(4)-\mathrm{C}(19)$	$1.476(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.357(5)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9300
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.528(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.491(4)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9700
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9700
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.520(4)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9700
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9700
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.480(5)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9700
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9700
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.497(4)$
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9700
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9700

$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9700
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.359(4)$
C(13)-C(18)	$1.381(5)$
$\mathrm{C}(14)-\mathrm{C}(15)$	1.380(4)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9300
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.383(5)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9300
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.353(5)$
$\mathrm{C}(16)-\mathrm{C}(20)$	$1.506(5)$
$\mathrm{C}(17)-\mathrm{C}(18)$	1.383(4)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9300
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9300
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9600
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9600
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9600
$\mathrm{C}(13)-\mathrm{S}(1)-\mathrm{C}(12)$	104.4(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	115.6(4)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	125.1(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	119.3(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.3(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.6(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	118.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	118.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.0(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	120.9(5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19)$	123.1(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	122.6(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	118.7
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	118.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.9(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.0
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	119.0
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(1)$	121.3(4)

$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	122.5(5)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	116.2(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	112.8(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.0
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.0
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.8
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	115.5(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.4
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	114.3(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.7
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.7
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.6
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	115.2(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	107.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(1)$	108.4(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.0
$\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.0
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.0
$\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.0
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.4
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	117.8(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{S}(1)$	115.7(3)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{S}(1)$	126.5(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.4(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.3
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.3

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.2(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$116.8(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(20)$	$121.4(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(20)$	$121.7(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$122.6(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	118.7
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	118.7
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.2(4)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	119.9
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.9
$\mathrm{C}(4)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(16)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(16)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(16)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \mathrm{x} 10^{\wedge} 3$) for 230215 d . The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{* \wedge} 2 \mathrm{U} 11+\ldots+\right.$ 2hka*b*U12]

	U11	U22	U33	U23	U13	U12
$\mathrm{O}(1)$	$62(2)$	$126(3)$	$90(2)$	$-6(2)$	$-5(2)$	$9(2)$
$\mathrm{S}(1)$	$66(1)$	$124(1)$	$90(1)$	$-4(1)$	$-4(1)$	$-2(1)$
$\mathrm{C}(1)$	$63(3)$	$45(3)$	$52(3)$	$1(2)$	$-5(2)$	$7(2)$
$\mathrm{C}(2)$	$68(3)$	$66(4)$	$52(3)$	$-8(2)$	$-7(3)$	$3(3)$
$\mathrm{C}(3)$	$57(3)$	$70(4)$	$85(3)$	$-11(3)$	$-12(3)$	$-1(3)$

$\mathrm{C}(4)$	$66(4)$	$58(4)$	$74(3)$	$5(3)$	$3(3)$	$2(3)$
$\mathrm{C}(5)$	$79(4)$	$63(4)$	$50(3)$	$-6(2)$	$-2(3)$	$5(3)$
$\mathrm{C}(6)$	$55(3)$	$74(4)$	$62(3)$	$4(3)$	$-13(3)$	$2(2)$
$\mathrm{C}(7)$	$42(3)$	$47(3)$	$53(3)$	$4(2)$	$-14(3)$	$-2(2)$
$\mathrm{C}(8)$	$60(3)$	$64(4)$	$66(3)$	$0(2)$	$-9(2)$	$2(2)$
$\mathrm{C}(9)$	$67(3)$	$55(3)$	$74(3)$	$3(2)$	$-17(3)$	$-4(3)$
$\mathrm{C}(10)$	$59(3)$	$62(4)$	$84(3)$	$1(2)$	$-8(3)$	$-4(2)$
$\mathrm{C}(11)$	$61(3)$	$80(4)$	$68(3)$	$1(3)$	$-6(3)$	$3(3)$
$\mathrm{C}(12)$	$50(3)$	$79(4)$	$79(3)$	$7(3)$	$2(3)$	$1(2)$
$\mathrm{C}(13)$	$46(3)$	$61(3)$	$52(3)$	$4(2)$	$0(2)$	$-2(2)$
$\mathrm{C}(14)$	$54(3)$	$65(4)$	$48(2)$	$-3(2)$	$5(2)$	$-6(2)$
$\mathrm{C}(15)$	$47(3)$	$64(4)$	$69(3)$	$-1(3)$	$12(2)$	$4(2)$
$\mathrm{C}(16)$	$55(3)$	$43(3)$	$56(3)$	$5(2)$	$5(2)$	$-1(2)$
$\mathrm{C}(17)$	$63(3)$	$60(3)$	$49(3)$	$-2(2)$	$1(3)$	$-1(3)$
$\mathrm{C}(18)$	$55(3)$	$60(4)$	$65(3)$	$5(2)$	$10(3)$	$5(2)$
$\mathrm{C}(19)$	$80(4)$	$99(5)$	$118(4)$	$12(3)$	$28(3)$	$13(3)$
$\mathrm{C}(20)$	$68(3)$	$80(4)$	$71(3)$	$-2(2)$	$-13(3)$	$-7(3)$

Table 5. Hydrogen coordinates (x $10^{\wedge} 4$) and isotropic displacement parameters ($\mathrm{A}^{\wedge} 2$ x $10^{\wedge} 3$) for $3 d$.

	x	y	z	$\mathrm{y}(\mathrm{eq})$
$\mathrm{H}(2)$	9067	4337	10580	75
$\mathrm{H}(3)$	10075	4249	9185	85
$\mathrm{H}(5)$	9349	3147	3465	77
$\mathrm{H}(6)$	8340	3259	4753	77
$\mathrm{H}(8 \mathrm{~A})$	7379	3822	5835	76
$\mathrm{H}(8 \mathrm{~B})$	7358	2870	7156	76
$\mathrm{H}(9 \mathrm{~A})$	6705	4485	8482	79
$\mathrm{H}(9 \mathrm{~B})$	6673	3521	9736	79
$\mathrm{H}(10 \mathrm{~A})$	6167	3789	5249	82
$\mathrm{H}(10 \mathrm{~B})$	6093	2871	6670	82
$\mathrm{H}(11 \mathrm{~A})$	5534	4571	7836	83
$\mathrm{H}(11 \mathrm{~B})$	5432	3623	9102	83
$\mathrm{H}(12 \mathrm{~A})$	4853	3036	5927	83
		538		

H(12B)	4966	3977	4611	83
$H(14)$	2956	4563	7421	67
$H(15)$	2050	4346	5095	72
$H(17)$	3110	3098	546	69
$H(18)$	4020	3300	2865	72
$H(19 A)$	10520	3103	4280	147
$H(19 B)$	10798	3488	6623	147
$H(19 C)$	10606	4184	4642	147
$H(20 A)$	1989	3084	-165	110
$H(20 B)$	1737	4088	410	110
$H(20 C)$	1551	3232	1920	110

Table 6. Torsion angles [deg] for 3d.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$0.7(6)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$177.1(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-2.1(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$2.4(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	$-179.9(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-1.5(7)$
$\mathrm{C}(19)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-179.1(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$0.2(7)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$0.2(6)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-176.0(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$174.8(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$-1.3(7)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-4.6(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$179.3(4)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$14.0(7)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-166.6(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$178.2(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-174.5(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$175.8(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(1)$	$-178.6(3)$
$\mathrm{C}(13)-\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$177.6(3)$
$\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$177.7(3)$

$\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{C}(13)-\mathrm{C}(18)$	$-0.7(4)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-1.2(6)$
$\mathrm{S}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-179.8(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$1.5(6)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-2.0(6)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(20)$	$179.4(3)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$2.3(6)$
$\mathrm{C}(20)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-179.1(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$1.4(6)$
$\mathrm{S}(1)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$179.8(3)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$-2.0(6)$

Symmetry transformations used to generate equivalent atoms:
Table 7. Hydrogen bonds for 3d [A and deg.].
D-H...A d(D-H) d(H...A) d(D...A) $<$ (DHA)

VIII. NMR spectra and HRMS of the products

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

HRMS of 3a

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 b}$

HRMS of 3b

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 c}$

훅후웅

웅․․․․․․․․․․․․
థiఇisisic

HRMS of 3c

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 d}$

HRMS of 3d

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 e}$

 - aing iticion
$1 \mid$ |l

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 e}$

[^0]HRMS of 3e

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f}$

 \%ัตัౖ \%ixix

HRMS of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 g}$

HRMS of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 h}$

HRMS of $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 i}$

HRMS of $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3} \mathbf{j}$

$11 \|$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 j}$

HRMS of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 k}$

HRMS of $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31

HRMS of 31

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 m}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 m}$

HRMS of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 n}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 n}$

HRMS of $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 o}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 o}$

HRMS of $\mathbf{3 o}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 p}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 p}$

HRMS of 3p

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q}$

HRMS of $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 r}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3} \mathbf{r}$

HRMS of $\mathbf{3 r}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 s}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3 s

 Eiminimigi giai

HRMS of 3s

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 t}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3t

HRMS of 3t

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 u}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 u}$

HRMS of 3u

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 v}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 v}$

HRMS of $\mathbf{3 v}$

${ }^{1} \mathrm{H}$ NMR spectrum（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound $\mathbf{3 w}$

${ }^{13} \mathrm{C}$ NMR spectrum（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound $\mathbf{3 w}$
 튠 minision

今敋宫

[^1]HRMS of $\mathbf{3 w}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 x}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 x}$

HRMS of $\mathbf{3 x}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 y}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 y}$

HRMS of $\mathbf{3 y}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{4}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4

HRMS of 4

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5}$

HRMS of 5

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6}$

6

HRMS of 6

${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8}$

HRMS of $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS1

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS1

HRMS of PS1

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS2

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS2

气㐾

HRMS of PS2

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS3

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound PS3

建总

HRMS of PS3

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS4

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst $\mathbf{P S 4}$

HRMS of PS4

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS5

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS5

HRMS of PS5

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS6

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of copper catalyst PS6

HRMS of PS6

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 1}$

\%	
¢	

HRMS of compound 11

HRMS of intermediate 9 in reaction mechanism
HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{NSi}^{+}[\mathrm{M}]^{+}: 202.1986$; found: 202.1990

[^0]:

[^1]:

