Total synthesis and structural reassignment of garcinielliptone FC, a polycyclic polyprenylated acylphloroglucinol with diverse bioactivity

Yang Luo,^a Robert B. Grossman,^b Xiao-Bin Nie,^a and Xing-Wei Yang^{a,*}

^a School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen
518107, People's Republic of China
^b Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States

Electronic Supplementary Information

Table of contents

- SI-1. Table for NMR Data of GFC and Xanthochymol (Pages S2–S3)
- SI-2. Experimental Procedures (Pages S4–S17)
- SI-3. The Original NMR and MS Spectra of New Compounds (Pages S18–S53)

SI-1 Table for NMR Data of GFC and Xanthochymol

no.	GFC ^{<i>a,b</i>}	xanthochymol ^b	xanthochymol ^c	xanthochymol ^c
6	2.37. brd (13.9)	2.37. brd (13.9)	2.25. d (14.0)	2.26. m
Ū	2.07, brd (13.9)	2.06. dd (13.9. 6.8)	2.04. m	2.05. m
7	1 45 m	1 43 m	1 50 m	1.51 m
,				
10	2.74, brd (13.6)	2.73, dd (13.5, 9.8)	2.71, dd (13.5, 9.4)	2.77, m
	2.58, brd (13.6)	2.58, brd (13.5)	2.54, m	2.51, m
11	5.09, t (7.2)	5.08, t (7.5)	5.03, m	5.07, m
13	1.80, s	1.80, s	1.73, s	1.74, s
14	1.73, s	1.74, s	1.68, s	1.69, s
17	7.03, d (1.7)	6.99, s	7.18, d (2.1)	7.21, d (2.1)
20	6.67, d (8.2)	6.66, d (8.5)	6.70, d (8.3)	6.72, d (8.0)
21	7.01, dd (8.2, 1.7)	7.00, d (8.5)	6.98, dd (8.3, 2.1)	7.00, dd (8.0, 2.1)
22		2.17, m	2.01, m	2.02, m
	1.88, m, 2H ^e	1.88, m	1.92, dd, (14.0, 5.7)	1.93, m
23	2.64 brd (13.6)	2.64, m	2.54, m	2.51, m
25	4.43, 2H, s	4.42, 4.41, s	4.50, brs, 2H	4.53, brs, 2H
26	1.56, s	1.55, s	1.60, s	1.59, s
27	2.12, m ^e	1.47, m, 2H	1.46, m	1.46, m, 2H
	1.95, m ^e		1.40, m	
28	1.88, m, 2H	1.86, m, 2H	1.87, 1.83, m	1.85, m, 2H
30	4.66, 4.64, s	4.66, 4.63, s	4.64, 4.62, s	4.65, brs, 2H
31	1.69, s	1.70, s	1.68, s	1.69, s
32	2.16, dd (14.5, 8.0)	2.13, m	2.09, m	2.03, m, 2H
	1.99, dd (14.5, 7.2)	1.95, m	1.98, m	
33	4.91, t (7.2)	4.92, t (7.5)	4.87, overlap	4.88, m
35	1.70, s	1.70, s	1.65, s	1.67, s
36	1.53, s	1.53, s	1.49, s	1.50, s
37	1.15, s	1.15, s	1.15, s	1.17, s
38	1.00, s	1.00, s	0.99, s	1.01, s

Table S1. The ¹H NMR Data of GFC and Xanthochymol in Different Solvent

^{*a*} Data from *J. Nat. Prod.* **2008**, 246-250. ^{*b*} Recorded in CDCl₃. ^{*c*} Recorded in methanold₄+0.1% TFA. ^{*d*} Data from *J. Nat. Prod.* **2000**, 1070-1076. ^{*e*} Signals were most probably assigned incorrectly.

no.	GFC ^{<i>a,b</i>}	xanthochymol ^b	xanthochymol ^c	xanthochymol ^c	Difference
		(synthetic)	(synthetic)	$(natural)^d$	in CD ₃ OD
1	69.1	69.7	69.7	69.8	-0.1
2	194.0	194.4	194.1	194.4	-0.3
3	116.0	115.9	117.9	117.9	0
4	198.1	198.4	195.6	195.7	-0.1
5	57.8	57.9	59.8	59.9	-0.1
6	42.6	42.5	43.7	43.9	-0.2
7	46.8	46.8	47.9	48.1	-0.2
8	49.6	49.6	50.2	50.4	-0.1
9	209.2	209.3	210.6	209.8	+0.8
10	26.4	26.3	27.0	27.2	-0.2
11	120.2	120.2	121.3	121.4	-0.1
12	135.1	135.2	135.9	136.0	-0.1
13	26.1	25.8	26.4	26.6	-0.2
14	17.9	18.2	18.3	18.5	-0.2
15	195.8	193.9	195.7	196.4	-0.7
16	128.3	128.1	129.5	129.5	0
17	116.5	116.5	117.3	117.5	-0.2
18	143.3	143.4	147.0	147.0	0
19	149.4	149.5	152.5	152.5	0
20	114.4	114.3	115.1	115.2	-0.1
21	124.3	124.2	125.2	125.3	-0.1
22	36.5 ^e	36.6	37.7	37.8	-0.1
23	43.6	43.3	44.7	44.8	-0.1
24	148.1	147.4	148.9	149.0	-0.1
25	113.2	113.2	113.5	113.7	-0.2
26	17.1	17.2	17.7	17.9	-0.2
27	31.9	31.8	32.7	32.9	-0.2
28	35.5	35.5	36.8	36.9	-0.1
29	146.0	146.0	146.3	146.5	-0.2
30	109.6	109.6	110.4	110.6	-0.2
31	22.5^{e}	22.7	22.8	23.0	-0.2
32	29.1 ^{<i>f</i>}	28.9	30.3	30.4	-0.1
33	123.9	123.8	125.6	125.7	-0.1
34	132.9	132.9	133.7	133.7	0
35	25.8^{e}	26.1	26.0	26.1	-0.1
36	17.7	17.9	18.2	18.4	-0.2
37	22.7	22.6	23.2	23.3	-0.1
38	27.0	27.0	27.3	27.5	-0.2

Table S2. The ¹³C NMR Data of GFC and Xanthochymol in Different Solvent

^{*a*} Data from *J. Nat. Prod.* **2008**, 246-250. ^{*b*} Recorded in CDCl₃. ^{*c*} Recorded in methanol*d*₄ +0.1% TFA. ^{*d*} Data from *J. Nat. Prod.* **2000**, 1070-1076. ^{*e*} Exchanged signals. ^{*f*} Revised data based on the data of its keto-enol tautomeric isomer (*J. Nat. Prod.* **2008**, 246-250).

SI-2 Experimental Procedures

General Experimental Procedures. NMR spectra were recorded on a Bruker DRX-500 or DRX-600 spectrometer with TMS as the internal standard in CDCl₃ or CD₃OD. Chemical shifts (δ) are expressed in ppm with reference to the solvent signals. ESIMS and HREIMS data were acquired on an Agilent Q-TOF mass spectrometer. X-ray data were generated using a Bruker Apex Duo instrument. Preparative HPLC was performed on an Agilent 1260 HPLC with a Waters SunFire C18 OBD 5 μ m column (19 × 250 mm). Silica gel (200–300 mesh, Qingdao Marine Chemical Co., Ltd.) were used for column chromatography. Fractions were monitored by TLC (GF 254, Qingdao Marine Chemical Co., Ltd.), and spots were visualized by heating silica gel plates immersed in H₂SO₄ in ethanol.

Synthesis of *a*-ketoester 7

To a solution of cyclohexanone **6** (5.348 g, 30 mmol, 1.0 equiv) in THF (125 mL) was added dropwise a solution of LDA (33 mmol, 1.1 equiv) at -78 °C. After stirring the reaction mixture at that temperature for 1 h, methyl cyanoformate (5.103 g, 60 mmol, 2.0 equiv) was added. The stirring was continued for an additional period of 1 hour, after which the reaction mixture was quenched with saturated aq. NH₄Cl, allowed to warm to 25 °C, and extracted two times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ filtered and concentrated in vacuo. Purification of the residue by column chromatograph (silica gel, petroleum ether/EtOAc, 9:1) to afford α -ketoester **7** (5.734g, 81% yield).

¹**H NMR (500 MHz, CDCl₃)** δ 5.93 (s, 0.5H, b), 5.87 (s, 1H, a), 5.09 (t, J = 7.3 Hz, 1.1H, a), 5.02 (t, J = 7.0 Hz, 0.6H, b), 3.75 (s, 1.5H, b), 3.74 (s, 3.3H, a), 3.46 (dd, J = 11.3, 5.1 Hz, 1H, a), 3.36 (dd, J = 13.7, 4.7 Hz, 0.5H, b), 2.48 – 2.29 (m, 4.6H, a + b), 2.21 – 2.10 (m, 2.4H, a + b), 2.08 – 2.03 (m, 1.7H, a + b), 1.98 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.7H, b), 1.71 (s, 2.9H, a), 1.70 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.9H, b), 1.62 (s, 3H, a), 1.97 (s, 1.9H, b), 1.91 (s, 2.9H, a), 1.91 (s,

2.9H, a), 5.93 (s, 1.7H, b); ¹³C NMR (125 MHz, CDCl₃) δ 194.0 (b), 193.7 (a), 171.3 (b), 171.2 (a), 166.3 (a), 165.4 (b), 134.8 (b), 134.7 (a), 127.2 (b), 126.0 (a), 121.4 (a), 120.3 (b), 53.6 (b), 52.4 (a), 52.3 (b), 49.7 (a), 39.6 (b), 39.0 (a), 30.9 (b), 30.5 (b), 29.9 (a), 29.6 (a), 26.0 (b), 26.0 (a), 23.2 (a), 22.4 (b), 18.1 (b), 18.0 (a).

MS positive ESIMS m/z 259 [M + Na]⁺, 495 [2M + Na]⁺.

Synthesis of ester 9

To a solution of ethyl acetoacetate (10.2 mL, 80 mmol, 1.0 equiv) in anhydrous THF (150 mL) was added portion-wise NaH (60 % in mineral oil, 3.68 g, 92 mmol, 1.15 equiv) under argon at 0 °C. After stirring for 1 h the iodide **8** (10 mL, 80mmol, 1.0 equiv) in DMF (50 mL) was added to the mixture. The reaction mixture was now allowed to warm to 45 °C and stirred overnight in the dark. The mixture was quenched with saturated aq. NH₄Cl and diluted with EtOAc, extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography (silica gel, petroleum ether/EtOAc, 10:1) to afford ester **9** (12.988 g, 82% yield).

The spectral data of ester 9 matched with those in the literature.^[1]

Synthesis of enone 10

To a solution of corresponding ester **9** (9.9 g, 50 mmol, 1.0 equiv) in anhydrous THF (120 mL) was successively added Et₃N (6.9 mL, 50 mmol, 1.0 equiv) and NaH (60 % in mineral oil, 2.256 g, 56.4 mmol, 1.15 equiv) under argon at 0 °C, After stirring for 10 min at this temperature TBSCl (11.304 g, 75 mmol, 1.5 equiv) was added and the mixture was stirred for 30 min at 0 °C. The

solution was quenched with saturated aq. NaHCO₃ and diluted with EtOAc, extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was used without further purification.

To a solution of the crude product in anhydrous Et_2O (10 mL) was added dropwise *i*-Bu₂AlH (150 mL, 3M in hexanes, 3.0 equiv) under argon at -78 °C. The resulting solution was allowed to stir at the same temperature for 20 min. The reaction was quenched with saturated aq. potassium sodium tartrate at -78 °C and gradually warm to room temperature. The resulting suspension was diluted with EtOAc, extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was used without further purification.

The crude product was added aq. 2N HCl (10 mL) at room temperature. After stirring at that temperature for 30 min, the resulting mixture was extracted three times with *n*-pentane. The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated. Purification of the residue by column chromatography (silica gel, *n*-pentane/acetone, 50:1) to afford enone **10** (5.244 g, 76% overall yield).

The spectral data of enone 10 matched with those in the literature.^[2]

Synthesis of compound 11

 α -Ketoester 7 (2.36 g, 10 mmol, 1.0 equiv) was charged to a flame dried flask and enone 10 (2.76 g, 20 mmol, 2.0 equiv) was added under argon. The resulting mixture was cooled to 0 °C and 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) (299 μ L, 2 mmol, 0.2 equiv) was added to obtain a yellow solution. After stirring the solution for 72 hours at 0 °C, the reaction was quenched with aq. 2N HCl, and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography to (silica gel, petroleum ether/EtOAc, 6:1) afford a pair of diastereoisomers **11a** and **11b** (2.412 g for **11a** and 0.801 g for **11b**, 3:1, 86% yield).

11a: ¹**H NMR (600 MHz, CDCl₃)** δ 5.86 (s, 1H), 5.01 (t, *J* = 7.1 Hz, 1H), 4.70 (s, 1H), 4.64 (s, 1H), 3.72 (s, 3H), 2.72 – 2.68 (m, 1H), 2.42 (brs, 2H), 2.28 – 2.22 (m, 2H), 2.20 (s, 3H), 2.07 – 2.02 (m, 1H), 1.98 (s, 3H), 1.96 – 1.89 (m, 2H), 1.80 – 1.72 (m, 2H), 1.71 (s, 3H), 1.69 – 1.65 (m, 1H), 1.68 (s, 3H), 1.61 (s, 3H), 1.51 – 1.45 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 210.9, 195.6, 172.1, 164.0, 144.1, 133.6, 124.9, 119.7, 109.4, 56. 9, 51.5, 47.5, 35.6, 33.75, 33.71, 32.1, 30.9, 29.6, 29.2, 25.0, 21.6, 21.4, 17.1.

MS positive ESIMS *m*/*z* 375 [M + H]⁺, 413 [M + K]⁺, 771 [2M + Na]⁺. HRESIMS *m*/*z* 397.2358 [M + Na]⁺ (calcd for C₂₃H₃₄O₄Na, 397.2349).

11b: ¹**H NMR (600 MHz, CDCl₃)** δ 5.77 (s, 1H), 5.04 (t, J = 7.0 Hz, 1H), 4.71 (s, 1H), 4.67 (s, 1H), 3.70 (s, 3H), 2.89 – 2.85 (m, 1H), 2.58 (brs, 1H), 2.47 – 2.39 (m, 2H), 2.20 (dd, J = 13.8, 10.3 Hz, 1H), 2.09 (s, 3H), 2.04 – 2.00 (m, 2H), 1.98 (s, 3H), 1.95 (dd, J = 13.7, 4.9 Hz, 1H), 1.72 – 1.67 (m, 3H), 1.71 (s, 3H), 1.61 (s, 3H), 1.50 – 1.42 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 210.4, 196.1, 172.9, 162.9, 144.3, 133.7, 126.0, 119.6, 109.3, 55.9, 51.4, 47.0, 36.5, 35.7, 33.8, 31.9, 30.7, 29.5, 28.7, 25.0, 21.7, 21.4, 17.1.

MS positive ESIMS m/z 375 [M + H]⁺, 397 [M + Na]⁺,413 [M + K]⁺, 771 [2M + Na]⁺. **HRESIMS** m/z 397.2357 [M + Na]⁺ (calcd for C₂₃H₃₄O₄Na, 397.2349).

Crystal data for 11b: C₂₃H₃₄O₄, M = 374.50, a = 9.1816(5) Å, b = 23.6417(12) Å, c = 10.0047(5)Å, $a = 90^{\circ}$, $\beta = 102.444(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 2120.69(19) Å³, T = 100.(2) K, space group P121/n1, Z = 4, μ (Cu K α) = 0.624 mm⁻¹, 21766 reflections measured, 4182 independent reflections ($R_{int} = 0.1293$). The final R_I values were 0.0786 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.2113 ($I > 2\sigma(I)$). The final R_I values were 0.1086 (all data). The final $wR(F^2)$ values were 0.2536 (all data). The goodness of fit on F^2 was 1.114.

Synthesis of silyl-ether 12

CuCN (107.5 mg, 1.2 mmol, 0.3 equiv) was charged to a flame dried flask and CuMe₂Li (22.4 mL, 0.5 M in Et₂O, 11.2 mmol, 2.8 equiv) was added dropwise under argon at -30 °C. After stirring 2 min, compound **11a** (1.5 g, 4 mmol, 1.0 equiv) in anhydrous Et₂O (20 mL) was added dropwise. The resulting bright yellow suspension was continued to stir at the same temperature for 20 min. HMPA (2.78 mL, 16 mmol, 4.0 equiv) and TESCl (1.68 mL, 10 mmol, 2.5 equiv) were successively added and the reaction mixture was gradually warmed to 0 °C and additionally stirred for 5 min at 0 °C. The reaction mixture was quenched by saturated aq. NaHCO₃ and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography (silica gel, petroleum ether/EtOAc, 30:1) to afford silyl-ether **12** (1.552 g, 77% yield).

¹**H NMR (500 MHz, CDCl₃)** δ 5.02 (t, *J* = 7.2 Hz, 1H), 4.68 (s, 1H), 4.65 (s, 1H), 4.52 (s, 1H), 3.63 (s, 3H), 2.85 – 2.80 (m, 1H), 2.20 (dd, *J* = 14.3, 6.3 Hz, 1H), 2.16 (s, 1H), 2.11 – 2.06 (brs, 1H), 1.93 (t, *J* = 8.1 Hz, 2H), 1.84 (dd, *J* = 14.6, 3.3 Hz, 1H), 1.79 – 1.72 (m, 2H), 1.69 (s, 6H), 1.67 – 1.59 (m, 2H), 1.57 (s, 3H), 1.41 – 1.35 (m, 2H), 1.01 (s, 3H), 0.95 (t, *J* = 8.0 Hz, 9H), 0.87 (s, 3H), 0.67 – 0.62 (m, 6H); ¹³**C NMR (125 MHz, CDCl₃)** δ 212.4, 176.2, 149.0, 145.7, 132.5, 123.8, 115.4, 110.0, 52.2, 51.9, 48.9, 39.6, 35.9, 35.2, 34.9, 33.5, 31.9, 29.8, 29.7, 29.6, 28.7, 26.2, 23.5, 22.7, 18.0, 14.3, 6.9, 5.2.

MS positive ESIMS *m*/*z* 505 [M + H]⁺, 527 [M + Na]⁺, 1032 [2M + Na]⁺. HRESIMS *m*/*z* 527.3523 [M + Na]⁺ (calcd for C₂₅H₄₀O₃Na, 527.3527).

Synthesis of compound 13

To a solution of $Ph_3PCH_3^+ Br^-$ (1.072 g, 3 mmol, 3 equiv) in THF (10 mL) was added one portion KOtBu (393 mg, 3.5 mmol, 3.5 equiv) under argon at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred for 1 h, the yellow suspension was cooled to 0 °C again followed by dropwise addition of silyl-ether **12** (504 mg, 1 mmol, 1.0 equiv, dissolved in 5 mL THF). Subsequently, the mixture was further stirred at room temperature for 6 hours. The reaction mixture was quenched with saturated aq. NH₄Cl and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ filtered and concentrated in vacuo. Purification of the residue by column chromatograph (silica gel, petroleum ether/EtOAc 2:1) to afford compound **13** (154 mg, 43% yield).

¹**H NMR (600 MHz, CDCl₃)** δ 5.08 (brs, 1H), 4.75 (s, 1H), 4.69 (s, 1H), 3.92 (d, *J* = 17.2, 1H), 3.42 (d, *J* = 17.2, 1H), 2.68 (dd, *J* = 14.6, 4.9 Hz, 1H), 2.62 (d, *J* = 13.6, 1H), 2.31 – 2.24 (m, 3H), 2.14 – 2.04 (m, 4H), 1.79 – 1.74 (m, 2H), 1.72 (s, 3H), 1.70 (s, 3H), 1.65 – 1.60 (m, 2H), 1.62 (s, 3H), 1.45 – 1.38 (m, 2H), 1.12 (s, 3H), 0.83 (s, 3H); ¹³C **NMR (150 MHz, CDCl₃)** δ 211.8, 203.7, 203.0, 144.9, 133.5, 122.9, 111.2, 63.1, 59.0, 53.1, 45.3, 42.3, 39.9, 35.5, 35.0, 34.9, 29.9, 28.2, 26.1, 26.0, 22.2, 19.9, 18.1.

MS positive ESIMS *m*/*z* 359 [M + H]⁺, 381 [M + Na]⁺, 397 [M + K]⁺, 739 [2M + Na]⁺. HRESIMS *m*/*z* 381.2404 [M + Na]⁺ (calcd for C₂₅H₄₀O₃Na, 381.2400).

S9

Synthesis of cyclohexanone 14

Preparation of Tebbe reagent: To a solution of titanocene dichloride (3.734 g, 15 mmol, 1.0 equiv) in anhydrous toluene (13.5 mL) was added dropwise AlCl₃ (31.5 mL, 1M in hexanes, 2.1 equiv) under argon at 0 °C. The resulting suspension was allowed to warm to 45 °C and stirred for 48 hours. The crude product was used for Tebbe olefination without purification.

To a solution of silyl-ether **12** (1.008 g, 2.0 mmol, 1.0 equiv) in anhydrous THF (6 mL) was added dropwise Tebbe reagent (30 mL, 10 mmol, 5 equiv) under argon at -10 °C. After stirring for 5 min, the resulting suspension was gradually warm to 0 °C and then quenched with saturated aq. potassium sodium tartrate, extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was used without further purification.

The crude product was dissolved in THF (3 mL) and tetrabutylammonium fluoride (3 mL) was added at room temperature. After stirring for 30 min, the resulting mixture was quenched with aq. 2N HCl and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography (silica gel, petroleum ether/EtOAc, 50:1) to afford cyclohexanone **14** (683 mg, 88% overall yield).

¹**H NMR (500 MHz, CDCl₃)** δ 5.11 (t, *J* = 7.4 Hz, 1H), 4.75 (s, H), 4.71 (s, H), 4.66 (s, H), 4.60 (s, H), 3.73 (s, 3H), 2.50 (d, *J* = 13.6 Hz, 1H), 2.23 – 2.19 (brs, 1H), 2.15 – 1.75 (m, 8H), 1.73 – 1.52 (m, 2H), 1.70 (s, 3H), 1.66 (s, 3H), 1.65 (s, 3H), 1.59 (s, 3H), 1.41 – 1.35 (m, 2H), 1.04 (s, 3H), 0.82 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** δ 209.2, 172.9, 147.3, 145.8, 132.7, 123.2, 112.9, 109.8, 62.3, 53.0, 52.1, 43.9, 42.4, 39.1, 35.8, 35.4, 32.9, 31.9, 29.8, 28.2, 26.1, 22.7, 20.5, 18.7, 17.9.

HRESIMS m/z 411.2875 [M + Na]⁺ (calcd for C₂₅H₄₀O₃Na, 411.2870).

Synthesis of compound 16

To a solution of cyclohexanone **14** (544 mg, 1.4 mmol, 1.0 equiv) in anhydrous Et_2O (3 mL) was added dropwise potassium bis(trimethylsilyl)amide (2.8 mL, 1 M in THF, 2.8 mmol, 2.0 equiv) under argon at -30 °C. After stirring the reaction mixture at that temperature for 1 h, a freshly prepared mixture of MgBr₂·Et₂O (1.085 g, 4.2 mmol, 3.0 equiv) in Et₂O (9 mL) was added. After stirring for 10 min at -30 °C, acetaldehyde (0.26 mL, 4.2 mmol, 3.0 equiv) was added at -30 °C and then gradually warm to 0 °C and additionally stirred for 5 min at 0 °C. The reaction mixture was quenched with saturated aq. NH₄Cl solution, extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was used without further purification.

To a solution of crude product in DCM (7.5 mL) was successively added NaHCO₃ (118 mg, 1.4 mmol, 1.0 equiv) and Dess-Martin reagent (1.188 g, 2.8 mmol, 2.0 equiv) under argon at 0 °C. Subsequently, the reaction mixture was allowed to warm to room temperature. After stirring for 30 min at room temperature, the reaction mixture was quenched with saturated aq. NaHCO₃ and extracted three times with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography (silica gel, petroleum ether/EtOAc, 15:1) to afford a pair of enantiomers diketones **16a** and **16b** (294 mg for **16a** and 151 mg for **16b**, 1.95:1, 74% overall yield).

16a: ¹**H NMR (400 MHz, CDCl₃)** δ 5.08 (t, *J* = 6.5 Hz, 1H), 4.78 (s, 1H), 4.73 (s, 1H), 4.68 (s, 1H), 4.62 (s, 1H), 3.75 (s, 3H), 3.66 (s, 1H), 2.25 – 2.20 (brs, 1H), 2.18 – 1.95 (m, 5H), 2.13 (s, 3H), 1.90 – 1.79 (m, 2H), 1.79 – 1.56 (m, 6H), 1.71 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H), 1.44 – 1.39 (m, 2H), 1.10 (s, 3H), 1.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 206.5, 204.7, 172.1, 147.0, 145.6, 133.2,

122.8, 113.3, 109.9, 69.7, 62.7, 52.4, 44.3, 44.1, 43.2, 36.2, 35.3, 32.8, 32.7, 32.2, 27.5, 26.8, 26.1, 22.7, 18.8, 17.9, 16.0.

16b: ¹**H NMR (400 MHz, CDCl₃)** δ 5.16 (t, *J* = 6.8 Hz, 1H), 4.73 (s, 1H), 4.66 (s, 1H), 4.63 (s, 2H), 3.82 (s, 1H), 3.66 (s, 3H), 2.34 – 2.22 (m, 3H), 2.18 (s, 3H), 1.93 – 1.82 (m, 3H), 1.78 – 1.66 (m, 3H), 1.72 (s, 3H), 1.69 (s, 3H), 1.63 – 1.33 (m, 5H), 1.60 (s, 3H), 1.59 (s, 3H), 1.09 (s, 3H), 1.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 204.4, 173.2, 146.5, 146.1, 133.0, 123.1, 113.1, 109.7, 69.6, 59.9, 51.9, 43.7, 43.5, 42.1, 37.9, 35.4, 35.0, 33.0, 32.2, 26.9, 26.0, 24.6, 22.8, 18.0, 17.7.

MS positive ESIMS *m*/*z* 431 [M + H]⁺, 453 [M + Na]⁺, 469 [M + K]⁺. HRESIMS *m*/*z* 453.2981 [M + Na]⁺.

Synthesis of compound 17

To a solution of diketone **16** (280 mg, 0.65 mmol, 1.0 equiv) in DMF was added portion-wise NaH (60% in mineral oil, 30 mg, 0.75 mmol, 1.15 equiv) under argon at 0 °C. The mixture was stirred for 1 h at this temperature and then allylchloroformiate (172μ L, 1.625 mmol, 2.5 equiv) was added dropwise. The mixture was allowed to warm to room temperature and was further stirred overnight. The reaction mixture was quenched with saturated aq. NH₄Cl and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography (silica gel, petroleum ether/EtOAc, 12:1) to afford two regioisomeric allyl vinyl carbonates **17a** and **17b** (192 mg for **17a** and 119 mg for **17b**, 1.6:1, 93% overall yield).

17a: ¹**H NMR (500 MHz, CDCl₃)** δ 5.98 – 5.90 (m, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.5 Hz, 1H), 4.99 (t, *J* = 7.4 Hz, 1H), 4.71 (s, 1H), 4.68 – 4.65 (m, 4H), 4.61 (s, 1H), 3.69 (s, 3H), 2.42 (t, *J* = 13.9 Hz, 1H), 2.11 – 2.02 (m, 3H), 1.93 (s, 3H), 1.89 (dd, *J* = 14.6, 3.4 Hz, 1H), 1.85 –

1.80 (m, 2H), 1.74 (q, J = 7.0 Hz, 1H), 1.70 – 1.65 (m, 1H), 1.67 (s, 3H), 1.65 – 1.55 (m, 1H), 1.61 (s, 3H), 1.58 (s, 3H), 1.45 – 1.30 (m, 2H), 1.18 (s, 3H), 1.11 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 203.2, 171.9, 151.9, 149.2, 147.5, 145.9, 135.6, 133.4, 131.2, 123.0, 119.7, 112.7, 109.7, 69.2, 60.5, 52.5, 43.9, 42.9, 41.9, 37.6, 35.4, 32.8, 32.3, 27.5, 26.5, 26.0, 22.7, 18.9, 18.2, 18.1, 18.0. MS positive ESIMS m/z 515 [M + H]⁺, 537 [M + Na]⁺, 553 [M + K]⁺. HRESIMS m/z 537.3188 [M + Na]⁺ (calcd for C₃₁H₄₆O₆Na, 537.3187).

17b: ¹**H NMR (500 MHz, CDCl₃)** δ 5.93 – 5.85 (m, 1H), 5.35 (d, J = 17.2 Hz, 1H), 5.27 (d, J = 10.5 Hz, 1H), 4.74 (s, 1H), 4.70 (s, 1H), 4.66 (s, 1H), 4.61 (s, 1H), 4.58 (d, J = 5.8 Hz, 2H), 3.61 (s, 3H), 2.26 (s, 3H), 2.22 – 2.05 (m, 4H), 1.96 (dd, J = 14.5, 2.7 Hz, 1H), 1.88 – 1.58 (m, 5H), 1.71 (s, 3H), 1.67 (s, 3H), 1.63 (s, 3H), 1.61 (s, 3H), 1.43 – 1.34 (m, 3H), 1.15 (s, 3H), 1.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 173.2, 152.6, 147.4, 145.9, 144.5, 140.2, 133.1, 131.2, 123.1, 119.6, 112.8, 109.7, 69.4, 52.6, 50.1, 43.8, 40.7, 38.7, 37.9, 35.4, 32.3, 31.6, 29.5, 28.0, 26.1, 25.1, 22.8, 21.1, 18.4, 17.9.

HRESIMS m/z 537.3197 [M + Na]⁺ (calcd for C₃₁H₄₆O₆Na, 537.3187).

Synthesis of compound 18

Tris(dibenzylideneacetone)dipalladium(0) (8.3 mg, 0.009 mmol, 0.025 equiv) and tri(p-tolyl)phosphine (6.6 mg, 0.0216 mmol, 0.06 equiv) were dissolved in toluene (5 mL) and stirred for 30 min at room temperature. Then, a solution of the pair of regioisomers **17** (185 mg, 0.36 mmol, 1.0 equiv) in toluene (2 mL) was added slowly. The resulting mixture was stirred at 60 °C for 2 h, and then filtered through a plug of silica gel using petroleum ether/ethyl acetate (7:1) to afford C-allylated diketone **18a** and **18b**. The desired product **18a** was purified by HPLC (MeOH/H₂O, 93:7). (108 mg for **18a** and 38 mg for **18b**, 2.8:1, 87% overall yield).

18a: ¹**H** NMR (500 MHz, CDCl₃) δ 5.36 – 5.28 (m, 1H), 5.10 (t, J = 6.0 Hz, 1H), 4.93 (d, J = 10.2

Hz, 1H), 4.88 (d, *J* = 16.9 Hz, 1H), 4.80 (s, 1H), 4.76 (s, 1H), 4.67 (s, 1H), 4.63 (s, 1H), 3.74 (s, 3H), 3.17 (dd, *J* = 14.3, 5.0 Hz, 1H), 2.26 – 2.17 (m, 3H), 2.10 (s, 3H), 1.89 – 1.75 (m, 6H), 1.74 – 1.58 (m, 2H), 1.79 (s, 3H), 1.69 (s, 3H), 1.65 (s, 3H), 1.61 (s, 3H), 1.51 – 1.38 (m, 2H), 1.03 (s, 3H), 0.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.0, 205.6, 172.3, 146.2, 145.1, 133.2, 132.0, 122.0, 116.4, 112.0, 108.7, 72.9, 59.6, 51.5, 42.6, 39.5, 36.9, 36.5, 36.0, 34.4, 32.0, 31.4, 30.1, 27.0, 25.2, 21.8, 21.3, 20.8, 18.1, 17.0.

HRESIMS m/z 493.3293 [M + Na]⁺ (calcd for C₃₀H₄₆O₄Na, 493.3288).

18b: ¹**H NMR (500 MHz, CDCl₃)** δ 5.69 – 5.61 (m, 1H), 5.10 – 5.02 (m, 2H), 5.01 (d, *J* = 10.1 Hz, 1H), 4.77 (s, 1H), 4.68 (s, 1H), 4.66 (s, 1H), 4.61 (s, 1H), 3.74 (s, 3H), 3.04 (dd, *J* = 16.5, 5.7 Hz, 1H), 2.62 (q, *J* = 8.2 Hz,1H), 2.32 – 2.22 (brs, 2H), 2.08 – 2.01 (m, 3H), 2.05 (s, 3H), 1.87 – 1.84 (m, 3H), 1.79 – 1.66 (m, 2H), 1.70 (s, 3H), 1.67 (s, 3H), 1.64 – 1.57 (m, 2H), 1.61 (s, 3H), 1.60 (s, 3H), 1.49 – 1.36 (m, 3H), 0.82 (s, 6H); ¹³C **NMR (125 MHz, CDCl₃)** δ 207.9, 204.8, 172.7, 146.9, 145.9, 135.5, 132.5, 123.4, 117.4, 113.3, 109.8, 75.0, 64.0, 52.4, 44.5, 42.9, 37.9, 36.3, 35.4, 35.2, 32.8, 31.3, 29.9, 29.8, 28.4, 26.2, 24.1, 22.8, 20.0, 18.9, 18.0.

HRESIMS m/z 493.3295 [M + Na]⁺ (calcd for C₃₀H₄₆O₄Na, 493.3288).

Synthesis of compound 19

To a solution of diketone **18a** (80 mg, 0.17 mmol, 1.0 equiv) in anhydrous THF (4.5 mL) was added one portion KO*t*Bu (58 mg, 0.51 mmol, 3 equiv) under argon at 0 °C. After stirring for 15 min at this temperature, the reaction was quenched with saturated aq. NH₄Cl and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by column chromatography (silica gel, petroleum ether/EtOAc, 15:1) to afford compound **19** (70 mg, 94% yield).

¹**H NMR (500 MHz, CDCl**₃) δ 5.69 – 5.60 (m, 1H), 5.08 (d, J = 17.1, 1H), 5.04 (d, J = 10.2, 1H),

4.83 (t, J = 6.7 Hz, 1H), 4.68 (d, J = 15.7 Hz, 2H), 4.54 (d, J = 11.8 Hz, 2H), 3.56 (d, J = 17.1 Hz, 2H), 3.40 (d, J = 17.2 Hz, 2H), 2.81 – 2.74 (m, 1H), 2.47 (dd, J = 12.5, 8.7 Hz, 1H), 2.31 (d, J = 13.9 Hz, 1H), 2.16 (brs, 1H), 2.08 (dd, J = 14.0, 11.3 Hz, 1H), 1.97 (dd, J = 13.8, 6.3 Hz, 1H), 1.86 (t, J = 8.1 Hz, 2H), 1.72 (s, 3H), 1.71 – 1.68 (m, 1H), 1.66 (s, 3H), 1.51 (s, 3H), 1.41 (s, 3H), 1.45 – 1.36 (m, 3H), 1.33 – 1.28 (m, 2H), 1.22 (s, 3H), 0.97 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.8, 202.7, 202.5, 148.6, 146.1, 133.9, 132.5, 122.6, 120.5, 114.6, 109.8, 71.5, 64.0, 63.1, 52.5, 46.8, 44.7, 43.4, 38.4, 35.4, 32.3, 32.2, 29.1, 26.5, 25.9, 23.4, 22.7, 18.1, 16.5. HRESIMS *m*/*z* 437.3062 [M - H]⁻⁻ (calcd for C₂₉H₄₁O₃, 437.3061).

Synthesis of compound 20

Grubbs 2^{nd} generation catalyst (10.2 mg, 0.012 mmol, 0.1 equiv) was added to a dried 15 mL glass pressure tube. The tube was then cooled to -78 °C, compound **19** (53 mg, 0.12 mmol, 1.0 equiv) dissolved in DCM (2 mL) was added quickly under argon. Subsequently, isobutylene (6.8 mL) was condensed along the bottom of the tube at -78 °C. The tube was sealed and slowly warmed to 52 °C. After stirring for 6 h at that temperature, the tube was re-cooled to -78 °C for 5 min before opened to the air. Then, the reaction mixture was allowed to warm to room temperature for evaporation of isobutylene. The resulting solution was concentrated and filtered through a plug of silica gel using petroleum ether/EtOAc (3:1). The product was purified by HPLC (MeOH/H₂O, 93:7) to afford **20** (37.5 mg, 67% yield).

¹**H NMR (600 MHz, CDCl₃)** δ 4.91 (t, J = 7.3 Hz, 1H), 4.83 (t, J = 6.7 Hz, 1H), 4.69 (s, 1H), 4.65 (s, 1H), 4.57 (s, 1H), 4.55 (s, 1H), 3.54 (d, J = 17.2 Hz, 1H), 3.46 (d, J = 17.3 Hz, 1H), 2.85 – 2.80 (m, 1H), 2.57 (s, 1H), 2.56 (s, 1H), 2.29 (d, J = 13.8 Hz, 1H), 2.18 – 2.12 (brs, 1H), 2.09 (dd, J = 13.8, 11.3 Hz, 1H), 1.96 (dd, J = 13.9, 6.3 Hz, 1H), 1.90 – 1.82 (m, 2H), 1.73 – 1.69 (m, 1H), 1.72 (s, 3H), 1.66 (s, 3H), 1.64 (s, 3H), 1.62 (s, 3H), 1.50 (s, 3H), 1.47 (s, 3H), 1.46 – 1.36 (m, 3H), 1.31

- 1.27 (m, 1H), 1.24 (s, 3H), 0.97 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 211.2, 203.2, 202.9, 148.7, 146.2, 136.4, 133.8, 122.7, 118.0, 114.5, 109.8, 71.1, 63.8, 63.0, 52.4, 46.8, 44.9, 43.3, 38.4, 35.5, 32.2, 29.1, 27.0, 26.6, 26.2, 25.9, 23.5, 22.7, 18.1, 18.0, 16.6.

MS positive ESIMS *m*/*z* 467 [M + H]⁺, 489 [M + Na]⁺. **HRESIMS** *m*/*z* 489.3342 [M + Na]⁺ (calcd for C₂₉H₄₁O₃, 489.3339).

Synthesis of (±)-xanthochymol

To a solution of compound **20** (23 mg, 0.05 mmol, 1.0 equiv), samarium (III) chloride (4 mg, 0.005 mmol, 0.1 equiv), triethylamine (9 μ L, 0.06 mmol, 1.2 equiv) in 3 mL of toluene under argon was stirred at 0 °C for 10 min. After 4-(cyanocarbonyl)-1,2-phenylene diacetate (24.7 mg, 0.1 mmol, 2.0 equiv) was added, the mixture was warmed to room temperature and stirred for 2 hours. Then toluene was evaporated and potassium carbonate (5.6 mg, 0.04 mmol) and methanol (2 mL) were added into the resulting solution and stirred for 2 hours. The reaction was quenched with aq. 2N HC1. and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by HPLC (MeOH/H₂O with 0.1% HCOOH, 95:5) to afford (±)-xanthochymol (18.1 mg, 60% overall yield).

Synthesis of (±)-cycloxanthochymol

To a solution of (±)-xanthochymol (12 mg, 0.02 mmol, 1.0 equiv) in toluene (5 mL), HCl (37% solution, 5μ L) was added under argon. The mixture was refluxed for 2 h and then diluted with water, extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification of the residue by HPLC (MeOH/H₂O with 0.1% HCOOH, 95:5) to afford (±)-cycloxanthochymol (9.8 mg, 81% yield).

¹**H NMR (600 MHz, CD₃OD)** δ 7.28 (d, *J* = 2.0 Hz, 1H), 6.96 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 4.79 (s, 2H), 4.60 (s, 2H), 3.09 (dd, *J* = 14.2, 3.4 Hz, 1H), 2.74 – 2.56 (m, 2H), 2.46 (dd, *J* = 13.5, 5.9 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.19 – 2.09 (m, 2H), 2.04 (q, *J* = 7.3 Hz, 1H), 1.73 (s, 3H), 1.69 (s, 3H), 1.67 (s, 3H), 1.63 – 1.56 (m, 2H), 1.59 (s, 6H), 1.54 – 1.47 (m, 2H), 1.35 – 1.29 (m, 3H), 1.24 (s, 3H), 1.20 – 1.13 (m, 1H), 1.15 (s, 3H), 1.08 – 0.99 (m, 3H), 1.00 (s, 2H), 0.84 (s, 3H); ¹³**C NMR (150 MHz, CD₃OD)** δ 207.9, 196.4, 194.2, 173.8, 152.6, 146.7, 146.0, 135.5, 134.0, 131.2, 126.8, 126.3, 124.6, 121.2, 115.9, 115.5, 111.8, 88.5, 69.5, 52.9, 47.5, 47.1, 43.0, 39.8, 36.2, 30.6, 29.4, 28.8, 28.8, 27.0, 26.6, 26.6, 26.1, 22.9, 22.3, 21.5, 18.6, 18.3.

References

- (1) S. Wolff, W. C. Agosta, J. Am. Chem. Soc., 2002, 105, 1299-1304.
- (2) K. Żukowska, Ł. Pączek, K. Grela, Chem. Cat. Chem., 2016, 8, 2817-2823.

SI-3. The Original NMR and MS Spectra of New Compounds

Figure S3. ¹³C NMR spectrum of 7 in CDCl₃.

Figure S4. ESIMS of 11a.

Sample Typ Instrument Acq Methoo IRM Calibra Comment	me e Nam I Ition S	e Status	WLY-374A.d Sample Instrument 1 s.m Success	Sample Nam Position User Name Acquired Tin DA Method	e WLY-374A P1-C3 ne 11/2/2022 4:30:46 PM PCDL.m
Sample Gro Acquisition Version	sw	6200 ser Q-TOF B	ries TOF/6500 series .05.01 (B5125.2)	Info.	
User Spec	ntor Vo	oltage	Collision Energy	Ionization Mode	
1- 0.9- 0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2- 0.1- 0- 396	4 396	([C23 6 396.8 397	397.2358 H34 O4]+Nø)+ 397.2 397.4 397.6 397	((C23 H34 O4)+Na)+ ((C23 H34 O4)+Na)+ /.8 398.2 398.4 39	399.2418 ([C23 H34, O4]+Na)+ 8.6 398.8 399 399.2 399.6
Peak List			Counts	vs. Mass-to-Charge (m/z)	
m/z	Z	Abund	Formula	Ion]
121.0509	1	32419.39			-
397 2358	1	91934 23	C23 H34 04	(M+Na)+	
413.2098	1	27891.68		(, i i i i u) i	
420.3115	1	26868.9			
426.3012	1	89908.26			
427.3049	1	27286.9			
THE R P. LEWIS CO.	1	169242.75			
5/6.3546	1	55982.57			
577.3575	1 culat	or Element L	mits]
576.3546 577.3575 922.0098 Formula Ca	Min	Max			
576.3546 577.3575 922.0098 Formula Ca Element	-	3 60	-		
576.3546 577.3575 922.0098 Formula Ca Element C		0 30			
576.3546 577.3575 922.0098 Formula Ca Element C H O	-	5 50			
576.3546 577.3575 922.0098 Formula Ca Element C H O Formula Ca	lculat	or Results			Diff. (mDa) Diff. (nnm) DBF
576.3546 577.3575 922.0098 Formula Ca Element C H O Formula Ca Formula Ca	Iculat	or Results CalculatedM	lass Calculate	edMz Mz	and the second s
576.3546 577.3575 922.0098 Formula Ca Element C H O Formula Ca Formula Ca Formula Ca Sormula Ca H C23 H34 O4	lculat	or Results CalculatedM	ass Calculate 374.2457	adMz Mz 397.2349 397.	2358 -0.90 -2.27 7.0000
576.3546 577.3575 922.0098 Formula Ca Element C H O Formula Ca Formula Ca For	iculat	or Results CalculatedM	lass Calculate 374.2457	edMz Mz 397.2349 397.	2358 -0.90 -2.27 7.0000

Figure S5. HRESIMS of 11a.

Î

Figure S6.¹H NMR spectrum of 11a in CDCl₃.

Figure S8. ESIMS of 11b.

Figure S9. HRESIMS of 11b.

Figure S10.¹H NMR spectrum of 11b in CDCl₃.

Figure S12. ESIMS of 12.

Qualitative Analysis Report

Version		Q-TOP 6	5.05.01 (B5125.2)					
User Sner	tra							
F								
Fragmer	135	oltage	Collision Energy 0	Ionization ESI	n Mode			
×10 3 +ESI	Scan (0.08 min) Frao=1	35 0V wlv-56-1 d Subtra					
5-		5	27.3523	ci (2)				
4.5-		([C30 H	52 O4 Si]+Na)+					
3.5								
3-				528.3554	Ala).			
2.5-				([C30 H52 04 Si]+	rind)+			
1.5								
1-						529.3524		
0.5					([C30 H52 O4 Si]+Na)+		
5	26.6 5	26.8 527 527.	2 527.4 527.6 527.8 5	28 528.2 528.4	528.6 528.8 529	529.2 529.4 529.6 52	9.8 530	
			Coun	ts vs. Mass-to-Cha	rge (m/z)			
Peak List	7	Abund	IF					
94.0402			Formula	lion				
	11	536.24	Formula	Ion				
197.078	1	536.24 536.58	Formula	Ion				
197.078 205.0859	1 1 1	536.24 536.58 721.41		Ion				
197.078 205.0859 373.2724	1 1 1	536.24 536.58 721.41 943.29		Ion				
197.078 205.0859 373.2724 414.221	1 1 1 1 1	536.24 536.58 721.41 943.29 547.32		Ion				
197.078 205.0859 373.2724 414.221 505.3707	1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92		Ion				
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527 3523	1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11	C30 H52 O4 Si	[Ion	-Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554	1 1 1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71	C30 H52 O4 Si C30 H52 O4 Si	[Ion	-Na)+ -Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266	1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06	C30 H52 O4 Si C30 H52 O4 Si	Ion (M+ (M+	-Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si	Ion (M+ (M+	-Na)+ -Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si	[Ion (M+ (M+	-Na)+ -Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si	Ion (M+ (M+	-Na)+ -Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 20	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si	[Ion (M+ (M+	-Na)+ -Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H H O Si	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 20 0 1	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si	Ion 	-Na)+ -Na)+			
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H H O Si Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maximu 536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 200 0 1 or Results	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Jmits	Ion (M+ (M+	Na)+ Na)+	Diff. (mDa)	Diff. (onm)	
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H H O Si Formula Ca Formula Ca Formula Ca Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maximu 536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 1 or Results Calculated!	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Imits	Ion (M+ (M+ (M+ 527.3527	Na)+ Na)+ Na)+	Diff. (mDa)	Diff. (ppm)	DBE 0.76 6.0000
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H H O Si Formula Ca Formula Ca Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I 2592.71 919.06 or Element I 0 200 0 200 0 200 0 1 or Results Calculated!	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Imits Jack Calculat 504.3635	Ion (M+ (M+ (M+ 527.3527	Mz 527.352	Diff. (mDa) 3 0.40	Diff. (ppm)	DBE 0.76 6.0000
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H C H G Si Formula Ca Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I 919.06 0 200 0 200 0 200 0 1 or Results Calculatedf	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Imits Imits Jass Calculat 504.3635	Ion (M+ (M+ (M+ 527.3527	Mz 527.352	Diff. (mDa) 3 0.40	Diff. (ppm)	DBE 0.76 6.0000
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H C H O Si Formula Ca Formula Ca Formula Ca Formula Ca Formula Ca Formula Ca Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 20 0 20 0 21 or Results Calculated	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Imits Imits Jass Calculat 504.3635	Ion (M+ (M+ (M+ 527.3527	Mz 527.352	Diff. (mDa) 3 0.40	Diff. (ppm)	DBE 0.76 6.0000
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H O Si Formula Ca Formula Ca Formula Ca Formula Ca Formula Ca Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 20 0 20 0 20	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Imits Aass Calcular 504.3635	Ion (M+ (M+ (M+ 527.3527	Na)+ Na)+ Mz 527.352	Diff. (mDa) 3 0.40	Diff. (ppm)	DBE 0.76 6.0000
197.078 205.0859 373.2724 414.221 505.3707 506.3741 527.3523 528.3554 543.3266 Formula Ca Element C H O Si Formula Ca Formula Ca Formula Ca Formula Ca Formula Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 Iculat Si	536.24 536.58 721.41 943.29 547.32 4309.92 1487.59 4514.11 2592.71 919.06 or Element I Max 3 100 0 200 0 1 cor Results Calculated	C30 H52 O4 Si C30 H52 O4 Si C30 H52 O4 Si Imits Aass Calculat 504.3635	Ion (M+ (M+ tedMz 527.3527	Na)+ Na)+ Mz 527.352	Diff. (mDa) 3 0.40	Diff. (ppm)	DBE 0.76 6.0000

Figure S13. HRESIMS of 12.

Figure S14.¹H NMR spectrum of 12 in CDCl₃.

Figure S15. ¹³C NMR spectrum of 12 in CDCl₃.

Figure S16. ESIMS of 13.

Qualitative Analysis Report

User Spectra

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 2:16 PM on: 2/16/2023

Figure S17. HRESIMS of 13.

Figure S18.¹H NMR spectrum of 13 in CDCl₃.

Figure S19. ¹³C NMR spectrum of 13 in CDCl₃.

Sample 1 ype Instrument Name Acq Method IRM Calibration Status Comment Sample Group Acquisition SW 6200 ss Version Q-TOF		e Status	wxb-232.d Sample Instrument 1 s.m Success	Info.	Sample Name Position User Name Acquired Time DA Method	wxb-232 P1-A1 3/18/2021 9:33:53 AM Default.m
Acquisition Version	SW	6200 se Q-TOF E	ries TOF/6500 serie: 3.05.01 (B5125.2)	S		
Fragme	ntor Vo 220	oltage	Collision Energy	Ioni	zation Mode ESI	
x10 ⁵ +ES	I Scan (0.08 min) Frag=2	20.0V wxb-232.d	0075		
1			411. ([C25 H40	2875 03]+Na)+		
0.0						
0.8-						
0.6 -						
0.4 -				4 (IC25 H	12.2907 40 031+Na)+	
0.2-					413.2972	2
0	409 E	400 400 E	110 1105 111		([C25 H40 O3]	+Na)+
	408.5	409 409.5	410 410.5 411 Cour	411.5 412 nts vs. Mass-te	412.5 413 413 p-Charge (m/z)	.5 414 414.5 415 415.5
Peak List	1 -	Abund	I Farmer la		19	
128.9533	- 2	20770.53	Formula		Ion	
411.2875	1	103920.65	C25 H40 O3		(M+Na)+	
412.2907	1	27546.24	C25 H40 O3		(M+Na)+	
427.3181	1	17732.37				
799.5851 800 5885	1	11877.6				
801.5912	1	5134.71				
815.6172	1	9831.85				
816.619	1	5399.65				
959.9647 Formula Ca	1 Iculat	13225.54	imits			
Element	Min	Max				
C	-	3 120	-			
0	-	0 240	-			
Formula Ca	Iculat	or Results				
Formula		Calculated	lass Calcula	tedMz	Mz	Diff. (mDa) Diff. (ppm) DBE
C23 F140 03			300.2978	411.	411.287	5 -0.50 -1.22 6.000
End Of Re	eport					

Figure S20. HRESIMS of 14.

Figure S21.¹H NMR spectrum of 14 in CDCl₃.

Figure S23. ESIMS of 16.

Figure S24. HRESIMS of 16.

Figure S27.¹H NMR spectrum of 16b in CDCl₃.

Figure S29. ESIMS of 17a.

Figure S30. HRESIMS of 17a.

Figure S31.¹H NMR spectrum of 17a in CDCl₃.

Figure S32. ¹³C NMR spectrum of 17a in CDCl₃.

Figure S33. HRESIMS of 17b.

Figure S34.¹H NMR spectrum of 17b in CDCl₃.

Figure S35. ¹³C NMR spectrum of 17b in CDCl₃.

Figure S36. ESIMS of 18a.

Figure S37.¹H NMR spectrum of 18a in CDCl₃.

Figure S39. ESIMS of 18b.

Figure S40.¹H NMR spectrum of 18b in CDCl₃.

Figure S41. ¹³C NMR spectrum of 18b in CDCl₃.

Figure S42. HRESIMS of 19.

Figure S43.¹H NMR spectrum of 19 in CDCl₃.

Figure S45. ESIMS of 20.

Data File Sample Instrum Acq Met IRM Cali Commer	name Type ent Nam hod bration	e Status		WLY-204P.d Sample Instrument 1 s.m Success		Sample Name Position User Name Acquired Time DA Method	WLY-204P P1-C2 11/2/2022 4:29:35 PM PCDL.m
Sample Acquisit Version	Group on SW		6200 sei Q-TOF B	ries TOF/6500 series .05.01 (B5125.2)	Info.		
User S	oectra						
Frag	mentor V 135	oltage		Collision Energy 0	Ioniza	ESI	
×10 ³	ESI Scan (0.13-0.1	5 min, 2 5	Scans) Frag=135.0V WLY-	204P.d Subt	ract (2)	
4.5-			48 ([C31 H	9.3342 46 O3]+Na)+			
3.5-							
3-							
2.5-					100.01	00	
1.5-					([C31 H46 C	(3]+Na)+	
1-							491.3387
0.5-	10.0						([C31 H46 O3]+Na)+
	488.6 4	88.8 4	89 489.2	489.4 489.6 489.8 49	0 490.2 49	0.4 490.6 490.8 49 Charge (m/z)	1 491.2 491.4 491.6 491.8 492
Peak Lis							
m/z	Z	Abur	nd	Formula		Ion	
353.26/2	1	8412.	.51				
381,2984	1	5447	.75				
467.3522	1	5047.	.95				
489.3342	1	4072.	.97	C31 H46 O3		(M+Na)+	
1012.539	3 1	1965.	.36				
1065.685	3 1	2150.	.98				
1174 687	J 1 1	7883	38				
1175.69	1	4353.	.58				
Formula	Calculat	or Ele	ment L	imits			
C	Mir	3	60	-			
Н		0	120				
0		0	30				
Formula	Calculat	or Res			odMz	M ₂	Diff (mDa) Diff (mm) DEF
C31 H46	03	Carci	araceul	466.3447	489.3	489.33	42 -0.30 -0.61 9.0000
				1			
End O	кероrt -	-					

Figure S46. HRESIMS of 20.

Figure S47. ¹H NMR spectrum of 20 in CDCl₃.

Figure S49.¹H NMR spectrum of (±)-xanthochymol in CDCl₃.

Figure S50. ¹³C NMR spectrum of (±)-xanthochymol in CDCl₃.

Figure S51.¹H NMR spectrum of (±)-xanthochymol in CD₃OD.

Figure S52. ¹³C NMR spectrum of (±)-xanthochymol in CD₃OD.

Figure S53.¹H NMR spectrum of (±)-cycloxanthochymol in CD₃OD.

Figure S54. ¹³C NMR spectrum of (±)-cycloxanthochymol in CD₃OD.