Supporting Information

Tunable [3+2] and [4+2] Annulations for Pyrrolidine and Piperidine Synthesis

Jeewani P. Ariyarathna, Prabagar Baskaran, Akanksha Chhikara, Navdeep Kaur, Alex M.
Nguyen, Shashini M. Premathilaka, Michelle M. Huynh, Jonathon T. Truong and Wei Li*

Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States

E-mail: Wei.Li@UToledo.edu

1. General Information S3
2. Experimental Procedures S4-S5
3. Spectral Characterization of the Products S5-S37
4. Procedure for Collection of ${ }^{1} \mathrm{H}$ NMR Time Studies S37-S38
5. Procedure for Collection of ${ }^{15} \mathrm{~N}$ NMR Study S39-S40
6. Spectral Data S41-S92

1. General Information

Commercial reagents and solvents were purchased from Sigma Aldrich, Oakwood Chemicals, Alfa Aesar, Matrix Scientific, Acros Organic and were used as received. Organic solutions were concentrated under reduced pressure on an IKA rotary evaporator using an acetone-dry ice bath. Chromatographic purification of products was accomplished using flash chromatography on 230400 mesh silica gel. Thin-layer chromatography (TLC) was performed on Analtech 250 mm silica gel HLF UV-250 plates. Visualization of the developed plates was performed by fluorescent quenching and potassium permanganate. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker instrument (600 and 150 MHz) or INOVA $600(600$ and 150 MHz$)$ and are internally referenced to residual protio solvent signals (for $\mathrm{CDCl} 3,7.27$ and 77.0 ppm , respectively). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemicals shift (ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, integration, coupling constant $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ spectra were recorded and reported as chemical shifts in ppm and multiplicity where appropriate. IR spectra were recorded on a PerkinElmer FT-IR spectrophotometer and reported in terms of wavenumber of absorption $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra were obtained on Waters Synapt High-Definition Mass Spectrometer (HDMS) by electrospray ionization at the University of Toledo, OH, USA and Maxis Ultra High-resolution ESI LC/MS at the University of WisconsinMadison, WI, USA.

2. Experimental Procedures

General Procedure A for Pyrrolidine Synthesis

To an 8 mL vial equipped with a stir bar was added NIS ($62 \mathrm{mg}, 0.275 \mathrm{mmol}$) and N-allyl-4methylbenzenesulfonamide (0.25 mmol). The vial was evacuated and backfilled with nitrogen. Then the solvent ($\mathrm{DCM}, 4.0 \mathrm{~mL}$) was added via a syringe, followed by alkene (0.5 mmol). The reaction mixture was then stirred for 16 h under compact fluorescent light (CFL) or Blue LED light. The reaction was quenched with 2 mL of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Organic layer was separated, aqueous layer was extracted with $\operatorname{DCM}(2 \times 2 \mathrm{~mL})$. Combined organic layer was concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica gel to afford the pure product.

General Procedure B for the Elimination Reaction

In an 8 mL vial equipped with a stir bar, $\mathrm{NaH}(32 \mathrm{mg}, 1.25 \mathrm{mmol})$ and THF $(0.5 \mathrm{~mL})$ were added. Pyrrolidine compound dissolved in THF (0.5 mL) was added to the above mixture at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 16 h the reaction was diluted with EtOAc and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. Combined organic layer was filtered through a short column of silica and concentrated under reduced pressure to give the pure product without further purification.

General Procedure C for Piperidine Synthesis

To an 8 mL vial equipped with a stir bar was added NBS ($49 \mathrm{mg}, 0.275 \mathrm{mmol}$) and N-allyl-4methylbenzenesulfonamide (0.25 mmol). The vial was evacuated and backfilled with nitrogen. Then the solvent ($\mathrm{DCM}, 0.25 \mathrm{~mL}$) was added via a syringe, followed by alkene (0.5 mmol). The reaction mixture was then stirred for 1 h under fluorescent light, HFIP $(0.5 \mathrm{~mL})$ was added and
stirred under ambient light at room temperature for 36 h . The reaction was diluted with EtOAc (2 $\mathrm{mL})$ and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. Combined organic layer was concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica gel to afford the pure product.

3. Spectral Characterization of Products

3-methylene-4-phenyl-1-tosylpyrrolidine (4): This compound was prepared according to the General Procedure A and B using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography SiO_{2} ($10 \%{ }^{-}$ $20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound 4 was isolated as a white solid ($73 \mathrm{mg}, 66 \%$ yield). ${ }^{1-3}$ For procedure B , in an 8 mL vial equipped with a stir bar, $\mathrm{NaH}(32 \mathrm{mg}, 1.25 \mathrm{mmol})$ and THF (0.5 mL) were added. Pyrrolidine compound 4 dissolved in THF (0.5 mL) was added to the above mixture at $0^{\circ} \mathrm{C}$ (ice-bath) and temperature was maintained for 2 hours. After stirring for 16 h the reaction was diluted with EtOAc and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. Combined organic layer was concentrated under reduced pressure and purified by column chromatography (10% EtOAc/hexanes) to give the title compound as a white solid ($53 \mathrm{mg}, 68 \%$ yield). ${ }^{4}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}$, $3 \mathrm{H}), 7.14$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.05 (br.s., 1 H), 4.68 (br. s., 1 H), 4.12 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (br. s., 2 H), 3.31-3.17 (m, 1 H), 2.48 (br. s., 3 H); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.0,143.7,139.5,132.6,129.7,128.6,128.1,127.7,127.1,109.1,77.2,76.8,55.4$,
52.4, 49.2, 21.5; IR (neat): 2923, 1344, 1158, 1092, 700, 661, 587, $546 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 314.1215$, found 314.1197.

3-(4-fluorophenyl)-4-methylene-1-tosylpyrrolidine (5): This compound was prepared according to the General Procedure A and B using N-allyl-4-methylbenzenesulfonamide (53 mg , 0.25 mmol) and 4-fluorostyrene ($61 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a white solid ($74 \mathrm{mg}, 64 \%$ yield) and the title compound was obtained as a white solid ($50 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.98(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9\left(J_{\mathrm{c}-\mathrm{f}}=243.0 \mathrm{~Hz}\right), 148.0,143.8,135.3\left(J_{\mathrm{c}-\mathrm{f}}=3.0 \mathrm{~Hz}\right), 132.7$, $129.8,129.7,127.8,115.6,115.5,109.4,55.5,52.3,48.6,21.6 ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 116.2 (m, 1 F); IR (neat): 2920, 1596, 1510, 1338, 1220, 1153, $1064 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$332.1121, found 332.1114.

4-(4-methylene-1-tosylpyrrolidin-3-yl)phenol (6): This compound was prepared according to the General Procedure A and B using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-acetoxystyrene ($76 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(20 \%-30 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a colorless oil (88 $\mathrm{mg}, 70 \%$ yield). and the title compound was obtained after purification by column chromatography $\mathrm{SiO}_{2}(30 \%-40 \% \mathrm{EtOAc} /$ hexanes $)$ as a white solid ($56 \mathrm{mg}, 68 \%$ yield). [Note: the acetyl group has been deprotected during the elimination step].
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.76$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.22 (br. s., 1 H), 5.01 (br. s., 1 H), 4.65 (br. s., 1 H), 4.08 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,148.3,143.8,132.7,131.4,129.9,129.7,129.4,127.8$, $115.6,115.5,109.0,55.5,52.4,48.6,30.9$; IR (neat): $3415,1614,1596,1514,1331,1212,1150$, $1090 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$330.1164, found 330.1154.

3-(2-bromophenyl)-4-methylene-1-tosylpyrrolidine (7): This compound was prepared according to the General Procedure A and B using N-allyl-4-methylbenzenesulfonamide (53 mg , $0.25 \mathrm{mmol})$ and o-bromostyrene $(91 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a
colorless oil ($109 \mathrm{mg}, 82 \%$ yield) and the title compound was obtained as a white solid (80 mg , 82\% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1$ H), $3.22(\mathrm{dd}, J=9.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 146.7, 143.8, 139.7, 132.9, 132.5, 129.8, 129.1, 128.6, 127.8, 127.8, 124.8, 109.6, 54.7, 52.7, 48.1, 21.6.; IR (neat): 2922, 1614, 1596, 1514, 1332, 1213, 1150, 1090, $1058 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$392.0320, found 392.0298.

5-((3-(iodomethyl)-4-phenylpyrrolidin-1-yl)sulfonyl)-1-methyl-1H-pyrazole (8): This compound was prepared according to the General Procedure A using N -allyl-1-methyl- 1 H -pyrazole-5-sulfonamide ($50 \mathrm{mg}, 0.25 \mathrm{mmol}$) and styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$. The title compound was isolated as a thick colorless liquid ($65 \mathrm{mg}, 60 \%$ yield, $2.8: 1$ d.r.).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.80\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\mathrm{Min}}\right), 7.37-7.27\left(\mathrm{~m}, 3 \mathrm{H}_{\text {Maj }}+3\right.$ $\mathrm{H}_{\text {Min }}$), 7.20-7.10 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}$), $4.02\left(\mathrm{~s}, 3 \mathrm{H}_{\text {Maj }}+3 \mathrm{H}_{\text {Min }}\right.$), $3.78(\mathrm{dd}, J=10.5,8.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}_{\mathrm{Maj}}+1 \mathrm{H}_{\mathrm{Min}}\right), 3.72\left(\mathrm{dd}, J=10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\mathrm{Min}}\right), 3.67-3.58\left(\mathrm{~m}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right)$, $3.38\left(\mathrm{~m}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right), 3.19-3.08\left(\mathrm{~m}, 2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\mathrm{Min}}\right), 2.93(\mathrm{~m}, J=10.7,7.9 \mathrm{~Hz}, 2$
$\left.\mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8,138.7,137.8,132.2,129.1,128.9,128.0$, $127.8,127.6,127.5,118.2,55.0,54.4,52.8,52.5,50.2,47.5,47.0,46.2,39.8,6.1 ;$ IR (neat): 2925, 2854, 1522, 1452, 1343, 1116, 1091, $847 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 432.0181$, found 432.0239.

3-(iodomethyl)-4-phenyl-1-(thiophen-2-ylsulfonyl)pyrrolidine (9): This compound was prepared according to the General Procedure A using N-allylthiophene-2-sulfonamide (51 mg , 0.25 mmol) and styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$. The title compound was isolated as a thick colorless liquid ($60 \mathrm{mg}, 55 \%$ yield, $2.2: 1$ d.r.).
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92\left(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 7.91-7.87\left(\mathrm{~m}, 2 \mathrm{H}_{\mathrm{Maj}}\right), 7.69-7.64$ $\left(\mathrm{m}, 1.5 \mathrm{H}_{\text {Min }}\right), 7.62-7.57\left(\mathrm{~m}, 3 \mathrm{H}_{\text {Maj }}\right)$, 7.32-7.28 (m, $\left.2 \mathrm{H}_{\text {Maj }}+\mathrm{Min}\right), 7.27-7.22\left(\mathrm{~m}, 3 \mathrm{H}_{\text {Maj }}\right)$, 7.11-7.07 ($\mathrm{m}, 2 \mathrm{H}_{\text {Maj }}$), $7.06-7.01\left(\mathrm{~m}, 1 \mathrm{H}_{\text {Min }}\right), 3.81\left(\mathrm{dd}, J=10.3,8.1, \mathrm{~Hz}_{1} \mathrm{H}_{\text {Maj }}\right), 3.77(\mathrm{dd}, J=10.3,7.5 \mathrm{~Hz}$, $1 \mathrm{H}_{\text {Maj }}$), 3.73-3.65 (m, 1.4 $\mathrm{H}_{\text {Maj }+ \text { Min }}$), $3.47-3.43\left(\mathrm{~m}, 0.5 \mathrm{H}_{\text {Min }}\right), 3.39\left(\mathrm{t}, J=10.0 \mathrm{~Hz}_{1} \mathrm{H}_{\text {Maj }}\right), 3.28(\mathrm{dd}$, $\left.J=11.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Min }}\right), 3.15\left(\mathrm{dd}, J=10.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.10\left(\mathrm{dd}, J=10.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right)$, 2.92-2.84 ($\mathrm{m}, 2 \mathrm{H}_{\text {Maj }+ \text { Min }}$), 2.73-2.66 ($\left.\mathrm{m}, 0.5 \mathrm{H}_{\text {Min }}\right), 2.63\left(\mathrm{dd}, J=9.1,5.9 \mathrm{~Hz}, 0.5 \mathrm{H}_{\text {Min }}\right), 2.41(\mathrm{t}, J=$ 9.1 Hz, $0.5 \mathrm{H}_{\text {Min }}$), 2.28-2.19 (m, $1 \mathrm{H}_{\text {Maj }}$); $\delta{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,137.4,136.8$, $136.6,133.0,129.3,129.3,129.0,128.8,127.8,127.7,127.5,127.4,127.4,77.2,76.8,54.9,54.3$, 52.6, 52.5, 50.2, 47.6, 46.8, 46.3, 5.8, 3.2; IR (neat): 3028, 2880, 1601, 1426, 1445, 1339, 1159, 1018, $716 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{INO}_{2} \mathrm{~S}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 433.9745$, found 433.9755 .

3-(iodomethyl)-4-(naphthalen-2-yl)-1-((4-nitrophenyl)sulfonyl)pyrrolidine (10): This compound was prepared according to the General Procedure A using N-allyl-4nitrobenzenesulfonamide ($61 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-vinylnaphthalene ($77 \mathrm{mg}, 0.5 \mathrm{mmol}$) with Blue LED light. After purification by column chromatography SiO_{2} ($10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a yellow solid ($112 \mathrm{mg}, 86 \%$ yield, $1.5: 1 \mathrm{~d} . \mathrm{r}$).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Maj}}+2 \mathrm{H}_{\mathrm{Min}}\right), 8.19-8.12\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Maj}}+1 \mathrm{H}_{\mathrm{Min}}\right)$, $8.10\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right), 7.89-7.81\left(\mathrm{~m}, 2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}\right), 7.81-7.75\left(\mathrm{~m}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right)$, 7.56-7.45 (m, $\left.3 \mathrm{H}_{\text {Maj }}+3 \mathrm{H}_{\text {Min }}\right)$, 7.26-7.19 (m, $\left.1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\mathrm{Min}}\right), 4.01-3.73\left(\mathrm{~m}, 3 \mathrm{H}_{\text {Maj }}+3 \mathrm{H}_{\mathrm{Min}}\right)$, 3.73-3.64 (m, $1 \mathrm{H}_{\text {Min }}$), 3.64-3.51 (m, $1 \mathrm{H}_{\text {Maj }}$), 3.46 (br. s., $1 \mathrm{H}_{\text {Min }}$), 3.29-3.20 (m, $1 \mathrm{H}_{\text {Maj }}$), 3.17 (dd, $\left.J=3.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Maj}}\right), 3.14-3.06\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Min}}\right), 3.04-2.91\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Maj}}\right), 2.70\left(\right.$ br. s., $\left.1 \mathrm{H}_{\mathrm{Min}}\right), 2.55-$ $2.36\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Maj}}+1 \mathrm{H}_{\mathrm{Min}}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.5,150.4,143.2,143.1,134.7,134.6$, $133.5,133.4,133.0,132.8,129.3,129.0,128.8,128.8,127.9,127.9,127.8,127.8,126.9,126.6$, $126.5,125.9,124.8,124.8,124.8,55.0,54.5,53.0,52.9,50.6,47.4,47.2,46.6$; IR (neat): 2988, 1597, 1473, 1338, 1297, 1161, $1087 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 523.0188, found 523.0189.

2-methyl-4-methylene-3-phenyl-1-tosylpyrrolidine (11): This compound was prepared according to the General Procedure A and B using N-allyl-4-methylbenzenesulfonamide (53 mg ,
0.25 mmol) and β-methylstyrene ($65 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a colorless oil ($55 \mathrm{mg}, 54 \%$ yield) and the title compound was obtained as a white solid ($43 \mathrm{mg}, 53 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}$, $3 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, 1 H), 4.01 (dd, $J=14.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (quin, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,143.4,139.6,134.0$, 129.6, 128.5, 128.3, 127.6, 127.0, 109.3, 64.1, 58.2, 53.4, 21.5, 21.0.; IR (neat): 2864, 1598, 1495, 1448, 1420, 1334, 1178, 1154, $1084 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 328.1371, found 328.1356.

3-hexyl-4-methylene-1-((4-nitrophenyl)sulfonyl)pyrrolidine (12): This compound was prepared according to the General Procedure A and B using N-allyl-4-nitrobenzenesulfonamide ($61 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 1-octene ($78 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with Blue LED light. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a colorless oil ($43 \mathrm{mg}, 44 \%$ yield) and the title compound was obtained as a white solid (35 mg , 40\% yield).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=17.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.86$ (m, 1 H), 2.60 (br. s., 1 H), 1.36-1.17 (m, 10 H$), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 150.2,147.1,142.2,128.7,124.3,107.3,53.6,52.1,43.0,32.0,31.6,29.2,27.4,22.6$, 14.0; IR (neat): 2957, 2926, 2855, 1664, 1604, 1527, 1345, 1313, 1159, 1090, $1057 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 353.1535$, found 353.1515 .

4-(iodomethyl)-2,3,3-trimethyl-1-((4-nitrophenyl)sulfonyl)pyrrolidine (13): This compound was prepared according to the General Procedure A using N-allyl-4-nitrobenzenesulfonamide (61 $\mathrm{mg}, 0.25 \mathrm{mmol})$ and 2-methylbut-2-ene ($53 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with Blue LED light. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, The title compound was isolated as a colorless oil ($72 \mathrm{mg}, 66 \%$ yield, 1.3:1 d.r.).
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Maj}}+2 \mathrm{H}_{\mathrm{Min}}\right), 8.04\left(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Maj}}+\right.$ $2 \mathrm{H}_{\text {Min }}$), 3.91-3.78 ($\left.\mathrm{m}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right), 3.57\left(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Min }}\right), 3.17\left(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right)$, 3.15-3.10 ($\mathrm{m}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}$), $3.08\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 2.86\left(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right)$, $2.71\left(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 2.49-2.38\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Min}}\right), 1.73-1.64\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Maj}}\right), 1.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ $\mathrm{H}_{\text {Maj }}$), $1.24\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}_{\text {Min }}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}_{\text {Min }}\right), 0.86\left(\mathrm{~s}, 3 \mathrm{H}_{\text {Maj }}\right), 0.74\left(\mathrm{~s}, 3 \mathrm{H}_{\text {Maj }}\right), 0.35(\mathrm{~s}, 3$ $\left.\mathrm{H}_{\mathrm{Min}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,150.0,143.6,143.2,128.6,128.4,124.4,124.3,67.8$, $67.3,54.5,53.3,50.9,48.6,44.5,44.0,29.7,24.4,21.7,21.2,19.0,15.9,15.0,0.7,0.6$; IR (neat): 2969, 1603, 1522, 1470, 1345, 1303, 1159, 1090, $1062 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 439.0188$, found 439.0179.

(1r,3r,5r,7r)-4'-(Iodomethyl)-1'-tosylspiro[adamantane-2,3'-pyrrolidine] (14): This compound was prepared according to the General Procedure A using N-allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 2-methyleneadamantane ($74 \mathrm{mg}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(2 \%-6 \% \mathrm{EtOAc} /$ hexanes $)$, The title compound was isolated as a white solid ($55 \mathrm{mg}, 45 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=10.9,5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dt}, J=9.7,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=12.6,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}$, $J=12.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.79($ br. s., 1 H$), 1.68-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 3$ H), 1.23 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,133.6,129.7,127.4,53.5,51.9,51.8$, $47.0,37.9,34.4,33.9,33.6,33.4,31.9,31.9,27.0,26.9,21.6,7.3$; IR (neat): 2895, 2877, 1596, $1456,1344,1325,1160,1088,1054,815 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{INO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 486.0964, found 486.0968.

4-(iodomethyl)-2-((4-nitrophenyl)sulfonyl)-2-azaspiro[4.4]nonane (15): This compound was prepared according to the General Procedure A using N-allyl-4-nitrobenzenesulfonamide (61 mg , $0.25 \mathrm{mmol})$ and methylenecyclopentane ($53 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with Blue LED light. After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$, The title compound was isolated as a colorless oil ($59 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=$ $10.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=10.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=9.8,3.2$
$\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ $1.50(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,142.9$, $128.4,124.4,58.7,54.0,53.3,50.0,36.2,30.6,24.5,23.9,3.3$; IR (neat): 2952, 1604, 1526, 1473, 1346, 1160, 1105, 1089, $1054 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 451.0188$, found 451.0162.

4-(iodomethyl)-2-tosyl-2-azaspiro[4.5]decane (16): This compound was prepared according to the General Procedure A using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and methylenecyclohexane ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$, The title compound was isolated as a colorless oil ($78 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=$ $10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=9.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=10.1$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=12.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 4 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,133.7,129.7,127.4,56.4,53.1,51.3,45.6,35.3,28.2,25.7,23.3,22.5$, 21.5, 3.2; IR (neat): 2924, 2857, 1738, 1596, 1449, 1337, 1159, 1118, 1091, $1044 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{INO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 434.0651$, found 434.0625 .

4-(iodomethyl)-2,8-ditosyl-2,8-diazaspiro[4.5]decane (17): This compound was prepared according to the General Procedure A using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25$ mmol) and 4-methylene-1-tosylpiperidine ($125 \mathrm{mg}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(20 \%-40 \% \mathrm{EtOAc} /$ hexanes $)$, The title compound was isolated as a colorless oil (102 mg, 69\% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.7$ Hz, 2 H$), 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.02(\mathrm{~m}, 2 \mathrm{H})$, $2.86(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.13-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (br. s., 1 H$), 1.27(\mathrm{dd}, J=11.4,11.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 144.1,144.0,133.2,132.6,129.9,129.8,127.6,127.3,54.9,52.8,50.8,43.5$, 43.3, 42.7, 33.6, 27.3, 21.6, 21.6, 1.1; IR (neat): 2920, 1596, 1492, 1335, 1305, 1154, 1089, 1047 cm^{-1}. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 589.0692$, found 589.0660.

4-(iodomethyl)-2-((4-nitrophenyl)sulfonyl)-2-azaspiro[4.11]hexadecane (18): This compound was prepared according to the General Procedure A using N-allyl-4-nitrobenzenesulfonamide (61 $\mathrm{mg}, 0.25 \mathrm{mmol}$) and methylenecyclododecane ($90 \mathrm{mg}, 0.5 \mathrm{mmol}$) with Blue LED light. After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$, The title compound was isolated as a colorless oil ($92 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $10.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$
$(\mathrm{dd}, J=11.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.10(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,142.7,128.5,124.4,57.5,54.2,50.0,48.3,32.4,26.6,26.5,25.9,22.6,22.5,22.1,22.0$, 19.7, 19.5, 5.3.; IR (neat): 2930, 2858, 1603, 1527, 1470, 1345, 1161, 1099, $1010 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{IN}_{2} \mathrm{NaO}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 571.1103$, found 571.1084.

4-(1-iodoethyl)-2-tosyl-2-azaspiro[4.5]decane (19): This compound was prepared according to the General Procedure A using N-(but-2-en-1-yl)-4-methylbenzenesulfonamide ($56 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ and methylenecyclohexane $(60 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a white solid ($68 \mathrm{mg}, 61 \%$ yield, 1.4:1 d.r.).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75\left(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Maj}}+2 \mathrm{H}_{\mathrm{Min}}\right), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}$), $4.43\left(\mathrm{dd}, J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Min }}\right), 4.19\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.70(\mathrm{dd}, J=10.3,8.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.63\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.51\left(\mathrm{dd}, J=10.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Min }}\right), 3.38(\mathrm{dd}, J=10.6,5.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 3.28\left(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 3.21\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 3.11(\mathrm{dd}, J=10.3,8.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}_{\text {Maj }}\right), 3.06\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}_{\text {Maj }}+3 \mathrm{H}_{\text {Min }}\right), 1.98\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {Maj }}\right), 1.78(\mathrm{~d}$, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {Min }}\right), 1.70-1.59\left(\mathrm{~m}, 1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\mathrm{Min}}\right), 1.57-1.50\left(\mathrm{~m}, 2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}\right), 1.47-1.43(\mathrm{~m}$, $1 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}$), 1.39-1.29 (m, $2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}$), 1.29-1.19 (m, 4 $\left.\mathrm{H}_{\text {Maj }}+4 \mathrm{H}_{\text {Min }}\right) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.6,143.4,133.8,129.7,127.6,127.4,56.7,55.8,54.9,49.5,46.0,45.0,37.1$, $36.5,29.7,29.4,27.6,27.5,25.9,25.8,25.5,23.5,23.1,23.0,22.6,21.6$; IR (neat): 2918, 2847, 1595, 1449, 1333, 1157, 1016, 818, cm^{-1}. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{INO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 448.0807, found 448.0801.

4-(iodomethylene)-2-tosyl-2-azaspiro[4.5]decane (20): This compound was prepared according to the General Procedure A using 4-methyl- N-(prop-2-yn-1-yl)benzenesulfonamide ($53 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ and methylenecyclohexane ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a yellow solid ($69 \mathrm{mg}, 64 \%$ yield, $1.5: 1 \mathrm{E}: Z$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.70 (br. s., 1 H), $4.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1$ H), 1.68-1.60 (m, 4 H), $0.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4,136.2$, 131.6, 129.6, $129.4,127.8,127.7,127.7,73.5,52.8,35.2,31.6,25.9,25.3,22.7,22.5,22.2,21.6,14.2 ;$ IR (neat): 2925, 2854, 1596, 1449, 1341, 1158, 1040, 813, cm^{-1}. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{INO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 432.0494$, found 432.0494 .

4-(iodo(4-(trifluoromethyl)phenyl)methylene)-2-tosylazaspiro[4.5]decane (21): This compound was prepared according to the General Procedure A using N-(3-(4-trifluoromethyl phenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (89 mg, 0.25 mmol$)$ and methylenecyclohexane ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL . After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a white solid ($75 \mathrm{mg}, 52 \%$ yield, $5.6: 1 \mathrm{E:Z}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.42(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.21-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.07-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.72($ br. s., 1 H$) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.3,144.0,132.2,129.9,128.6,128.0,125.2,125.2,90.2,61.7,57.6$, 50.0, 34.1, 25.1, 22.8, 21.7; IR (neat): 2923, 2851, 1597, 1503, 1343, 1157, 1030, 833, $\mathrm{cm}^{-1} ;{ }^{19} \mathrm{~F}$ NMR (375 MHz, CDCl_{3}): δ-63.1 (s, 1 F); IR (neat): 3217, 2932, 1676, 1560, 1489, 1324, 1112, 1066, $828, \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{INO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 576.0681$, found 576.0686.

4-(iodo(phenyl)methylene)-2-tosyl-2-azaspiro[4.5]decane (22): This compound was prepared according to the General Procedure A using N-(3-phenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide ($72 \mathrm{mg}, 0.25 \mathrm{mmol}$) and methylenecyclohexane ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a white solid ($66 \mathrm{mg}, 52 \%$ yield, $6.7: 1 \mathrm{E}: Z$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}), 7.40$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-$ $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.89$ (br. s., 1 H$) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.9,143.8,140.4,133.4,131.6,130.1,129.8,128.4,127.3,58.1,49.9,33.4,29.7,24.8$, 22.7, 22.6, 21.7, 21.7, 14.2; IR (neat): 2923, 2851, 1597, 1503, 1343, 1157, 1030, 833, $\mathrm{cm}^{-1} ;$ IR (neat): $3217,2932,1676,1560,1489,1324,1112,1066,828, \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{INO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$508.0807, found 508.0816.

4-(iodo(4-methoxyphenyl)methylene)-2-tosyl-2-azaspiro[4.5]decane (23): This compound was prepared according to the General Procedure A using N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide ($80 \mathrm{mg}, 0.25 \mathrm{mmol}$) and methylenecyclohexane ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} / \mathrm{hexanes})$, the pyrrolidine compound was isolated as a yellow solid ($64 \mathrm{mg}, 48 \%$ yield, $6.3: 1 E: Z$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-$ 7.08 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H}), 1.13-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,150.1,143.8,136.2,132.3,129.8,129.5,128.0,113.4$, 93.6, 61.7, 57.7, 55.3, 49.7, 33.9, 29.7, 25.2, 22.9, 21.7; IR (neat): 2923, 2851, 1597, 1503, 1343, 1157, 1030, $833, \mathrm{~cm}^{-1}$; IR (neat): $3271,2933,1676,1520,1488,1337,1112,1064,846, \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{INO}_{3} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 538.0913$, found 538.0929.

4-(prop-1-en-2-yl)-2-tosyl-2-azaspiro[4.5]decane (24): This compound was prepared according to the General Procedure A using 4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (60 $\mathrm{mg}, 0.25 \mathrm{mmol})$ and methylenecyclohexane $(60 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine compound was isolated as a yellow solid ($40 \mathrm{mg}, 48 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H})$, $4.62(\mathrm{~s}, 1 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=9.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{td}, J=12.5,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,142.2,134.1,129.6,127.4,114.3,55.7,54.9,50.2,45.4,36.0,29.9,25.8,23.6$, 23.2, 23.0, 21.6; IR (neat): 2923, 2851, 1597, 1503, 1343, 1157, 1030, $833, \mathrm{~cm}^{-1}$; IR (neat): 2924, 2854, 1676, 1597, 1450, 1341, 1108, 1046, 812, cm^{-1}. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 334.1841$, found 334.1847.

3-bromo-5-phenyl-1-tosylpiperidine (3): This compound was prepared according to the General Procedure C using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and styrene ($58 \mu \mathrm{~L}$, $0.5 \mathrm{mmol})$. After purification by column chromatography $\mathrm{SiO}_{2}(3 \%-5 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a colorless oil ($74 \mathrm{mg}, 75 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ $(\mathrm{tt}, J=11.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{tt}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,140.3,133.3,129.9,128.8,127.4,127.0,53.1,51.6$, 44.0, 43.4, 42.0, 21.5; IR (neat): 2870, 1597, 1495, 1454, 1324, 1161, 1121, 1110, 1086, 1068 cm^{-1}. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$394.0476, found 394.0472.

3-bromo-5-(4-fluorophenyl)-1-tosylpiperidine (25)

This compound was prepared according to the General Procedure C using N -allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-fluorostyrene ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a colorless oil ($79 \mathrm{mg}, 77 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=$ 8.2, $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 1 \mathrm{H})$, 3.97-3.89 (m, 1 H$), 3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46$ $(\mathrm{s}, 3 \mathrm{H}), 2.23(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{q}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.8,161.1,144.0,136.02,136.0,133.3,129.9,128.53,128.48,127.5,115.7,115.6,53.0,51.7$, 43.7, 42.7, 42.1, 21.6; ${ }^{19}$ F NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-115.2$ (m, 1 F); IR (neat): 2919, 2851, 1596, 1511, 1473, 1341, 1296, 1221, $1160 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrFNO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 412.0382$, found 412.0410 .

4-(5-bromo-1-tosylpiperidin-3-yl)phenyl pivalate (26)

This compound was prepared according to the General Procedure C using N -allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-vinylphenyl pivalate ($102 \mathrm{mg}, 0.5 \mathrm{mmol}$).

After purification by column chromatography SiO_{2} ($10 \%-15 \% \mathrm{EtOAc} / \mathrm{hexanes}$), the title compound was isolated as a colorless oil ($84 \mathrm{mg}, 68 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}$, $\mathrm{J}=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{q}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.5,141.9,128.5,128.4,128.4,128.3,125.7,83.0,69.4,40.5,34.6,32.2,31.3$, 27.7, 23.1; IR (neat): 2979, 2931, 1741, 1597, 1508, 1470, 1343, 1160, 1120, $1086 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrNO}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 494.1001$, found 494.1014.

3-bromo-5-(4-bromophenyl)-1-tosylpiperidine (27)

This compound was prepared according to the General Procedure C using N -allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-bromostyrene ($65 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography $\mathrm{SiO}_{2}(3 \%-5 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a colorless oil ($79 \mathrm{mg}, 67 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 1 \mathrm{H})$, 3.97-3.86 $(\mathrm{m}, 1 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.0,139.2$, $133.2,131.9,129.9,128.7,127.4,121.3,53.0,51.4,43.5,42.8,41.8,21.6$; IR (neat): 2998, 1596,

1491, 1470, 1340, 1161, 1137, 1087, $1073 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{8}{ }_{8} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 471.9581$, found 471.9602 .

3-bromo-5-(4-(tert-butyl)phenyl)-1-tosylpiperidine (28)

This compound was prepared according to the General Procedure C using N -allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-tert-butylstyrene ($78 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography $\mathrm{SiO}_{2}(3 \%-5 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a colorless oil ($92 \mathrm{mg}, 82 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{tt}, J=11.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H}), 2.99$ (tt, $J=12.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.28$ $(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $150.4,143.9,137.2,133.4,129.9,127.5,126.7,125.6,53.1,51.7,44.1,42.9,42.0,34.4,31.3,21.5 ;$ IR (neat): 2955, 1597, 1512, 1467, 1343, 1162, 1138, 1108, $1086 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 450.1102$, found 450.1102.

4-(5-bromo-1-tosylpiperidin-3-yl)phenyl acetate (29)

This compound was prepared according to the General Procedure C using N -allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4-vinylphenyl acetate ($71 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$).

After purification by column chromatography SiO_{2} ($10 \%-20 \% \mathrm{EtOAc} /$ hexanes), the title compound was isolated as a colorless oil ($87 \mathrm{mg}, 77 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}$, $J=11.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{q}, ~ J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,149.8,144.0,137.8,133.2,129.9,128.1,127.5,121.9,53.1,51.7,43.8$, 42.8, 41.9, 21.6, 21.1; IR (neat): 2966, 1752, 1595, 1507, 1341, 1219, 1188, 1161, $1086 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 452.0531$, found 452.0541 .

3-bromo-1-((1-methyl-1H-pyrazol-5-yl)sulfonyl)-5-phenylpiperidine (30): This compound was prepared according to the General Procedure C using N -allyl-1-methyl-1H-imidazole-4sulfonamide using ($50 \mathrm{mg}, 0.25 \mathrm{mmol}$) and styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography $\mathrm{SiO}_{2}(30 \%-40 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a white solid ($49 \mathrm{mg}, 51 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H})$, 4.25-4.13 (m, 2 H), 3.95 ($\mathrm{s}, 3 \mathrm{H}$), $3.88(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (br. s., 1 H), 2.59-2.52 (m, $1 \mathrm{H}), 2.48(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 140.3,138.8,132.0,128.9,127.6,127.1,118.0,53.1,51.7,43.8,43.2,41.9$, 39.8. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$384.0381, found 384.0381.

3-Bromo-5-phenyl-1-(thiophen-2-ylsulfonyl)piperidine (31): This compound was prepared according to the General Procedure C using N-allylthiophene-2-sulfonamide ($51 \mathrm{mg}, 0.25 \mathrm{mmol}$) and styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography SiO_{2} ($3 \%-5 \%$ $\mathrm{EtOAc} /$ hexanes), the title compound was isolated as a colorless oil ($60 \mathrm{mg}, 62 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ 7.31 (m, 2 H), $7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{tt}, J=11.6$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{tt}, J=12.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-$ $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{q}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1,136.7,132.6,132.4,128.9,127.8,127.6,127.0,53.1,51.7,43.7,43.3,41.9$; IR (neat): 2921, 1601, 1470, 1405, 1348, 1235, 1154, 1135, 1022, 979, $699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}_{2} \mathrm{~S}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$385.9884, found 385.9894 .

3-bromo-5-(naphthalen-2-yl)-1-tosylpiperidine (32): This compound was prepared according to the General Procedure C using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4vinylnaphthalene ($77 \mathrm{mg}, 0.5 \mathrm{mmol}$). After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-$ $10 \% \mathrm{EtOAc} /$ hexanes), the title compound was isolated as a colorless oil ($91 \mathrm{mg}, 82 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.53-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=11.6,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{tt}, J=11.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{tt}, J=12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{q}$, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,137.6,133.3,132.6,129.9,128.5,127.6$, $127.5,126.4,126.0,125.5,125.3,53.1,51.7,44.0,43.4,41.8,21.6$; IR (neat): 2988, 1597, 1473, 1338, 1297, 1161, $1087 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$444.0633, found 444.0639.

5-bromo-2-methyl-3-phenyl-1-tosylpiperidine (33): This compound was prepared according to the General Procedure C, using N-allyl-4-methylbenzenesulfonamide ($56 \mathrm{mg}, 0.25 \mathrm{mmol}$) and β methylstyrene ($64 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography $\mathrm{SiO}_{2}(3 \%-5 \%$ $\mathrm{EtOAc} /$ hexanes), the title compound was isolated as a white solid ($42 \mathrm{mg}, 41 \%$ yield, $3.4: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6$ Hz, 1 H), 7.32-7.24 (m, 10 H$), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.60(\mathrm{~m}, 1 \mathrm{H}), 3.93$ (dd, $J=$ $6.7,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.00$ (m, 1 H), $2.62(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1$ H), $1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,137.6,135.0,130.0,129.9$, $129.8,129.0,128.6,128.5,128.3,127.9,127.8,127.6,127.6,127.5,127.4,127.3,64.1,61.4,58.2$, 55.3, 53.4, 52.1, 46.5, 44.2, 32.1, 31.2, 29.7, 23.2, 21.7, 20.8IR (neat): 2870, 1591, 1491, 1453, 1324, 1167, 1122, 1117, 1087, $1063 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{Br}_{1} \mathrm{NO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 407.0555, found 407.0552.

Preparation of bromo-intermediate of product 34:

\boldsymbol{N}-(2-bromo-2-phenylethyl)-4-methyl- \boldsymbol{N}-(2-methylallyl)benzenesulfonamide (34a): To an 8 mL vial equipped with a stir bar was added NBS ($98 \mathrm{mg}, 0.55 \mathrm{mmol}$) and 4-methyl- N -(2methylallyl)benzenesulfonamide ($113 \mathrm{mg}, 0.5 \mathrm{mmol}$). The vial was evacuated and backfilled with nitrogen. Then the solvent ($\mathrm{DCM}, 0.5 \mathrm{~mL}$) was added via a syringe, followed by styrene ($116 \mu \mathrm{~L}$, $1.0 \mathrm{mmol})$. The reaction mixture was then stirred for 16 h under fluorescent light. The reaction was diluted with EtOAc (2 mL) and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. Combined organic layer was concentrated under reduced pressure to give the crude product. After purification by column chromatography $\mathrm{SiO}_{2}(7 \% \mathrm{EtOAc} /$ hexanes $)$, the bromo-intermediate was isolated as a colorless thick liquid ($188 \mathrm{mg}, 92 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 7 \mathrm{H}), 5.25(\mathrm{dd}, J=8.7,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, 140.1, 139.2, 136.6, 129.7, 128.9, 128.7, 127.4, 115.5, 77.3, 77.1, 76.9, 55.4, 51.6, 21.6, 19.7; IR (neat): 3000, 1567, 1491, 1451, 1320, 1160, 1123, 1112, 1089, $1063 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 408.0627$, found 408.0633.

3-bromo-3-methyl-5-phenyl-1-tosylpiperidine (34): To an 8 mL vial equipped with a stir bar was added bromo-intermediate ($102 \mathrm{mg}, 0.25 \mathrm{mmol}$) followed by $\mathrm{AlBr}_{3}(20 \mathrm{mg}, 0.075 \mathrm{mmol})$ from the glovebox. Then the solvent ($\mathrm{DCM}, 0.25 \mathrm{~mL}$) was added via a syringe. The reaction mixture was then stirred for 16 h under room temperature. The reaction was diluted with EtOAc $(2 \mathrm{~mL})$ and quenched with water (2 mL). Organic layer was separated, aqueous layer was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. Combined organic layer was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $\mathrm{SiO}_{2}(5 \%-7 \% \mathrm{EtOAc} /$ hexanes $)$ to afford the pure product. The title compound was isolated as a white solid ($62 \mathrm{mg}, 61 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.04(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.85$ (s, 3 H), $1.55(\mathrm{dd}, J=12.3,14.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7,140.9,129.8$, $128.8,127.6,127.4,127.3,61.8,58.4,51.6,47.0,39.3,32.2,21.6$; IR (neat): $2871,1593,1492$, 1451, 1320, 1160, 1123, 1112, 1089, $1063 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{Br}_{1} \mathrm{NO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 407.0555$, found 407.0553 .

3-bromo-1-tosyl-2,3,4,4a,9,9a-hexahydro-1H-indeno[2,1-b]pyridine (35): This compound was prepared according to the General Procedure C using N-allyl-4-methylbenzenesulfonamide (53 $\mathrm{mg}, 0.25 \mathrm{mmol}$) and indene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography SiO_{2} ($5 \%-10 \% \mathrm{EtOAc} /$ hexanes), the title compound was isolated as a colorless oil ($53 \mathrm{mg}, 52 \%$ yield, 3.6:1 d.r.).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Maj}}\right), 7.75\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Min}}\right), 7.40-7.33$ $\left(\mathrm{m}, 2 \mathrm{H}_{\text {Maj }}+2 \mathrm{H}_{\text {Min }}\right), 7.28-7.21\left(\mathrm{~m}, 4 \mathrm{H}_{\text {Maj }}+1 \mathrm{H}_{\text {Min }}\right), 7.19-7.14\left(\mathrm{~m}, 2 \mathrm{H}_{\mathrm{Min}}\right)$, $7.14-7.11\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{Min}}\right)$, $4.67\left(\mathrm{td}, J=10.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 4.36\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 4.30\left(\mathrm{dd}, J=13.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right)$, 4.00-3.90 (m, $\left.1 \mathrm{H}_{\text {Maj }}\right), 3.86\left(\mathrm{tt}, J=3.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Min }}\right), 3.70\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.49(\mathrm{~d}, J=$ $\left.17.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.38\left(\mathrm{dd}, J=9.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Maj}}\right), 3.30\left(\mathrm{dd}, J=17.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 3.14-3.06$ $\left(\mathrm{m}, 2 \mathrm{H}_{\mathrm{Min}}\right), 2.90\left(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{Min}}\right), 2.76\left(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Min }}\right), 2.51-2.42$ $\left(\mathrm{m}, 3 \mathrm{H}_{\text {Maj }}+3 \mathrm{H}_{\text {Min }}\right.$), $2.26\left(\mathrm{dd}, J=11.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 1.87\left(\mathrm{td}, J=13.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {Maj }}\right), 1.60$ $\left(\mathrm{q}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{Min}}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9,143.8,143.7,143.5,141.0,138.8$, $137.1,134.5,130.0,129.9,127.8,127.5,127.4,127.3,127.1,127.0,125.5,125.4,123.5,123.3$, $66.5,62.6,55.1,49.1,47.7,43.9,43.3,41.2,39.5,35.6,33.1,30.7,29.7,21.6$; IR (neat): 2921, 1736, 1597, 1460, 1341, 1159, 1090, $1041 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$406.0476, found 406.0471.

(8R,9S,13S,14S)-2-(5-bromo-1-tosylpiperidin-3-yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (36): This compound was prepared according to the General Procedure C using N-allyl-4-methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25$ mmol) and (8R,9S,13S,14S)-13-methyl-3-vinyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (140 mg, 0.5 mmol$)$. After purification by column chromatography $\mathrm{SiO}_{2}(10 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a colorless oil ($93 \mathrm{mg}, 65 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 1$ H), $3.94(\mathrm{dd}, J=3.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-.92(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.97$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 143.9,139.1,137.8,137.0,133.4,129.9,127.8,127.5,125.8$, $124.3,53.1,51.8,50.4,47.9,44.3,44.1,42.9,41.9,38.1,35.8,31.5,29.4,26.4,25.6,21.6,21.5$, 13.8; IR (neat): 2921, 1734, 1493, 1450, 1339, 1161, 1088, $1051 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{BrNO}_{3} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 570.1678$, found 570.1667.

Preparation of bromo-intermediate of product 37:

N-allyl- N-(2-bromo-4-methylpentyl)-4-nitrobenzenesulfonamide (37a): To an 8 mL vial equipped with a stir bar was added NBS (49 mg, 0.275 mmol) and N-allyl-4nitrobenzenesulfonamide ($61 \mathrm{mg}, 0.25 \mathrm{mmol}$). The vial was evacuated and backfilled with nitrogen. Then the solvent (DCM, 0.25 mL) was added via a syringe, followed by 4-methyl-1pentene ($63 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). The reaction mixture was then stirred for 20 h under fluorescent light. The reaction was diluted with EtOAc (2 mL) and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). Combined organic layer was concentrated under reduced pressure to give the crude product. After purification by column chromatography $\mathrm{SiO}_{2}(2 \%-5 \% \mathrm{EtOAc} /$ hexanes $)$, the bromo-intermediate was isolated as a viscous colorless liquid ($53 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 5.65-5.57(\mathrm{~m}$, $1 \mathrm{H}), 5.24(\mathrm{brs}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=1.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=6.5,15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{dd}, J=6.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=6.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=7.5,14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.1,145.5,131.8,128.5,124.4,120.5,54.3,52.1,51.4,44.7,26.2$, 23.1, 20.8; IR (neat): 2982, 1525, 1342, 1305, 1159, 1089, 915, $770 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 405.0478$, found 405.0483.

3-Bromo-5-isobutyl-1-((4-nitrophenyl)sulfonyl)piperidine (37): To an 8 mL vial equipped with a stir bar was added bromo-intermediate ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$) and vial was evacuated and backfilled with nitrogen followed by $\mathrm{FeBr}_{3}(15 \mathrm{mg}, 0.050 \mathrm{mmol})$ from the glove box. Then the solvent (DCM, 0.4 mL) was added via a syringe. The reaction mixture was then stirred for 24 h under room temperature. The reaction was diluted with $\operatorname{EtOAc}(2 \mathrm{~mL})$ and quenched with saturated ammonium chloride (2 mL). Organic layer was separated, aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). Combined organic layer was concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica gel (5\%-7\% EtOAc/hexanes) to afford the pure product. The title compound was isolated as a viscous colorless liquid ($16 \mathrm{mg}, 39 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.24(\mathrm{~m}$, $1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, \mathrm{J}=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-$ $3.25(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=14.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44$
$(\mathrm{m}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8$, $146.9,128.2,124.4,53.9,45.6,43.7,42.0,38.7,33.9,33.1,26.8,23.2$; IR (neat): 2922, 2854, 1713, 1606, 1530, 1347, 1306, 1156, 1088, $741 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 405.0484$, found 405.0478 .

Preparation of bromo-intermediate of product 38:

N-Allyl-N-((1-bromocyclohexyl)methyl)-4-methylbenzenesulfonamide (38a): To an 8 mL vial equipped with a stir bar was added NBS (49 mg, 0.275 mmol) and N-allyl-4methylbenzenesulfonamide ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$). The vial was evacuated and backfilled with nitrogen. Then the solvent ($\mathrm{DCM}, 0.25 \mathrm{~mL}$) was added via a syringe, followed by methylenecyclohexane $(60 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$. The reaction mixture was then stirred for 1 h under fluorescent light. The reaction was diluted with EtOAc (2 mL) and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). Combined organic layer was concentrated under reduced pressure to give the crude product. After purification by column chromatography $\mathrm{SiO}_{2}(2 \%-5 \% \mathrm{EtOAc} /$ hexanes $)$, the bromo-intermediate was isolated as a viscous colorless liquid ($34 \mathrm{mg}, 35 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.36-5.26(\mathrm{~m}$, $1 \mathrm{H}), 5.22-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 7 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 143.6, 137.1, $132.0,129.8,127.4,120.4,75.72,59.3,52.6,38.7,25.1,22.6,21.5 ;$ IR (neat): 2940, 1653, 1506,

1323, 1339, 1157, 1089, 891, $746 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 386.0784, found 386.0789.

4-Bromo-2-tosyl-2-azaspiro[5.5]undecane (38): To an 8 mL vial equipped with a stir bar was added bromo-intermediate ($39 \mathrm{mg}, 0.10 \mathrm{mmol}$) and vial was evacuated and backfilled with nitrogen, followed by $\mathrm{AlBr}_{3}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$ in the glovebox. Then the solvent (DCM, 0.4 mL) was added via a syringe. The reaction mixture was then stirred for 16 h under room temperature. The reaction was diluted with EtOAc (2 mL) and quenched with water (2 mL). Organic layer was separated and the aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). Combined organic layer was concentrated under reduced pressure to give the crude product. After purification by column chromatography SiO_{2} ($5 \%-7 \% \mathrm{EtOAc} /$ hexanes), the title compound was isolated as a white solid ($24 \mathrm{mg}, 62 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1$ H), 4.18-4.12 (m, 1 H$), 3.76(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ $(\mathrm{d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 7 \mathrm{H}), 1.33(\mathrm{t}, J$ $=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7,133.6,129.8,127.4$, $53.9,43.0,37.5,37.0,31.4,26.2,21.5,21.4,21.1$; IR (neat): 2935, 2847, 1595, 1451, 1338, 1163, 1088, $959,816,654 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrNO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 386.0789$, found 386.0807.

Preparation of bromo-intermediate of product 39:

N-(3-bromo-3-methylbutan-2-yl)-4-methyl-N-(2-methylallyl)benzenesulfonamide (39a): To an 8 mL vial equipped with a stir bar was added NBS ($177 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 4-methyl- N -(2methylallyl)benzenesulfonamide ($113 \mathrm{mg}, 0.50 \mathrm{mmol}$). The vial was evacuated and backfilled with nitrogen. Then the solvent ($\mathrm{DCM}, 0.25 \mathrm{~mL}$) was added via a syringe, followed by 2 -methylbut-2-ene ($265 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$). The reaction mixture was then stirred for 1 h under fluorescent light. The reaction was diluted with EtOAc (2 mL) and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. Organic layer was separated, aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). Combined organic layer was concentrated under reduced pressure to give the crude product. After purification by column chromatography $\mathrm{SiO}_{2}(3 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$, the bromo-intermediate was isolated as a viscous colorless liquid ($121 \mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3 H), $1.91(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.4,136.2,129.6,127.4,116.7,69.8,62.9,33.5,30.4,22.8,21.5,19.8,12.6$; IR (neat): $2875,1343,1159,1070,755,657,583,552,540 \mathrm{~cm}^{-1} .$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrNO}_{2} \mathrm{~S}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$374.0784, found 374.0789.

2,3,3,5-tetramethyl-1-tosyl-1,2,3,4-tetrahydropyridine (39): To an 8 mL vial equipped with a stir bar was added bromo-intermediate ($44.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and vial was evacuated and
backfilled with nitrogen followed by $\mathrm{Zn}(\mathrm{OTf})_{2}(13 \mathrm{mg}, 0.04 \mathrm{mmol})$ was added. Then the solvent $\left(\mathrm{MeNO}_{2}, 0.25 \mathrm{~mL}\right)$ was added via a syringe. The reaction mixture was then stirred for 16 h under room temperature. The reaction was diluted with $\operatorname{EtOAc}(2 \mathrm{~mL})$ and quenched with water (2 mL). Organic layer was separated, aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). Combined organic layer was concentrated under reduced pressure to give the crude product. After purification by column chromatography $\mathrm{SiO}_{2}(3 \%-10 \% \mathrm{EtOAc} /$ hexanes $)$, the title compound was isolated as a viscous colorless liquid ($7.1 \mathrm{mg}, 20 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H})$, $3.56(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.1,137.8,129.6,126.8,115.9,113.0,57.9,37.3,31.9,27.2,27.0,21.6,20.8,15.8$; IR (neat): 2982, 2872, 1340, 1160, 1090, 1074, 991, 762, 662, 587, 558, $541 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$294.1528, found 294.1526.

1-(4-((3-methyl-4-phenyl-2,5-dihydro-1H-pyrrol-1-yl)sulfonyl)phenyl)-5-(p-tolyl)-3-

(trifluoromethyl)-1H-pyrazole (46): This compound was prepared according to the General
Procedure A and B using N-allyl-4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1yl)benzenesulfonamide ($105 \mathrm{mg}, 0.25 \mathrm{mmol}$) and styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) with CFL. After purification by column chromatography $\mathrm{SiO}_{2}(5 \%-15 \% \mathrm{EtOAc} /$ hexanes $)$, the pyrrolidine
compound was isolated as a colorless oil ($127 \mathrm{mg}, 78 \%$ yield) and the title compound was obtained as a white solid ($98 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, 4.42 (br. s., 2 H), 4.19 (br. s., 2 H), 2.38 (s, 4 H), 1.79 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $145.2,144.1\left(J_{\mathrm{C}-\mathrm{F}}=39.0 \mathrm{~Hz}\right), 142.6,139.8,136.4,133.4,129.9,129.7,128.8,128.6,128.5,128.4$, $127.7,127.4,125.7,121.0\left(J_{\mathrm{C}-\mathrm{F}}=268.5 \mathrm{~Hz}\right), 106.1,59.9,57.7,21.3,12.6 ;{ }^{19} \mathrm{~F}$ NMR (375 MHz , CDCl_{3}): $\delta-62.9(\mathrm{~m}, 3 \mathrm{~F})$; IR (neat): 2924, 1733, 1596, 1494, 1455, 1402, 1346, 1158, 1092, 1042, $1012 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 524.1620$, found 524.1616.

3-bromo-5-phenyl-1-((4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)

sulfonyl)piperidine (47): This compound was prepared according to the General Procedure C, using N -allyl-4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide (105 mg , 0.25 mmol) and Styrene ($58 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). After purification by column chromatography SiO_{2} ($5 \%-15 \% \mathrm{EtOAc} /$ hexanes), the title compound was isolated as a colorless oil ($85 \mathrm{mg}, 56 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.25(\mathrm{dd}, J=11.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-$ $2.95(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=11.7$
$\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,144.2\left(J_{\mathrm{C}-\mathrm{F}}=37.5 \mathrm{~Hz}\right)$, $142.9,140.0,139.9,135.8,129.8,128.9,128.7,128.4,127.6,127.0,125.7,125.5,121.0\left(J_{\mathrm{C}-\mathrm{F}}=\right.$ $268.5 \mathrm{~Hz}), 106.3,53.0,51.6,43.4,43.4,41.9,21.3 ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-62.8 (m, 3F); IR (neat): 2921, 1735, 1597, 1497, 1345, 1235, 1231, 1159, $1095 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$604.0881, found 604.0888.

4. Procedure for collection of NMR time studies for the pyrrolidine synthesis

To a 50 mL round bottomed flask with a stir bar was added NIS ($248 \mathrm{mg}, 1.1 \mathrm{mmol}$), p-toluenesulfonyl-protected allylic amine ($211 \mathrm{mg}, 1 \mathrm{mmol}$), and 1,3-dinitrobenzene ($168 \mathrm{mg}, 1$ mmol) as an internal standard. The reaction was evacuated and backfill with N_{2} three times. Then DCM (16 mL) was added via syringe, followed by Styrene ($232 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$). The reaction was then stirred under fluorescent light. At each time point, $50 \mu \mathrm{~L}$ reaction solution was taken with syringe, diluted with EtOAc (1 mL), washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(20 \%, 0.5 \mathrm{~mL})$. The organic layer was concentrated under reduced pressure. The yield of pyrrolidine at each time point was determined by crude NMR and plot against time. See the collected data in Table S1 and the plot in Figure S1.

Time	Intermediate (\%)	Product (\%)
15	23	0
30	59	6
45	65	8
60	65	16

75	65	19
105	62	25
135	59	30
165	54	32
225	45	42
285	42	46
345	39	49
405	37	54

Table S1. Time study of the pyrrolidine synthesis reaction

Figure S1. Plot of time study for pyrrolidine synthesis

5. Procedure for Collection of ${ }^{15} \mathrm{~N}$ NMR Study

In an NMR sample tube covered with an aluminum foil, N-allyl-4-methylbenzenesulfonamide (211 mg, 1 mmol) and NIS (225 mg 1 mmol) were dissolved in MeCN-D. ${ }^{15} \mathrm{~N}$ NMR data acquisition was performed overnight. The same procedure was followed to obtain the ${ }^{15} \mathrm{~N}$ NMR data with $50 \%, 25 \%$ and 0% NIS loading. NMR spectra were overlayed using ACDLABS NMR processing software Figure S1 and Figure S2.

Figure S1. ${ }^{15} \mathrm{~N}$ NMR study of allylic sulfonamide and NIS

Figure S2. Expanded figure for the ${ }^{15} \mathrm{~N}$ NMR study of allylic sulfonamide and NIS

References

1) Similar chloro-pyrrolidines can be found in: T. Tsuritani, H. Shinokubo, K. Oshima, Org. Lett. 2001, 3, 2709-2711.
2) L. N. S. Crespin, A. Greb, D. C. Blakemore, S. V. Ley, J. Org. Chem. 2017, 82, 1309313108.
3) S. Engl, O. Reiser, Org. Lett. 2021, 23, 5581-5586.
4) S. Nocquet-Thibault, P. Retaileau, K. Cariou, R. H. Dodd, Org. Lett. 2013, 15, 1842-1845.

 if

 NNNMNNMNN

$\bar{\circ}$
$\stackrel{\circ}{\circ}$

$\xrightarrow[4]{\text { Nog }}$

$\stackrel{\leftrightarrow}{\sim}$

Nom

15

¢ \%		
¢		
-		

$\stackrel{\text { N }}{\substack{2}}$
$\stackrel{ल}{i}$

17

¢O¢	Nomom
¢ ${ }_{\text {¢ }}$	
－	「う「

18

웅웅융 pic ị̛

19

$\stackrel{\sim}{\sim}$	\%	$\stackrel{\infty}{\infty}$
$\stackrel{1}{6}$	$\stackrel{\text { ¢ }}{+}$	
$\stackrel{1}{1}$	$\stackrel{\square}{1}$	¢TTju

~~

3

$\stackrel{\text { Ñ }}{\text { N }}$

$$
\begin{aligned}
& \text { N-N N-NjNo }
\end{aligned}
$$

$\begin{array}{r} f^{162.77} \\ -161.14 \end{array}$
-144.02
$\begin{aligned} & f^{136.02} \\ & f^{133.33} \\ & f^{129.93} \\ & -_{128.48}^{-128.46} \end{aligned}$

 $\stackrel{\infty}{\infty}$
$\stackrel{\leftrightarrow}{\sim}$

$\stackrel{\sim}{\sim}$

29

33

34

No

¢		ल	
¢i	1	¢	ल

35

\qquad

-143.69
-133.65
-129.81
-127.35

O~N

